xref: /linux/drivers/thunderbolt/switch.c (revision 3f41368fbfe1b3d5922d317fe1a0a0cab6846802)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 /*
30  * Hold NVM authentication failure status per switch This information
31  * needs to stay around even when the switch gets power cycled so we
32  * keep it separately.
33  */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36 
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 	struct nvm_auth_status *st;
40 
41 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 		if (uuid_equal(&st->uuid, sw->uuid))
43 			return st;
44 	}
45 
46 	return NULL;
47 }
48 
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 	struct nvm_auth_status *st;
52 
53 	mutex_lock(&nvm_auth_status_lock);
54 	st = __nvm_get_auth_status(sw);
55 	mutex_unlock(&nvm_auth_status_lock);
56 
57 	*status = st ? st->status : 0;
58 }
59 
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 	struct nvm_auth_status *st;
63 
64 	if (WARN_ON(!sw->uuid))
65 		return;
66 
67 	mutex_lock(&nvm_auth_status_lock);
68 	st = __nvm_get_auth_status(sw);
69 
70 	if (!st) {
71 		st = kzalloc(sizeof(*st), GFP_KERNEL);
72 		if (!st)
73 			goto unlock;
74 
75 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 		INIT_LIST_HEAD(&st->list);
77 		list_add_tail(&st->list, &nvm_auth_status_cache);
78 	}
79 
80 	st->status = status;
81 unlock:
82 	mutex_unlock(&nvm_auth_status_lock);
83 }
84 
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 	struct nvm_auth_status *st;
88 
89 	mutex_lock(&nvm_auth_status_lock);
90 	st = __nvm_get_auth_status(sw);
91 	if (st) {
92 		list_del(&st->list);
93 		kfree(st);
94 	}
95 	mutex_unlock(&nvm_auth_status_lock);
96 }
97 
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 	unsigned int image_size;
101 	const u8 *buf;
102 	int ret;
103 
104 	ret = tb_nvm_validate(sw->nvm);
105 	if (ret)
106 		return ret;
107 
108 	ret = tb_nvm_write_headers(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	buf = sw->nvm->buf_data_start;
113 	image_size = sw->nvm->buf_data_size;
114 
115 	if (tb_switch_is_usb4(sw))
116 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 	else
118 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 	if (ret)
120 		return ret;
121 
122 	sw->nvm->flushed = true;
123 	return 0;
124 }
125 
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 	int ret = 0;
129 
130 	/*
131 	 * Root switch NVM upgrade requires that we disconnect the
132 	 * existing paths first (in case it is not in safe mode
133 	 * already).
134 	 */
135 	if (!sw->safe_mode) {
136 		u32 status;
137 
138 		ret = tb_domain_disconnect_all_paths(sw->tb);
139 		if (ret)
140 			return ret;
141 		/*
142 		 * The host controller goes away pretty soon after this if
143 		 * everything goes well so getting timeout is expected.
144 		 */
145 		ret = dma_port_flash_update_auth(sw->dma_port);
146 		if (!ret || ret == -ETIMEDOUT)
147 			return 0;
148 
149 		/*
150 		 * Any error from update auth operation requires power
151 		 * cycling of the host router.
152 		 */
153 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 			nvm_set_auth_status(sw, status);
156 	}
157 
158 	/*
159 	 * From safe mode we can get out by just power cycling the
160 	 * switch.
161 	 */
162 	dma_port_power_cycle(sw->dma_port);
163 	return ret;
164 }
165 
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 	int ret, retries = 10;
169 
170 	ret = dma_port_flash_update_auth(sw->dma_port);
171 	switch (ret) {
172 	case 0:
173 	case -ETIMEDOUT:
174 	case -EACCES:
175 	case -EINVAL:
176 		/* Power cycle is required */
177 		break;
178 	default:
179 		return ret;
180 	}
181 
182 	/*
183 	 * Poll here for the authentication status. It takes some time
184 	 * for the device to respond (we get timeout for a while). Once
185 	 * we get response the device needs to be power cycled in order
186 	 * to the new NVM to be taken into use.
187 	 */
188 	do {
189 		u32 status;
190 
191 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 		if (ret < 0 && ret != -ETIMEDOUT)
193 			return ret;
194 		if (ret > 0) {
195 			if (status) {
196 				tb_sw_warn(sw, "failed to authenticate NVM\n");
197 				nvm_set_auth_status(sw, status);
198 			}
199 
200 			tb_sw_info(sw, "power cycling the switch now\n");
201 			dma_port_power_cycle(sw->dma_port);
202 			return 0;
203 		}
204 
205 		msleep(500);
206 	} while (--retries);
207 
208 	return -ETIMEDOUT;
209 }
210 
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 	struct pci_dev *root_port;
214 
215 	/*
216 	 * During host router NVM upgrade we should not allow root port to
217 	 * go into D3cold because some root ports cannot trigger PME
218 	 * itself. To be on the safe side keep the root port in D0 during
219 	 * the whole upgrade process.
220 	 */
221 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 	if (root_port)
223 		pm_runtime_get_noresume(&root_port->dev);
224 }
225 
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 	struct pci_dev *root_port;
229 
230 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 	if (root_port)
232 		pm_runtime_put(&root_port->dev);
233 }
234 
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 	if (tb_switch_is_usb4(sw)) {
238 		/*
239 		 * USB4 devices must support NVM operations but it is
240 		 * optional for hosts. Therefore we query the NVM sector
241 		 * size here and if it is supported assume NVM
242 		 * operations are implemented.
243 		 */
244 		return usb4_switch_nvm_sector_size(sw) > 0;
245 	}
246 
247 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 	return !!sw->dma_port;
249 }
250 
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 	if (sw->no_nvm_upgrade)
254 		return false;
255 	return nvm_readable(sw);
256 }
257 
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 	int ret;
261 
262 	if (tb_switch_is_usb4(sw)) {
263 		if (auth_only) {
264 			ret = usb4_switch_nvm_set_offset(sw, 0);
265 			if (ret)
266 				return ret;
267 		}
268 		sw->nvm->authenticating = true;
269 		return usb4_switch_nvm_authenticate(sw);
270 	}
271 	if (auth_only)
272 		return -EOPNOTSUPP;
273 
274 	sw->nvm->authenticating = true;
275 	if (!tb_route(sw)) {
276 		nvm_authenticate_start_dma_port(sw);
277 		ret = nvm_authenticate_host_dma_port(sw);
278 	} else {
279 		ret = nvm_authenticate_device_dma_port(sw);
280 	}
281 
282 	return ret;
283 }
284 
285 /**
286  * tb_switch_nvm_read() - Read router NVM
287  * @sw: Router whose NVM to read
288  * @address: Start address on the NVM
289  * @buf: Buffer where the read data is copied
290  * @size: Size of the buffer in bytes
291  *
292  * Reads from router NVM and returns the requested data in @buf. Locking
293  * is up to the caller. Returns %0 in success and negative errno in case
294  * of failure.
295  */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 		       size_t size)
298 {
299 	if (tb_switch_is_usb4(sw))
300 		return usb4_switch_nvm_read(sw, address, buf, size);
301 	return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303 
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 	struct tb_nvm *nvm = priv;
307 	struct tb_switch *sw = tb_to_switch(nvm->dev);
308 	int ret;
309 
310 	pm_runtime_get_sync(&sw->dev);
311 
312 	if (!mutex_trylock(&sw->tb->lock)) {
313 		ret = restart_syscall();
314 		goto out;
315 	}
316 
317 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 	mutex_unlock(&sw->tb->lock);
319 
320 out:
321 	pm_runtime_mark_last_busy(&sw->dev);
322 	pm_runtime_put_autosuspend(&sw->dev);
323 
324 	return ret;
325 }
326 
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 	struct tb_nvm *nvm = priv;
330 	struct tb_switch *sw = tb_to_switch(nvm->dev);
331 	int ret;
332 
333 	if (!mutex_trylock(&sw->tb->lock))
334 		return restart_syscall();
335 
336 	/*
337 	 * Since writing the NVM image might require some special steps,
338 	 * for example when CSS headers are written, we cache the image
339 	 * locally here and handle the special cases when the user asks
340 	 * us to authenticate the image.
341 	 */
342 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 	return ret;
346 }
347 
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 	struct tb_nvm *nvm;
351 	int ret;
352 
353 	if (!nvm_readable(sw))
354 		return 0;
355 
356 	nvm = tb_nvm_alloc(&sw->dev);
357 	if (IS_ERR(nvm)) {
358 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 		goto err_nvm;
360 	}
361 
362 	ret = tb_nvm_read_version(nvm);
363 	if (ret)
364 		goto err_nvm;
365 
366 	/*
367 	 * If the switch is in safe-mode the only accessible portion of
368 	 * the NVM is the non-active one where userspace is expected to
369 	 * write new functional NVM.
370 	 */
371 	if (!sw->safe_mode) {
372 		ret = tb_nvm_add_active(nvm, nvm_read);
373 		if (ret)
374 			goto err_nvm;
375 		tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 	}
377 
378 	if (!sw->no_nvm_upgrade) {
379 		ret = tb_nvm_add_non_active(nvm, nvm_write);
380 		if (ret)
381 			goto err_nvm;
382 	}
383 
384 	sw->nvm = nvm;
385 	return 0;
386 
387 err_nvm:
388 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 	sw->no_nvm_upgrade = true;
390 	if (!IS_ERR(nvm))
391 		tb_nvm_free(nvm);
392 
393 	return ret;
394 }
395 
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
397 {
398 	struct tb_nvm *nvm;
399 
400 	nvm = sw->nvm;
401 	sw->nvm = NULL;
402 
403 	if (!nvm)
404 		return;
405 
406 	/* Remove authentication status in case the switch is unplugged */
407 	if (!nvm->authenticating)
408 		nvm_clear_auth_status(sw);
409 
410 	tb_nvm_free(nvm);
411 }
412 
413 /* port utility functions */
414 
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
416 {
417 	switch (port->type >> 16) {
418 	case 0:
419 		switch ((u8) port->type) {
420 		case 0:
421 			return "Inactive";
422 		case 1:
423 			return "Port";
424 		case 2:
425 			return "NHI";
426 		default:
427 			return "unknown";
428 		}
429 	case 0x2:
430 		return "Ethernet";
431 	case 0x8:
432 		return "SATA";
433 	case 0xe:
434 		return "DP/HDMI";
435 	case 0x10:
436 		return "PCIe";
437 	case 0x20:
438 		return "USB";
439 	default:
440 		return "unknown";
441 	}
442 }
443 
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445 {
446 	const struct tb_regs_port_header *regs = &port->config;
447 
448 	tb_dbg(tb,
449 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 	       regs->port_number, regs->vendor_id, regs->device_id,
451 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 	       regs->type);
453 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
454 	       regs->max_in_hop_id, regs->max_out_hop_id);
455 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
456 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
457 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
458 	       port->ctl_credits);
459 }
460 
461 /**
462  * tb_port_state() - get connectedness state of a port
463  * @port: the port to check
464  *
465  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466  *
467  * Return: Returns an enum tb_port_state on success or an error code on failure.
468  */
469 int tb_port_state(struct tb_port *port)
470 {
471 	struct tb_cap_phy phy;
472 	int res;
473 	if (port->cap_phy == 0) {
474 		tb_port_WARN(port, "does not have a PHY\n");
475 		return -EINVAL;
476 	}
477 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 	if (res)
479 		return res;
480 	return phy.state;
481 }
482 
483 /**
484  * tb_wait_for_port() - wait for a port to become ready
485  * @port: Port to wait
486  * @wait_if_unplugged: Wait also when port is unplugged
487  *
488  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489  * wait_if_unplugged is set then we also wait if the port is in state
490  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491  * switch resume). Otherwise we only wait if a device is registered but the link
492  * has not yet been established.
493  *
494  * Return: Returns an error code on failure. Returns 0 if the port is not
495  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496  * if the port is connected and in state TB_PORT_UP.
497  */
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499 {
500 	int retries = 10;
501 	int state;
502 	if (!port->cap_phy) {
503 		tb_port_WARN(port, "does not have PHY\n");
504 		return -EINVAL;
505 	}
506 	if (tb_is_upstream_port(port)) {
507 		tb_port_WARN(port, "is the upstream port\n");
508 		return -EINVAL;
509 	}
510 
511 	while (retries--) {
512 		state = tb_port_state(port);
513 		switch (state) {
514 		case TB_PORT_DISABLED:
515 			tb_port_dbg(port, "is disabled (state: 0)\n");
516 			return 0;
517 
518 		case TB_PORT_UNPLUGGED:
519 			if (wait_if_unplugged) {
520 				/* used during resume */
521 				tb_port_dbg(port,
522 					    "is unplugged (state: 7), retrying...\n");
523 				msleep(100);
524 				break;
525 			}
526 			tb_port_dbg(port, "is unplugged (state: 7)\n");
527 			return 0;
528 
529 		case TB_PORT_UP:
530 		case TB_PORT_TX_CL0S:
531 		case TB_PORT_RX_CL0S:
532 		case TB_PORT_CL1:
533 		case TB_PORT_CL2:
534 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 			return 1;
536 
537 		default:
538 			if (state < 0)
539 				return state;
540 
541 			/*
542 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 			 * time.
544 			 */
545 			tb_port_dbg(port,
546 				    "is connected, link is not up (state: %d), retrying...\n",
547 				    state);
548 			msleep(100);
549 		}
550 
551 	}
552 	tb_port_warn(port,
553 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 	return 0;
555 }
556 
557 /**
558  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559  * @port: Port to add/remove NFC credits
560  * @credits: Credits to add/remove
561  *
562  * Change the number of NFC credits allocated to @port by @credits. To remove
563  * NFC credits pass a negative amount of credits.
564  *
565  * Return: Returns 0 on success or an error code on failure.
566  */
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568 {
569 	u32 nfc_credits;
570 
571 	if (credits == 0 || port->sw->is_unplugged)
572 		return 0;
573 
574 	/*
575 	 * USB4 restricts programming NFC buffers to lane adapters only
576 	 * so skip other ports.
577 	 */
578 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 		return 0;
580 
581 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 	if (credits < 0)
583 		credits = max_t(int, -nfc_credits, credits);
584 
585 	nfc_credits += credits;
586 
587 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589 
590 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 	port->config.nfc_credits |= nfc_credits;
592 
593 	return tb_port_write(port, &port->config.nfc_credits,
594 			     TB_CFG_PORT, ADP_CS_4, 1);
595 }
596 
597 /**
598  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599  * @port: Port whose counters to clear
600  * @counter: Counter index to clear
601  *
602  * Return: Returns 0 on success or an error code on failure.
603  */
604 int tb_port_clear_counter(struct tb_port *port, int counter)
605 {
606 	u32 zero[3] = { 0, 0, 0 };
607 	tb_port_dbg(port, "clearing counter %d\n", counter);
608 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609 }
610 
611 /**
612  * tb_port_unlock() - Unlock downstream port
613  * @port: Port to unlock
614  *
615  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616  * downstream router accessible for CM.
617  */
618 int tb_port_unlock(struct tb_port *port)
619 {
620 	if (tb_switch_is_icm(port->sw))
621 		return 0;
622 	if (!tb_port_is_null(port))
623 		return -EINVAL;
624 	if (tb_switch_is_usb4(port->sw))
625 		return usb4_port_unlock(port);
626 	return 0;
627 }
628 
629 static int __tb_port_enable(struct tb_port *port, bool enable)
630 {
631 	int ret;
632 	u32 phy;
633 
634 	if (!tb_port_is_null(port))
635 		return -EINVAL;
636 
637 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 			   port->cap_phy + LANE_ADP_CS_1, 1);
639 	if (ret)
640 		return ret;
641 
642 	if (enable)
643 		phy &= ~LANE_ADP_CS_1_LD;
644 	else
645 		phy |= LANE_ADP_CS_1_LD;
646 
647 
648 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 			    port->cap_phy + LANE_ADP_CS_1, 1);
650 	if (ret)
651 		return ret;
652 
653 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 	return 0;
655 }
656 
657 /**
658  * tb_port_enable() - Enable lane adapter
659  * @port: Port to enable (can be %NULL)
660  *
661  * This is used for lane 0 and 1 adapters to enable it.
662  */
663 int tb_port_enable(struct tb_port *port)
664 {
665 	return __tb_port_enable(port, true);
666 }
667 
668 /**
669  * tb_port_disable() - Disable lane adapter
670  * @port: Port to disable (can be %NULL)
671  *
672  * This is used for lane 0 and 1 adapters to disable it.
673  */
674 int tb_port_disable(struct tb_port *port)
675 {
676 	return __tb_port_enable(port, false);
677 }
678 
679 static int tb_port_reset(struct tb_port *port)
680 {
681 	if (tb_switch_is_usb4(port->sw))
682 		return port->cap_usb4 ? usb4_port_reset(port) : 0;
683 	return tb_lc_reset_port(port);
684 }
685 
686 /*
687  * tb_init_port() - initialize a port
688  *
689  * This is a helper method for tb_switch_alloc. Does not check or initialize
690  * any downstream switches.
691  *
692  * Return: Returns 0 on success or an error code on failure.
693  */
694 static int tb_init_port(struct tb_port *port)
695 {
696 	int res;
697 	int cap;
698 
699 	INIT_LIST_HEAD(&port->list);
700 
701 	/* Control adapter does not have configuration space */
702 	if (!port->port)
703 		return 0;
704 
705 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
706 	if (res) {
707 		if (res == -ENODEV) {
708 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
709 			       port->port);
710 			port->disabled = true;
711 			return 0;
712 		}
713 		return res;
714 	}
715 
716 	/* Port 0 is the switch itself and has no PHY. */
717 	if (port->config.type == TB_TYPE_PORT) {
718 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
719 
720 		if (cap > 0)
721 			port->cap_phy = cap;
722 		else
723 			tb_port_WARN(port, "non switch port without a PHY\n");
724 
725 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
726 		if (cap > 0)
727 			port->cap_usb4 = cap;
728 
729 		/*
730 		 * USB4 ports the buffers allocated for the control path
731 		 * can be read from the path config space. Legacy
732 		 * devices we use hard-coded value.
733 		 */
734 		if (port->cap_usb4) {
735 			struct tb_regs_hop hop;
736 
737 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
738 				port->ctl_credits = hop.initial_credits;
739 		}
740 		if (!port->ctl_credits)
741 			port->ctl_credits = 2;
742 
743 	} else {
744 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
745 		if (cap > 0)
746 			port->cap_adap = cap;
747 	}
748 
749 	port->total_credits =
750 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
751 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
752 
753 	tb_dump_port(port->sw->tb, port);
754 	return 0;
755 }
756 
757 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
758 			       int max_hopid)
759 {
760 	int port_max_hopid;
761 	struct ida *ida;
762 
763 	if (in) {
764 		port_max_hopid = port->config.max_in_hop_id;
765 		ida = &port->in_hopids;
766 	} else {
767 		port_max_hopid = port->config.max_out_hop_id;
768 		ida = &port->out_hopids;
769 	}
770 
771 	/*
772 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
773 	 * reserved.
774 	 */
775 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
776 		min_hopid = TB_PATH_MIN_HOPID;
777 
778 	if (max_hopid < 0 || max_hopid > port_max_hopid)
779 		max_hopid = port_max_hopid;
780 
781 	return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
782 }
783 
784 /**
785  * tb_port_alloc_in_hopid() - Allocate input HopID from port
786  * @port: Port to allocate HopID for
787  * @min_hopid: Minimum acceptable input HopID
788  * @max_hopid: Maximum acceptable input HopID
789  *
790  * Return: HopID between @min_hopid and @max_hopid or negative errno in
791  * case of error.
792  */
793 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
794 {
795 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
796 }
797 
798 /**
799  * tb_port_alloc_out_hopid() - Allocate output HopID from port
800  * @port: Port to allocate HopID for
801  * @min_hopid: Minimum acceptable output HopID
802  * @max_hopid: Maximum acceptable output HopID
803  *
804  * Return: HopID between @min_hopid and @max_hopid or negative errno in
805  * case of error.
806  */
807 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
808 {
809 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
810 }
811 
812 /**
813  * tb_port_release_in_hopid() - Release allocated input HopID from port
814  * @port: Port whose HopID to release
815  * @hopid: HopID to release
816  */
817 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
818 {
819 	ida_free(&port->in_hopids, hopid);
820 }
821 
822 /**
823  * tb_port_release_out_hopid() - Release allocated output HopID from port
824  * @port: Port whose HopID to release
825  * @hopid: HopID to release
826  */
827 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
828 {
829 	ida_free(&port->out_hopids, hopid);
830 }
831 
832 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
833 					  const struct tb_switch *sw)
834 {
835 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
836 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
837 }
838 
839 /**
840  * tb_next_port_on_path() - Return next port for given port on a path
841  * @start: Start port of the walk
842  * @end: End port of the walk
843  * @prev: Previous port (%NULL if this is the first)
844  *
845  * This function can be used to walk from one port to another if they
846  * are connected through zero or more switches. If the @prev is dual
847  * link port, the function follows that link and returns another end on
848  * that same link.
849  *
850  * If the @end port has been reached, return %NULL.
851  *
852  * Domain tb->lock must be held when this function is called.
853  */
854 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
855 				     struct tb_port *prev)
856 {
857 	struct tb_port *next;
858 
859 	if (!prev)
860 		return start;
861 
862 	if (prev->sw == end->sw) {
863 		if (prev == end)
864 			return NULL;
865 		return end;
866 	}
867 
868 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
869 		next = tb_port_at(tb_route(end->sw), prev->sw);
870 		/* Walk down the topology if next == prev */
871 		if (prev->remote &&
872 		    (next == prev || next->dual_link_port == prev))
873 			next = prev->remote;
874 	} else {
875 		if (tb_is_upstream_port(prev)) {
876 			next = prev->remote;
877 		} else {
878 			next = tb_upstream_port(prev->sw);
879 			/*
880 			 * Keep the same link if prev and next are both
881 			 * dual link ports.
882 			 */
883 			if (next->dual_link_port &&
884 			    next->link_nr != prev->link_nr) {
885 				next = next->dual_link_port;
886 			}
887 		}
888 	}
889 
890 	return next != prev ? next : NULL;
891 }
892 
893 /**
894  * tb_port_get_link_speed() - Get current link speed
895  * @port: Port to check (USB4 or CIO)
896  *
897  * Returns link speed in Gb/s or negative errno in case of failure.
898  */
899 int tb_port_get_link_speed(struct tb_port *port)
900 {
901 	u32 val, speed;
902 	int ret;
903 
904 	if (!port->cap_phy)
905 		return -EINVAL;
906 
907 	ret = tb_port_read(port, &val, TB_CFG_PORT,
908 			   port->cap_phy + LANE_ADP_CS_1, 1);
909 	if (ret)
910 		return ret;
911 
912 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
913 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
914 
915 	switch (speed) {
916 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
917 		return 40;
918 	case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
919 		return 20;
920 	default:
921 		return 10;
922 	}
923 }
924 
925 /**
926  * tb_port_get_link_generation() - Returns link generation
927  * @port: Lane adapter
928  *
929  * Returns link generation as number or negative errno in case of
930  * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931  * links so for those always returns 2.
932  */
933 int tb_port_get_link_generation(struct tb_port *port)
934 {
935 	int ret;
936 
937 	ret = tb_port_get_link_speed(port);
938 	if (ret < 0)
939 		return ret;
940 
941 	switch (ret) {
942 	case 40:
943 		return 4;
944 	case 20:
945 		return 3;
946 	default:
947 		return 2;
948 	}
949 }
950 
951 /**
952  * tb_port_get_link_width() - Get current link width
953  * @port: Port to check (USB4 or CIO)
954  *
955  * Returns link width. Return the link width as encoded in &enum
956  * tb_link_width or negative errno in case of failure.
957  */
958 int tb_port_get_link_width(struct tb_port *port)
959 {
960 	u32 val;
961 	int ret;
962 
963 	if (!port->cap_phy)
964 		return -EINVAL;
965 
966 	ret = tb_port_read(port, &val, TB_CFG_PORT,
967 			   port->cap_phy + LANE_ADP_CS_1, 1);
968 	if (ret)
969 		return ret;
970 
971 	/* Matches the values in enum tb_link_width */
972 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
973 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
974 }
975 
976 /**
977  * tb_port_width_supported() - Is the given link width supported
978  * @port: Port to check
979  * @width: Widths to check (bitmask)
980  *
981  * Can be called to any lane adapter. Checks if given @width is
982  * supported by the hardware and returns %true if it is.
983  */
984 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
985 {
986 	u32 phy, widths;
987 	int ret;
988 
989 	if (!port->cap_phy)
990 		return false;
991 
992 	if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
993 		if (tb_port_get_link_generation(port) < 4 ||
994 		    !usb4_port_asym_supported(port))
995 			return false;
996 	}
997 
998 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
999 			   port->cap_phy + LANE_ADP_CS_0, 1);
1000 	if (ret)
1001 		return false;
1002 
1003 	/*
1004 	 * The field encoding is the same as &enum tb_link_width (which is
1005 	 * passed to @width).
1006 	 */
1007 	widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1008 	return widths & width;
1009 }
1010 
1011 /**
1012  * tb_port_set_link_width() - Set target link width of the lane adapter
1013  * @port: Lane adapter
1014  * @width: Target link width
1015  *
1016  * Sets the target link width of the lane adapter to @width. Does not
1017  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1018  *
1019  * Return: %0 in case of success and negative errno in case of error
1020  */
1021 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1022 {
1023 	u32 val;
1024 	int ret;
1025 
1026 	if (!port->cap_phy)
1027 		return -EINVAL;
1028 
1029 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1030 			   port->cap_phy + LANE_ADP_CS_1, 1);
1031 	if (ret)
1032 		return ret;
1033 
1034 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1035 	switch (width) {
1036 	case TB_LINK_WIDTH_SINGLE:
1037 		/* Gen 4 link cannot be single */
1038 		if (tb_port_get_link_generation(port) >= 4)
1039 			return -EOPNOTSUPP;
1040 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1041 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 		break;
1043 
1044 	case TB_LINK_WIDTH_DUAL:
1045 		if (tb_port_get_link_generation(port) >= 4)
1046 			return usb4_port_asym_set_link_width(port, width);
1047 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1048 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1049 		break;
1050 
1051 	case TB_LINK_WIDTH_ASYM_TX:
1052 	case TB_LINK_WIDTH_ASYM_RX:
1053 		return usb4_port_asym_set_link_width(port, width);
1054 
1055 	default:
1056 		return -EINVAL;
1057 	}
1058 
1059 	return tb_port_write(port, &val, TB_CFG_PORT,
1060 			     port->cap_phy + LANE_ADP_CS_1, 1);
1061 }
1062 
1063 /**
1064  * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065  * @port: Lane adapter
1066  * @bonding: enable/disable bonding
1067  *
1068  * Enables or disables lane bonding. This should be called after target
1069  * link width has been set (tb_port_set_link_width()). Note in most
1070  * cases one should use tb_port_lane_bonding_enable() instead to enable
1071  * lane bonding.
1072  *
1073  * Return: %0 in case of success and negative errno in case of error
1074  */
1075 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1076 {
1077 	u32 val;
1078 	int ret;
1079 
1080 	if (!port->cap_phy)
1081 		return -EINVAL;
1082 
1083 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1084 			   port->cap_phy + LANE_ADP_CS_1, 1);
1085 	if (ret)
1086 		return ret;
1087 
1088 	if (bonding)
1089 		val |= LANE_ADP_CS_1_LB;
1090 	else
1091 		val &= ~LANE_ADP_CS_1_LB;
1092 
1093 	return tb_port_write(port, &val, TB_CFG_PORT,
1094 			     port->cap_phy + LANE_ADP_CS_1, 1);
1095 }
1096 
1097 /**
1098  * tb_port_lane_bonding_enable() - Enable bonding on port
1099  * @port: port to enable
1100  *
1101  * Enable bonding by setting the link width of the port and the other
1102  * port in case of dual link port. Does not wait for the link to
1103  * actually reach the bonded state so caller needs to call
1104  * tb_port_wait_for_link_width() before enabling any paths through the
1105  * link to make sure the link is in expected state.
1106  *
1107  * Return: %0 in case of success and negative errno in case of error
1108  */
1109 int tb_port_lane_bonding_enable(struct tb_port *port)
1110 {
1111 	enum tb_link_width width;
1112 	int ret;
1113 
1114 	/*
1115 	 * Enable lane bonding for both links if not already enabled by
1116 	 * for example the boot firmware.
1117 	 */
1118 	width = tb_port_get_link_width(port);
1119 	if (width == TB_LINK_WIDTH_SINGLE) {
1120 		ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1121 		if (ret)
1122 			goto err_lane0;
1123 	}
1124 
1125 	width = tb_port_get_link_width(port->dual_link_port);
1126 	if (width == TB_LINK_WIDTH_SINGLE) {
1127 		ret = tb_port_set_link_width(port->dual_link_port,
1128 					     TB_LINK_WIDTH_DUAL);
1129 		if (ret)
1130 			goto err_lane1;
1131 	}
1132 
1133 	/*
1134 	 * Only set bonding if the link was not already bonded. This
1135 	 * avoids the lane adapter to re-enter bonding state.
1136 	 */
1137 	if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1138 		ret = tb_port_set_lane_bonding(port, true);
1139 		if (ret)
1140 			goto err_lane1;
1141 	}
1142 
1143 	/*
1144 	 * When lane 0 bonding is set it will affect lane 1 too so
1145 	 * update both.
1146 	 */
1147 	port->bonded = true;
1148 	port->dual_link_port->bonded = true;
1149 
1150 	return 0;
1151 
1152 err_lane1:
1153 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1154 err_lane0:
1155 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1156 
1157 	return ret;
1158 }
1159 
1160 /**
1161  * tb_port_lane_bonding_disable() - Disable bonding on port
1162  * @port: port to disable
1163  *
1164  * Disable bonding by setting the link width of the port and the
1165  * other port in case of dual link port.
1166  */
1167 void tb_port_lane_bonding_disable(struct tb_port *port)
1168 {
1169 	tb_port_set_lane_bonding(port, false);
1170 	tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1171 	tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1172 	port->dual_link_port->bonded = false;
1173 	port->bonded = false;
1174 }
1175 
1176 /**
1177  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178  * @port: Port to wait for
1179  * @width: Expected link width (bitmask)
1180  * @timeout_msec: Timeout in ms how long to wait
1181  *
1182  * Should be used after both ends of the link have been bonded (or
1183  * bonding has been disabled) to wait until the link actually reaches
1184  * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185  * within the given timeout, %0 if it did. Can be passed a mask of
1186  * expected widths and succeeds if any of the widths is reached.
1187  */
1188 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1189 				int timeout_msec)
1190 {
1191 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1192 	int ret;
1193 
1194 	/* Gen 4 link does not support single lane */
1195 	if ((width & TB_LINK_WIDTH_SINGLE) &&
1196 	    tb_port_get_link_generation(port) >= 4)
1197 		return -EOPNOTSUPP;
1198 
1199 	do {
1200 		ret = tb_port_get_link_width(port);
1201 		if (ret < 0) {
1202 			/*
1203 			 * Sometimes we get port locked error when
1204 			 * polling the lanes so we can ignore it and
1205 			 * retry.
1206 			 */
1207 			if (ret != -EACCES)
1208 				return ret;
1209 		} else if (ret & width) {
1210 			return 0;
1211 		}
1212 
1213 		usleep_range(1000, 2000);
1214 	} while (ktime_before(ktime_get(), timeout));
1215 
1216 	return -ETIMEDOUT;
1217 }
1218 
1219 static int tb_port_do_update_credits(struct tb_port *port)
1220 {
1221 	u32 nfc_credits;
1222 	int ret;
1223 
1224 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1225 	if (ret)
1226 		return ret;
1227 
1228 	if (nfc_credits != port->config.nfc_credits) {
1229 		u32 total;
1230 
1231 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1232 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1233 
1234 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1235 			    port->total_credits, total);
1236 
1237 		port->config.nfc_credits = nfc_credits;
1238 		port->total_credits = total;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /**
1245  * tb_port_update_credits() - Re-read port total credits
1246  * @port: Port to update
1247  *
1248  * After the link is bonded (or bonding was disabled) the port total
1249  * credits may change, so this function needs to be called to re-read
1250  * the credits. Updates also the second lane adapter.
1251  */
1252 int tb_port_update_credits(struct tb_port *port)
1253 {
1254 	int ret;
1255 
1256 	ret = tb_port_do_update_credits(port);
1257 	if (ret)
1258 		return ret;
1259 
1260 	if (!port->dual_link_port)
1261 		return 0;
1262 	return tb_port_do_update_credits(port->dual_link_port);
1263 }
1264 
1265 static int tb_port_start_lane_initialization(struct tb_port *port)
1266 {
1267 	int ret;
1268 
1269 	if (tb_switch_is_usb4(port->sw))
1270 		return 0;
1271 
1272 	ret = tb_lc_start_lane_initialization(port);
1273 	return ret == -EINVAL ? 0 : ret;
1274 }
1275 
1276 /*
1277  * Returns true if the port had something (router, XDomain) connected
1278  * before suspend.
1279  */
1280 static bool tb_port_resume(struct tb_port *port)
1281 {
1282 	bool has_remote = tb_port_has_remote(port);
1283 
1284 	if (port->usb4) {
1285 		usb4_port_device_resume(port->usb4);
1286 	} else if (!has_remote) {
1287 		/*
1288 		 * For disconnected downstream lane adapters start lane
1289 		 * initialization now so we detect future connects.
1290 		 *
1291 		 * For XDomain start the lane initialzation now so the
1292 		 * link gets re-established.
1293 		 *
1294 		 * This is only needed for non-USB4 ports.
1295 		 */
1296 		if (!tb_is_upstream_port(port) || port->xdomain)
1297 			tb_port_start_lane_initialization(port);
1298 	}
1299 
1300 	return has_remote || port->xdomain;
1301 }
1302 
1303 /**
1304  * tb_port_is_enabled() - Is the adapter port enabled
1305  * @port: Port to check
1306  */
1307 bool tb_port_is_enabled(struct tb_port *port)
1308 {
1309 	switch (port->config.type) {
1310 	case TB_TYPE_PCIE_UP:
1311 	case TB_TYPE_PCIE_DOWN:
1312 		return tb_pci_port_is_enabled(port);
1313 
1314 	case TB_TYPE_DP_HDMI_IN:
1315 	case TB_TYPE_DP_HDMI_OUT:
1316 		return tb_dp_port_is_enabled(port);
1317 
1318 	case TB_TYPE_USB3_UP:
1319 	case TB_TYPE_USB3_DOWN:
1320 		return tb_usb3_port_is_enabled(port);
1321 
1322 	default:
1323 		return false;
1324 	}
1325 }
1326 
1327 /**
1328  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329  * @port: USB3 adapter port to check
1330  */
1331 bool tb_usb3_port_is_enabled(struct tb_port *port)
1332 {
1333 	u32 data;
1334 
1335 	if (tb_port_read(port, &data, TB_CFG_PORT,
1336 			 port->cap_adap + ADP_USB3_CS_0, 1))
1337 		return false;
1338 
1339 	return !!(data & ADP_USB3_CS_0_PE);
1340 }
1341 
1342 /**
1343  * tb_usb3_port_enable() - Enable USB3 adapter port
1344  * @port: USB3 adapter port to enable
1345  * @enable: Enable/disable the USB3 adapter
1346  */
1347 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1348 {
1349 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1350 			  : ADP_USB3_CS_0_V;
1351 
1352 	if (!port->cap_adap)
1353 		return -ENXIO;
1354 	return tb_port_write(port, &word, TB_CFG_PORT,
1355 			     port->cap_adap + ADP_USB3_CS_0, 1);
1356 }
1357 
1358 /**
1359  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360  * @port: PCIe port to check
1361  */
1362 bool tb_pci_port_is_enabled(struct tb_port *port)
1363 {
1364 	u32 data;
1365 
1366 	if (tb_port_read(port, &data, TB_CFG_PORT,
1367 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1368 		return false;
1369 
1370 	return !!(data & ADP_PCIE_CS_0_PE);
1371 }
1372 
1373 /**
1374  * tb_pci_port_enable() - Enable PCIe adapter port
1375  * @port: PCIe port to enable
1376  * @enable: Enable/disable the PCIe adapter
1377  */
1378 int tb_pci_port_enable(struct tb_port *port, bool enable)
1379 {
1380 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1381 	if (!port->cap_adap)
1382 		return -ENXIO;
1383 	return tb_port_write(port, &word, TB_CFG_PORT,
1384 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1385 }
1386 
1387 /**
1388  * tb_dp_port_hpd_is_active() - Is HPD already active
1389  * @port: DP out port to check
1390  *
1391  * Checks if the DP OUT adapter port has HPD bit already set.
1392  */
1393 int tb_dp_port_hpd_is_active(struct tb_port *port)
1394 {
1395 	u32 data;
1396 	int ret;
1397 
1398 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1399 			   port->cap_adap + ADP_DP_CS_2, 1);
1400 	if (ret)
1401 		return ret;
1402 
1403 	return !!(data & ADP_DP_CS_2_HPD);
1404 }
1405 
1406 /**
1407  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408  * @port: Port to clear HPD
1409  *
1410  * If the DP IN port has HPD set, this function can be used to clear it.
1411  */
1412 int tb_dp_port_hpd_clear(struct tb_port *port)
1413 {
1414 	u32 data;
1415 	int ret;
1416 
1417 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1418 			   port->cap_adap + ADP_DP_CS_3, 1);
1419 	if (ret)
1420 		return ret;
1421 
1422 	data |= ADP_DP_CS_3_HPDC;
1423 	return tb_port_write(port, &data, TB_CFG_PORT,
1424 			     port->cap_adap + ADP_DP_CS_3, 1);
1425 }
1426 
1427 /**
1428  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429  * @port: DP IN/OUT port to set hops
1430  * @video: Video Hop ID
1431  * @aux_tx: AUX TX Hop ID
1432  * @aux_rx: AUX RX Hop ID
1433  *
1434  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435  * router DP adapters too but does not program the values as the fields
1436  * are read-only.
1437  */
1438 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1439 			unsigned int aux_tx, unsigned int aux_rx)
1440 {
1441 	u32 data[2];
1442 	int ret;
1443 
1444 	if (tb_switch_is_usb4(port->sw))
1445 		return 0;
1446 
1447 	ret = tb_port_read(port, data, TB_CFG_PORT,
1448 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1449 	if (ret)
1450 		return ret;
1451 
1452 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1453 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1455 
1456 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1457 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1458 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1459 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1460 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1461 
1462 	return tb_port_write(port, data, TB_CFG_PORT,
1463 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464 }
1465 
1466 /**
1467  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468  * @port: DP adapter port to check
1469  */
1470 bool tb_dp_port_is_enabled(struct tb_port *port)
1471 {
1472 	u32 data[2];
1473 
1474 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1475 			 ARRAY_SIZE(data)))
1476 		return false;
1477 
1478 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1479 }
1480 
1481 /**
1482  * tb_dp_port_enable() - Enables/disables DP paths of a port
1483  * @port: DP IN/OUT port
1484  * @enable: Enable/disable DP path
1485  *
1486  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487  * calling this function.
1488  */
1489 int tb_dp_port_enable(struct tb_port *port, bool enable)
1490 {
1491 	u32 data[2];
1492 	int ret;
1493 
1494 	ret = tb_port_read(port, data, TB_CFG_PORT,
1495 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496 	if (ret)
1497 		return ret;
1498 
1499 	if (enable)
1500 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1501 	else
1502 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1503 
1504 	return tb_port_write(port, data, TB_CFG_PORT,
1505 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1506 }
1507 
1508 /* switch utility functions */
1509 
1510 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1511 {
1512 	switch (sw->generation) {
1513 	case 1:
1514 		return "Thunderbolt 1";
1515 	case 2:
1516 		return "Thunderbolt 2";
1517 	case 3:
1518 		return "Thunderbolt 3";
1519 	case 4:
1520 		return "USB4";
1521 	default:
1522 		return "Unknown";
1523 	}
1524 }
1525 
1526 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1527 {
1528 	const struct tb_regs_switch_header *regs = &sw->config;
1529 
1530 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1532 	       regs->revision, regs->thunderbolt_version);
1533 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1534 	tb_dbg(tb, "  Config:\n");
1535 	tb_dbg(tb,
1536 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537 	       regs->upstream_port_number, regs->depth,
1538 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1539 	       regs->enabled, regs->plug_events_delay);
1540 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1541 	       regs->__unknown1, regs->__unknown4);
1542 }
1543 
1544 static int tb_switch_reset_host(struct tb_switch *sw)
1545 {
1546 	if (sw->generation > 1) {
1547 		struct tb_port *port;
1548 
1549 		tb_switch_for_each_port(sw, port) {
1550 			int i, ret;
1551 
1552 			/*
1553 			 * For lane adapters we issue downstream port
1554 			 * reset and clear up path config spaces.
1555 			 *
1556 			 * For protocol adapters we disable the path and
1557 			 * clear path config space one by one (from 8 to
1558 			 * Max Input HopID of the adapter).
1559 			 */
1560 			if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1561 				ret = tb_port_reset(port);
1562 				if (ret)
1563 					return ret;
1564 			} else if (tb_port_is_usb3_down(port) ||
1565 				   tb_port_is_usb3_up(port)) {
1566 				tb_usb3_port_enable(port, false);
1567 			} else if (tb_port_is_dpin(port) ||
1568 				   tb_port_is_dpout(port)) {
1569 				tb_dp_port_enable(port, false);
1570 			} else if (tb_port_is_pcie_down(port) ||
1571 				   tb_port_is_pcie_up(port)) {
1572 				tb_pci_port_enable(port, false);
1573 			} else {
1574 				continue;
1575 			}
1576 
1577 			/* Cleanup path config space of protocol adapter */
1578 			for (i = TB_PATH_MIN_HOPID;
1579 			     i <= port->config.max_in_hop_id; i++) {
1580 				ret = tb_path_deactivate_hop(port, i);
1581 				if (ret)
1582 					return ret;
1583 			}
1584 		}
1585 	} else {
1586 		struct tb_cfg_result res;
1587 
1588 		/* Thunderbolt 1 uses the "reset" config space packet */
1589 		res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1590 				      TB_CFG_SWITCH, 2, 2);
1591 		if (res.err)
1592 			return res.err;
1593 		res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1594 		if (res.err > 0)
1595 			return -EIO;
1596 		else if (res.err < 0)
1597 			return res.err;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int tb_switch_reset_device(struct tb_switch *sw)
1604 {
1605 	return tb_port_reset(tb_switch_downstream_port(sw));
1606 }
1607 
1608 static bool tb_switch_enumerated(struct tb_switch *sw)
1609 {
1610 	u32 val;
1611 	int ret;
1612 
1613 	/*
1614 	 * Read directly from the hardware because we use this also
1615 	 * during system sleep where sw->config.enabled is already set
1616 	 * by us.
1617 	 */
1618 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1619 	if (ret)
1620 		return false;
1621 
1622 	return !!(val & ROUTER_CS_3_V);
1623 }
1624 
1625 /**
1626  * tb_switch_reset() - Perform reset to the router
1627  * @sw: Router to reset
1628  *
1629  * Issues reset to the router @sw. Can be used for any router. For host
1630  * routers, resets all the downstream ports and cleans up path config
1631  * spaces accordingly. For device routers issues downstream port reset
1632  * through the parent router, so as side effect there will be unplug
1633  * soon after this is finished.
1634  *
1635  * If the router is not enumerated does nothing.
1636  *
1637  * Returns %0 on success or negative errno in case of failure.
1638  */
1639 int tb_switch_reset(struct tb_switch *sw)
1640 {
1641 	int ret;
1642 
1643 	/*
1644 	 * We cannot access the port config spaces unless the router is
1645 	 * already enumerated. If the router is not enumerated it is
1646 	 * equal to being reset so we can skip that here.
1647 	 */
1648 	if (!tb_switch_enumerated(sw))
1649 		return 0;
1650 
1651 	tb_sw_dbg(sw, "resetting\n");
1652 
1653 	if (tb_route(sw))
1654 		ret = tb_switch_reset_device(sw);
1655 	else
1656 		ret = tb_switch_reset_host(sw);
1657 
1658 	if (ret)
1659 		tb_sw_warn(sw, "failed to reset\n");
1660 
1661 	return ret;
1662 }
1663 
1664 /**
1665  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666  * @sw: Router to read the offset value from
1667  * @offset: Offset in the router config space to read from
1668  * @bit: Bit mask in the offset to wait for
1669  * @value: Value of the bits to wait for
1670  * @timeout_msec: Timeout in ms how long to wait
1671  *
1672  * Wait till the specified bits in specified offset reach specified value.
1673  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674  * within the given timeout or a negative errno in case of failure.
1675  */
1676 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1677 			   u32 value, int timeout_msec)
1678 {
1679 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1680 
1681 	do {
1682 		u32 val;
1683 		int ret;
1684 
1685 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1686 		if (ret)
1687 			return ret;
1688 
1689 		if ((val & bit) == value)
1690 			return 0;
1691 
1692 		usleep_range(50, 100);
1693 	} while (ktime_before(ktime_get(), timeout));
1694 
1695 	return -ETIMEDOUT;
1696 }
1697 
1698 /*
1699  * tb_plug_events_active() - enable/disable plug events on a switch
1700  *
1701  * Also configures a sane plug_events_delay of 255ms.
1702  *
1703  * Return: Returns 0 on success or an error code on failure.
1704  */
1705 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1706 {
1707 	u32 data;
1708 	int res;
1709 
1710 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1711 		return 0;
1712 
1713 	sw->config.plug_events_delay = 0xff;
1714 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1715 	if (res)
1716 		return res;
1717 
1718 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1719 	if (res)
1720 		return res;
1721 
1722 	if (active) {
1723 		data = data & 0xFFFFFF83;
1724 		switch (sw->config.device_id) {
1725 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1726 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1727 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1728 			break;
1729 		default:
1730 			/*
1731 			 * Skip Alpine Ridge, it needs to have vendor
1732 			 * specific USB hotplug event enabled for the
1733 			 * internal xHCI to work.
1734 			 */
1735 			if (!tb_switch_is_alpine_ridge(sw))
1736 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1737 		}
1738 	} else {
1739 		data = data | 0x7c;
1740 	}
1741 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1742 			   sw->cap_plug_events + 1, 1);
1743 }
1744 
1745 static ssize_t authorized_show(struct device *dev,
1746 			       struct device_attribute *attr,
1747 			       char *buf)
1748 {
1749 	struct tb_switch *sw = tb_to_switch(dev);
1750 
1751 	return sysfs_emit(buf, "%u\n", sw->authorized);
1752 }
1753 
1754 static int disapprove_switch(struct device *dev, void *not_used)
1755 {
1756 	char *envp[] = { "AUTHORIZED=0", NULL };
1757 	struct tb_switch *sw;
1758 
1759 	sw = tb_to_switch(dev);
1760 	if (sw && sw->authorized) {
1761 		int ret;
1762 
1763 		/* First children */
1764 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1765 		if (ret)
1766 			return ret;
1767 
1768 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1769 		if (ret)
1770 			return ret;
1771 
1772 		sw->authorized = 0;
1773 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1780 {
1781 	char envp_string[13];
1782 	int ret = -EINVAL;
1783 	char *envp[] = { envp_string, NULL };
1784 
1785 	if (!mutex_trylock(&sw->tb->lock))
1786 		return restart_syscall();
1787 
1788 	if (!!sw->authorized == !!val)
1789 		goto unlock;
1790 
1791 	switch (val) {
1792 	/* Disapprove switch */
1793 	case 0:
1794 		if (tb_route(sw)) {
1795 			ret = disapprove_switch(&sw->dev, NULL);
1796 			goto unlock;
1797 		}
1798 		break;
1799 
1800 	/* Approve switch */
1801 	case 1:
1802 		if (sw->key)
1803 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1804 		else
1805 			ret = tb_domain_approve_switch(sw->tb, sw);
1806 		break;
1807 
1808 	/* Challenge switch */
1809 	case 2:
1810 		if (sw->key)
1811 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1812 		break;
1813 
1814 	default:
1815 		break;
1816 	}
1817 
1818 	if (!ret) {
1819 		sw->authorized = val;
1820 		/*
1821 		 * Notify status change to the userspace, informing the new
1822 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1823 		 */
1824 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1825 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1826 	}
1827 
1828 unlock:
1829 	mutex_unlock(&sw->tb->lock);
1830 	return ret;
1831 }
1832 
1833 static ssize_t authorized_store(struct device *dev,
1834 				struct device_attribute *attr,
1835 				const char *buf, size_t count)
1836 {
1837 	struct tb_switch *sw = tb_to_switch(dev);
1838 	unsigned int val;
1839 	ssize_t ret;
1840 
1841 	ret = kstrtouint(buf, 0, &val);
1842 	if (ret)
1843 		return ret;
1844 	if (val > 2)
1845 		return -EINVAL;
1846 
1847 	pm_runtime_get_sync(&sw->dev);
1848 	ret = tb_switch_set_authorized(sw, val);
1849 	pm_runtime_mark_last_busy(&sw->dev);
1850 	pm_runtime_put_autosuspend(&sw->dev);
1851 
1852 	return ret ? ret : count;
1853 }
1854 static DEVICE_ATTR_RW(authorized);
1855 
1856 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1857 			 char *buf)
1858 {
1859 	struct tb_switch *sw = tb_to_switch(dev);
1860 
1861 	return sysfs_emit(buf, "%u\n", sw->boot);
1862 }
1863 static DEVICE_ATTR_RO(boot);
1864 
1865 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1866 			   char *buf)
1867 {
1868 	struct tb_switch *sw = tb_to_switch(dev);
1869 
1870 	return sysfs_emit(buf, "%#x\n", sw->device);
1871 }
1872 static DEVICE_ATTR_RO(device);
1873 
1874 static ssize_t
1875 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1876 {
1877 	struct tb_switch *sw = tb_to_switch(dev);
1878 
1879 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1880 }
1881 static DEVICE_ATTR_RO(device_name);
1882 
1883 static ssize_t
1884 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1885 {
1886 	struct tb_switch *sw = tb_to_switch(dev);
1887 
1888 	return sysfs_emit(buf, "%u\n", sw->generation);
1889 }
1890 static DEVICE_ATTR_RO(generation);
1891 
1892 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1893 			char *buf)
1894 {
1895 	struct tb_switch *sw = tb_to_switch(dev);
1896 	ssize_t ret;
1897 
1898 	if (!mutex_trylock(&sw->tb->lock))
1899 		return restart_syscall();
1900 
1901 	if (sw->key)
1902 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1903 	else
1904 		ret = sysfs_emit(buf, "\n");
1905 
1906 	mutex_unlock(&sw->tb->lock);
1907 	return ret;
1908 }
1909 
1910 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1911 			 const char *buf, size_t count)
1912 {
1913 	struct tb_switch *sw = tb_to_switch(dev);
1914 	u8 key[TB_SWITCH_KEY_SIZE];
1915 	ssize_t ret = count;
1916 	bool clear = false;
1917 
1918 	if (!strcmp(buf, "\n"))
1919 		clear = true;
1920 	else if (hex2bin(key, buf, sizeof(key)))
1921 		return -EINVAL;
1922 
1923 	if (!mutex_trylock(&sw->tb->lock))
1924 		return restart_syscall();
1925 
1926 	if (sw->authorized) {
1927 		ret = -EBUSY;
1928 	} else {
1929 		kfree(sw->key);
1930 		if (clear) {
1931 			sw->key = NULL;
1932 		} else {
1933 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1934 			if (!sw->key)
1935 				ret = -ENOMEM;
1936 		}
1937 	}
1938 
1939 	mutex_unlock(&sw->tb->lock);
1940 	return ret;
1941 }
1942 static DEVICE_ATTR(key, 0600, key_show, key_store);
1943 
1944 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1945 			  char *buf)
1946 {
1947 	struct tb_switch *sw = tb_to_switch(dev);
1948 
1949 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1950 }
1951 
1952 /*
1953  * Currently all lanes must run at the same speed but we expose here
1954  * both directions to allow possible asymmetric links in the future.
1955  */
1956 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1957 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1958 
1959 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1960 			     char *buf)
1961 {
1962 	struct tb_switch *sw = tb_to_switch(dev);
1963 	unsigned int width;
1964 
1965 	switch (sw->link_width) {
1966 	case TB_LINK_WIDTH_SINGLE:
1967 	case TB_LINK_WIDTH_ASYM_TX:
1968 		width = 1;
1969 		break;
1970 	case TB_LINK_WIDTH_DUAL:
1971 		width = 2;
1972 		break;
1973 	case TB_LINK_WIDTH_ASYM_RX:
1974 		width = 3;
1975 		break;
1976 	default:
1977 		WARN_ON_ONCE(1);
1978 		return -EINVAL;
1979 	}
1980 
1981 	return sysfs_emit(buf, "%u\n", width);
1982 }
1983 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1984 
1985 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1986 			     char *buf)
1987 {
1988 	struct tb_switch *sw = tb_to_switch(dev);
1989 	unsigned int width;
1990 
1991 	switch (sw->link_width) {
1992 	case TB_LINK_WIDTH_SINGLE:
1993 	case TB_LINK_WIDTH_ASYM_RX:
1994 		width = 1;
1995 		break;
1996 	case TB_LINK_WIDTH_DUAL:
1997 		width = 2;
1998 		break;
1999 	case TB_LINK_WIDTH_ASYM_TX:
2000 		width = 3;
2001 		break;
2002 	default:
2003 		WARN_ON_ONCE(1);
2004 		return -EINVAL;
2005 	}
2006 
2007 	return sysfs_emit(buf, "%u\n", width);
2008 }
2009 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2010 
2011 static ssize_t nvm_authenticate_show(struct device *dev,
2012 	struct device_attribute *attr, char *buf)
2013 {
2014 	struct tb_switch *sw = tb_to_switch(dev);
2015 	u32 status;
2016 
2017 	nvm_get_auth_status(sw, &status);
2018 	return sysfs_emit(buf, "%#x\n", status);
2019 }
2020 
2021 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2022 				      bool disconnect)
2023 {
2024 	struct tb_switch *sw = tb_to_switch(dev);
2025 	int val, ret;
2026 
2027 	pm_runtime_get_sync(&sw->dev);
2028 
2029 	if (!mutex_trylock(&sw->tb->lock)) {
2030 		ret = restart_syscall();
2031 		goto exit_rpm;
2032 	}
2033 
2034 	if (sw->no_nvm_upgrade) {
2035 		ret = -EOPNOTSUPP;
2036 		goto exit_unlock;
2037 	}
2038 
2039 	/* If NVMem devices are not yet added */
2040 	if (!sw->nvm) {
2041 		ret = -EAGAIN;
2042 		goto exit_unlock;
2043 	}
2044 
2045 	ret = kstrtoint(buf, 10, &val);
2046 	if (ret)
2047 		goto exit_unlock;
2048 
2049 	/* Always clear the authentication status */
2050 	nvm_clear_auth_status(sw);
2051 
2052 	if (val > 0) {
2053 		if (val == AUTHENTICATE_ONLY) {
2054 			if (disconnect)
2055 				ret = -EINVAL;
2056 			else
2057 				ret = nvm_authenticate(sw, true);
2058 		} else {
2059 			if (!sw->nvm->flushed) {
2060 				if (!sw->nvm->buf) {
2061 					ret = -EINVAL;
2062 					goto exit_unlock;
2063 				}
2064 
2065 				ret = nvm_validate_and_write(sw);
2066 				if (ret || val == WRITE_ONLY)
2067 					goto exit_unlock;
2068 			}
2069 			if (val == WRITE_AND_AUTHENTICATE) {
2070 				if (disconnect)
2071 					ret = tb_lc_force_power(sw);
2072 				else
2073 					ret = nvm_authenticate(sw, false);
2074 			}
2075 		}
2076 	}
2077 
2078 exit_unlock:
2079 	mutex_unlock(&sw->tb->lock);
2080 exit_rpm:
2081 	pm_runtime_mark_last_busy(&sw->dev);
2082 	pm_runtime_put_autosuspend(&sw->dev);
2083 
2084 	return ret;
2085 }
2086 
2087 static ssize_t nvm_authenticate_store(struct device *dev,
2088 	struct device_attribute *attr, const char *buf, size_t count)
2089 {
2090 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2091 	if (ret)
2092 		return ret;
2093 	return count;
2094 }
2095 static DEVICE_ATTR_RW(nvm_authenticate);
2096 
2097 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2098 	struct device_attribute *attr, char *buf)
2099 {
2100 	return nvm_authenticate_show(dev, attr, buf);
2101 }
2102 
2103 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2104 	struct device_attribute *attr, const char *buf, size_t count)
2105 {
2106 	int ret;
2107 
2108 	ret = nvm_authenticate_sysfs(dev, buf, true);
2109 	return ret ? ret : count;
2110 }
2111 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2112 
2113 static ssize_t nvm_version_show(struct device *dev,
2114 				struct device_attribute *attr, char *buf)
2115 {
2116 	struct tb_switch *sw = tb_to_switch(dev);
2117 	int ret;
2118 
2119 	if (!mutex_trylock(&sw->tb->lock))
2120 		return restart_syscall();
2121 
2122 	if (sw->safe_mode)
2123 		ret = -ENODATA;
2124 	else if (!sw->nvm)
2125 		ret = -EAGAIN;
2126 	else
2127 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2128 
2129 	mutex_unlock(&sw->tb->lock);
2130 
2131 	return ret;
2132 }
2133 static DEVICE_ATTR_RO(nvm_version);
2134 
2135 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2136 			   char *buf)
2137 {
2138 	struct tb_switch *sw = tb_to_switch(dev);
2139 
2140 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2141 }
2142 static DEVICE_ATTR_RO(vendor);
2143 
2144 static ssize_t
2145 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2146 {
2147 	struct tb_switch *sw = tb_to_switch(dev);
2148 
2149 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2150 }
2151 static DEVICE_ATTR_RO(vendor_name);
2152 
2153 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2154 			      char *buf)
2155 {
2156 	struct tb_switch *sw = tb_to_switch(dev);
2157 
2158 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2159 }
2160 static DEVICE_ATTR_RO(unique_id);
2161 
2162 static struct attribute *switch_attrs[] = {
2163 	&dev_attr_authorized.attr,
2164 	&dev_attr_boot.attr,
2165 	&dev_attr_device.attr,
2166 	&dev_attr_device_name.attr,
2167 	&dev_attr_generation.attr,
2168 	&dev_attr_key.attr,
2169 	&dev_attr_nvm_authenticate.attr,
2170 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2171 	&dev_attr_nvm_version.attr,
2172 	&dev_attr_rx_speed.attr,
2173 	&dev_attr_rx_lanes.attr,
2174 	&dev_attr_tx_speed.attr,
2175 	&dev_attr_tx_lanes.attr,
2176 	&dev_attr_vendor.attr,
2177 	&dev_attr_vendor_name.attr,
2178 	&dev_attr_unique_id.attr,
2179 	NULL,
2180 };
2181 
2182 static umode_t switch_attr_is_visible(struct kobject *kobj,
2183 				      struct attribute *attr, int n)
2184 {
2185 	struct device *dev = kobj_to_dev(kobj);
2186 	struct tb_switch *sw = tb_to_switch(dev);
2187 
2188 	if (attr == &dev_attr_authorized.attr) {
2189 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2190 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2191 			return 0;
2192 	} else if (attr == &dev_attr_device.attr) {
2193 		if (!sw->device)
2194 			return 0;
2195 	} else if (attr == &dev_attr_device_name.attr) {
2196 		if (!sw->device_name)
2197 			return 0;
2198 	} else if (attr == &dev_attr_vendor.attr)  {
2199 		if (!sw->vendor)
2200 			return 0;
2201 	} else if (attr == &dev_attr_vendor_name.attr)  {
2202 		if (!sw->vendor_name)
2203 			return 0;
2204 	} else if (attr == &dev_attr_key.attr) {
2205 		if (tb_route(sw) &&
2206 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2207 		    sw->security_level == TB_SECURITY_SECURE)
2208 			return attr->mode;
2209 		return 0;
2210 	} else if (attr == &dev_attr_rx_speed.attr ||
2211 		   attr == &dev_attr_rx_lanes.attr ||
2212 		   attr == &dev_attr_tx_speed.attr ||
2213 		   attr == &dev_attr_tx_lanes.attr) {
2214 		if (tb_route(sw))
2215 			return attr->mode;
2216 		return 0;
2217 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2218 		if (nvm_upgradeable(sw))
2219 			return attr->mode;
2220 		return 0;
2221 	} else if (attr == &dev_attr_nvm_version.attr) {
2222 		if (nvm_readable(sw))
2223 			return attr->mode;
2224 		return 0;
2225 	} else if (attr == &dev_attr_boot.attr) {
2226 		if (tb_route(sw))
2227 			return attr->mode;
2228 		return 0;
2229 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2230 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2231 			return attr->mode;
2232 		return 0;
2233 	}
2234 
2235 	return sw->safe_mode ? 0 : attr->mode;
2236 }
2237 
2238 static const struct attribute_group switch_group = {
2239 	.is_visible = switch_attr_is_visible,
2240 	.attrs = switch_attrs,
2241 };
2242 
2243 static const struct attribute_group *switch_groups[] = {
2244 	&switch_group,
2245 	NULL,
2246 };
2247 
2248 static void tb_switch_release(struct device *dev)
2249 {
2250 	struct tb_switch *sw = tb_to_switch(dev);
2251 	struct tb_port *port;
2252 
2253 	dma_port_free(sw->dma_port);
2254 
2255 	tb_switch_for_each_port(sw, port) {
2256 		ida_destroy(&port->in_hopids);
2257 		ida_destroy(&port->out_hopids);
2258 	}
2259 
2260 	kfree(sw->uuid);
2261 	kfree(sw->device_name);
2262 	kfree(sw->vendor_name);
2263 	kfree(sw->ports);
2264 	kfree(sw->drom);
2265 	kfree(sw->key);
2266 	kfree(sw);
2267 }
2268 
2269 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2270 {
2271 	const struct tb_switch *sw = tb_to_switch(dev);
2272 	const char *type;
2273 
2274 	if (tb_switch_is_usb4(sw)) {
2275 		if (add_uevent_var(env, "USB4_VERSION=%u.0",
2276 				   usb4_switch_version(sw)))
2277 			return -ENOMEM;
2278 	}
2279 
2280 	if (!tb_route(sw)) {
2281 		type = "host";
2282 	} else {
2283 		const struct tb_port *port;
2284 		bool hub = false;
2285 
2286 		/* Device is hub if it has any downstream ports */
2287 		tb_switch_for_each_port(sw, port) {
2288 			if (!port->disabled && !tb_is_upstream_port(port) &&
2289 			     tb_port_is_null(port)) {
2290 				hub = true;
2291 				break;
2292 			}
2293 		}
2294 
2295 		type = hub ? "hub" : "device";
2296 	}
2297 
2298 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2299 		return -ENOMEM;
2300 	return 0;
2301 }
2302 
2303 /*
2304  * Currently only need to provide the callbacks. Everything else is handled
2305  * in the connection manager.
2306  */
2307 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2308 {
2309 	struct tb_switch *sw = tb_to_switch(dev);
2310 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2311 
2312 	if (cm_ops->runtime_suspend_switch)
2313 		return cm_ops->runtime_suspend_switch(sw);
2314 
2315 	return 0;
2316 }
2317 
2318 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2319 {
2320 	struct tb_switch *sw = tb_to_switch(dev);
2321 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2322 
2323 	if (cm_ops->runtime_resume_switch)
2324 		return cm_ops->runtime_resume_switch(sw);
2325 	return 0;
2326 }
2327 
2328 static const struct dev_pm_ops tb_switch_pm_ops = {
2329 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2330 			   NULL)
2331 };
2332 
2333 const struct device_type tb_switch_type = {
2334 	.name = "thunderbolt_device",
2335 	.release = tb_switch_release,
2336 	.uevent = tb_switch_uevent,
2337 	.pm = &tb_switch_pm_ops,
2338 };
2339 
2340 static int tb_switch_get_generation(struct tb_switch *sw)
2341 {
2342 	if (tb_switch_is_usb4(sw))
2343 		return 4;
2344 
2345 	if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2346 		switch (sw->config.device_id) {
2347 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2348 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2349 		case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2350 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2351 		case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2352 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2353 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2354 		case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2355 			return 1;
2356 
2357 		case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2358 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2359 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2360 			return 2;
2361 
2362 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2363 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2364 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2365 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2366 		case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2367 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2368 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2369 		case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2370 		case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2371 		case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2372 			return 3;
2373 		}
2374 	}
2375 
2376 	/*
2377 	 * For unknown switches assume generation to be 1 to be on the
2378 	 * safe side.
2379 	 */
2380 	tb_sw_warn(sw, "unsupported switch device id %#x\n",
2381 		   sw->config.device_id);
2382 	return 1;
2383 }
2384 
2385 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2386 {
2387 	int max_depth;
2388 
2389 	if (tb_switch_is_usb4(sw) ||
2390 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2391 		max_depth = USB4_SWITCH_MAX_DEPTH;
2392 	else
2393 		max_depth = TB_SWITCH_MAX_DEPTH;
2394 
2395 	return depth > max_depth;
2396 }
2397 
2398 /**
2399  * tb_switch_alloc() - allocate a switch
2400  * @tb: Pointer to the owning domain
2401  * @parent: Parent device for this switch
2402  * @route: Route string for this switch
2403  *
2404  * Allocates and initializes a switch. Will not upload configuration to
2405  * the switch. For that you need to call tb_switch_configure()
2406  * separately. The returned switch should be released by calling
2407  * tb_switch_put().
2408  *
2409  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2410  * failure.
2411  */
2412 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2413 				  u64 route)
2414 {
2415 	struct tb_switch *sw;
2416 	int upstream_port;
2417 	int i, ret, depth;
2418 
2419 	/* Unlock the downstream port so we can access the switch below */
2420 	if (route) {
2421 		struct tb_switch *parent_sw = tb_to_switch(parent);
2422 		struct tb_port *down;
2423 
2424 		down = tb_port_at(route, parent_sw);
2425 		tb_port_unlock(down);
2426 	}
2427 
2428 	depth = tb_route_length(route);
2429 
2430 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2431 	if (upstream_port < 0)
2432 		return ERR_PTR(upstream_port);
2433 
2434 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2435 	if (!sw)
2436 		return ERR_PTR(-ENOMEM);
2437 
2438 	sw->tb = tb;
2439 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2440 	if (ret)
2441 		goto err_free_sw_ports;
2442 
2443 	sw->generation = tb_switch_get_generation(sw);
2444 
2445 	tb_dbg(tb, "current switch config:\n");
2446 	tb_dump_switch(tb, sw);
2447 
2448 	/* configure switch */
2449 	sw->config.upstream_port_number = upstream_port;
2450 	sw->config.depth = depth;
2451 	sw->config.route_hi = upper_32_bits(route);
2452 	sw->config.route_lo = lower_32_bits(route);
2453 	sw->config.enabled = 0;
2454 
2455 	/* Make sure we do not exceed maximum topology limit */
2456 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2457 		ret = -EADDRNOTAVAIL;
2458 		goto err_free_sw_ports;
2459 	}
2460 
2461 	/* initialize ports */
2462 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2463 				GFP_KERNEL);
2464 	if (!sw->ports) {
2465 		ret = -ENOMEM;
2466 		goto err_free_sw_ports;
2467 	}
2468 
2469 	for (i = 0; i <= sw->config.max_port_number; i++) {
2470 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2471 		sw->ports[i].sw = sw;
2472 		sw->ports[i].port = i;
2473 
2474 		/* Control port does not need HopID allocation */
2475 		if (i) {
2476 			ida_init(&sw->ports[i].in_hopids);
2477 			ida_init(&sw->ports[i].out_hopids);
2478 		}
2479 	}
2480 
2481 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2482 	if (ret > 0)
2483 		sw->cap_plug_events = ret;
2484 
2485 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2486 	if (ret > 0)
2487 		sw->cap_vsec_tmu = ret;
2488 
2489 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2490 	if (ret > 0)
2491 		sw->cap_lc = ret;
2492 
2493 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2494 	if (ret > 0)
2495 		sw->cap_lp = ret;
2496 
2497 	/* Root switch is always authorized */
2498 	if (!route)
2499 		sw->authorized = true;
2500 
2501 	device_initialize(&sw->dev);
2502 	sw->dev.parent = parent;
2503 	sw->dev.bus = &tb_bus_type;
2504 	sw->dev.type = &tb_switch_type;
2505 	sw->dev.groups = switch_groups;
2506 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2507 
2508 	return sw;
2509 
2510 err_free_sw_ports:
2511 	kfree(sw->ports);
2512 	kfree(sw);
2513 
2514 	return ERR_PTR(ret);
2515 }
2516 
2517 /**
2518  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519  * @tb: Pointer to the owning domain
2520  * @parent: Parent device for this switch
2521  * @route: Route string for this switch
2522  *
2523  * This creates a switch in safe mode. This means the switch pretty much
2524  * lacks all capabilities except DMA configuration port before it is
2525  * flashed with a valid NVM firmware.
2526  *
2527  * The returned switch must be released by calling tb_switch_put().
2528  *
2529  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2530  */
2531 struct tb_switch *
2532 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2533 {
2534 	struct tb_switch *sw;
2535 
2536 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2537 	if (!sw)
2538 		return ERR_PTR(-ENOMEM);
2539 
2540 	sw->tb = tb;
2541 	sw->config.depth = tb_route_length(route);
2542 	sw->config.route_hi = upper_32_bits(route);
2543 	sw->config.route_lo = lower_32_bits(route);
2544 	sw->safe_mode = true;
2545 
2546 	device_initialize(&sw->dev);
2547 	sw->dev.parent = parent;
2548 	sw->dev.bus = &tb_bus_type;
2549 	sw->dev.type = &tb_switch_type;
2550 	sw->dev.groups = switch_groups;
2551 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2552 
2553 	return sw;
2554 }
2555 
2556 /**
2557  * tb_switch_configure() - Uploads configuration to the switch
2558  * @sw: Switch to configure
2559  *
2560  * Call this function before the switch is added to the system. It will
2561  * upload configuration to the switch and makes it available for the
2562  * connection manager to use. Can be called to the switch again after
2563  * resume from low power states to re-initialize it.
2564  *
2565  * Return: %0 in case of success and negative errno in case of failure
2566  */
2567 int tb_switch_configure(struct tb_switch *sw)
2568 {
2569 	struct tb *tb = sw->tb;
2570 	u64 route;
2571 	int ret;
2572 
2573 	route = tb_route(sw);
2574 
2575 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576 	       sw->config.enabled ? "restoring" : "initializing", route,
2577 	       tb_route_length(route), sw->config.upstream_port_number);
2578 
2579 	sw->config.enabled = 1;
2580 
2581 	if (tb_switch_is_usb4(sw)) {
2582 		/*
2583 		 * For USB4 devices, we need to program the CM version
2584 		 * accordingly so that it knows to expose all the
2585 		 * additional capabilities. Program it according to USB4
2586 		 * version to avoid changing existing (v1) routers behaviour.
2587 		 */
2588 		if (usb4_switch_version(sw) < 2)
2589 			sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2590 		else
2591 			sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2592 		sw->config.plug_events_delay = 0xa;
2593 
2594 		/* Enumerate the switch */
2595 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2596 				  ROUTER_CS_1, 4);
2597 		if (ret)
2598 			return ret;
2599 
2600 		ret = usb4_switch_setup(sw);
2601 	} else {
2602 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2603 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2604 				   sw->config.vendor_id);
2605 
2606 		if (!sw->cap_plug_events) {
2607 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2608 			return -ENODEV;
2609 		}
2610 
2611 		/* Enumerate the switch */
2612 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2613 				  ROUTER_CS_1, 3);
2614 	}
2615 	if (ret)
2616 		return ret;
2617 
2618 	return tb_plug_events_active(sw, true);
2619 }
2620 
2621 /**
2622  * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623  * @sw: Router to configure
2624  *
2625  * Needs to be called before any tunnels can be setup through the
2626  * router. Can be called to any router.
2627  *
2628  * Returns %0 in success and negative errno otherwise.
2629  */
2630 int tb_switch_configuration_valid(struct tb_switch *sw)
2631 {
2632 	if (tb_switch_is_usb4(sw))
2633 		return usb4_switch_configuration_valid(sw);
2634 	return 0;
2635 }
2636 
2637 static int tb_switch_set_uuid(struct tb_switch *sw)
2638 {
2639 	bool uid = false;
2640 	u32 uuid[4];
2641 	int ret;
2642 
2643 	if (sw->uuid)
2644 		return 0;
2645 
2646 	if (tb_switch_is_usb4(sw)) {
2647 		ret = usb4_switch_read_uid(sw, &sw->uid);
2648 		if (ret)
2649 			return ret;
2650 		uid = true;
2651 	} else {
2652 		/*
2653 		 * The newer controllers include fused UUID as part of
2654 		 * link controller specific registers
2655 		 */
2656 		ret = tb_lc_read_uuid(sw, uuid);
2657 		if (ret) {
2658 			if (ret != -EINVAL)
2659 				return ret;
2660 			uid = true;
2661 		}
2662 	}
2663 
2664 	if (uid) {
2665 		/*
2666 		 * ICM generates UUID based on UID and fills the upper
2667 		 * two words with ones. This is not strictly following
2668 		 * UUID format but we want to be compatible with it so
2669 		 * we do the same here.
2670 		 */
2671 		uuid[0] = sw->uid & 0xffffffff;
2672 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2673 		uuid[2] = 0xffffffff;
2674 		uuid[3] = 0xffffffff;
2675 	}
2676 
2677 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2678 	if (!sw->uuid)
2679 		return -ENOMEM;
2680 	return 0;
2681 }
2682 
2683 static int tb_switch_add_dma_port(struct tb_switch *sw)
2684 {
2685 	u32 status;
2686 	int ret;
2687 
2688 	switch (sw->generation) {
2689 	case 2:
2690 		/* Only root switch can be upgraded */
2691 		if (tb_route(sw))
2692 			return 0;
2693 
2694 		fallthrough;
2695 	case 3:
2696 	case 4:
2697 		ret = tb_switch_set_uuid(sw);
2698 		if (ret)
2699 			return ret;
2700 		break;
2701 
2702 	default:
2703 		/*
2704 		 * DMA port is the only thing available when the switch
2705 		 * is in safe mode.
2706 		 */
2707 		if (!sw->safe_mode)
2708 			return 0;
2709 		break;
2710 	}
2711 
2712 	if (sw->no_nvm_upgrade)
2713 		return 0;
2714 
2715 	if (tb_switch_is_usb4(sw)) {
2716 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2717 		if (ret)
2718 			return ret;
2719 
2720 		if (status) {
2721 			tb_sw_info(sw, "switch flash authentication failed\n");
2722 			nvm_set_auth_status(sw, status);
2723 		}
2724 
2725 		return 0;
2726 	}
2727 
2728 	/* Root switch DMA port requires running firmware */
2729 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2730 		return 0;
2731 
2732 	sw->dma_port = dma_port_alloc(sw);
2733 	if (!sw->dma_port)
2734 		return 0;
2735 
2736 	/*
2737 	 * If there is status already set then authentication failed
2738 	 * when the dma_port_flash_update_auth() returned. Power cycling
2739 	 * is not needed (it was done already) so only thing we do here
2740 	 * is to unblock runtime PM of the root port.
2741 	 */
2742 	nvm_get_auth_status(sw, &status);
2743 	if (status) {
2744 		if (!tb_route(sw))
2745 			nvm_authenticate_complete_dma_port(sw);
2746 		return 0;
2747 	}
2748 
2749 	/*
2750 	 * Check status of the previous flash authentication. If there
2751 	 * is one we need to power cycle the switch in any case to make
2752 	 * it functional again.
2753 	 */
2754 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2755 	if (ret <= 0)
2756 		return ret;
2757 
2758 	/* Now we can allow root port to suspend again */
2759 	if (!tb_route(sw))
2760 		nvm_authenticate_complete_dma_port(sw);
2761 
2762 	if (status) {
2763 		tb_sw_info(sw, "switch flash authentication failed\n");
2764 		nvm_set_auth_status(sw, status);
2765 	}
2766 
2767 	tb_sw_info(sw, "power cycling the switch now\n");
2768 	dma_port_power_cycle(sw->dma_port);
2769 
2770 	/*
2771 	 * We return error here which causes the switch adding failure.
2772 	 * It should appear back after power cycle is complete.
2773 	 */
2774 	return -ESHUTDOWN;
2775 }
2776 
2777 static void tb_switch_default_link_ports(struct tb_switch *sw)
2778 {
2779 	int i;
2780 
2781 	for (i = 1; i <= sw->config.max_port_number; i++) {
2782 		struct tb_port *port = &sw->ports[i];
2783 		struct tb_port *subordinate;
2784 
2785 		if (!tb_port_is_null(port))
2786 			continue;
2787 
2788 		/* Check for the subordinate port */
2789 		if (i == sw->config.max_port_number ||
2790 		    !tb_port_is_null(&sw->ports[i + 1]))
2791 			continue;
2792 
2793 		/* Link them if not already done so (by DROM) */
2794 		subordinate = &sw->ports[i + 1];
2795 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2796 			port->link_nr = 0;
2797 			port->dual_link_port = subordinate;
2798 			subordinate->link_nr = 1;
2799 			subordinate->dual_link_port = port;
2800 
2801 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2802 				  port->port, subordinate->port);
2803 		}
2804 	}
2805 }
2806 
2807 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2808 {
2809 	const struct tb_port *up = tb_upstream_port(sw);
2810 
2811 	if (!up->dual_link_port || !up->dual_link_port->remote)
2812 		return false;
2813 
2814 	if (tb_switch_is_usb4(sw))
2815 		return usb4_switch_lane_bonding_possible(sw);
2816 	return tb_lc_lane_bonding_possible(sw);
2817 }
2818 
2819 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2820 {
2821 	struct tb_port *up;
2822 	bool change = false;
2823 	int ret;
2824 
2825 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2826 		return 0;
2827 
2828 	up = tb_upstream_port(sw);
2829 
2830 	ret = tb_port_get_link_speed(up);
2831 	if (ret < 0)
2832 		return ret;
2833 	if (sw->link_speed != ret)
2834 		change = true;
2835 	sw->link_speed = ret;
2836 
2837 	ret = tb_port_get_link_width(up);
2838 	if (ret < 0)
2839 		return ret;
2840 	if (sw->link_width != ret)
2841 		change = true;
2842 	sw->link_width = ret;
2843 
2844 	/* Notify userspace that there is possible link attribute change */
2845 	if (device_is_registered(&sw->dev) && change)
2846 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2847 
2848 	return 0;
2849 }
2850 
2851 /* Must be called after tb_switch_update_link_attributes() */
2852 static void tb_switch_link_init(struct tb_switch *sw)
2853 {
2854 	struct tb_port *up, *down;
2855 	bool bonded;
2856 
2857 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2858 		return;
2859 
2860 	tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2861 	tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2862 
2863 	bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2864 
2865 	/*
2866 	 * Gen 4 links come up as bonded so update the port structures
2867 	 * accordingly.
2868 	 */
2869 	up = tb_upstream_port(sw);
2870 	down = tb_switch_downstream_port(sw);
2871 
2872 	up->bonded = bonded;
2873 	if (up->dual_link_port)
2874 		up->dual_link_port->bonded = bonded;
2875 	tb_port_update_credits(up);
2876 
2877 	down->bonded = bonded;
2878 	if (down->dual_link_port)
2879 		down->dual_link_port->bonded = bonded;
2880 	tb_port_update_credits(down);
2881 
2882 	if (tb_port_get_link_generation(up) < 4)
2883 		return;
2884 
2885 	/*
2886 	 * Set the Gen 4 preferred link width. This is what the router
2887 	 * prefers when the link is brought up. If the router does not
2888 	 * support asymmetric link configuration, this also will be set
2889 	 * to TB_LINK_WIDTH_DUAL.
2890 	 */
2891 	sw->preferred_link_width = sw->link_width;
2892 	tb_sw_dbg(sw, "preferred link width %s\n",
2893 		  tb_width_name(sw->preferred_link_width));
2894 }
2895 
2896 /**
2897  * tb_switch_lane_bonding_enable() - Enable lane bonding
2898  * @sw: Switch to enable lane bonding
2899  *
2900  * Connection manager can call this function to enable lane bonding of a
2901  * switch. If conditions are correct and both switches support the feature,
2902  * lanes are bonded. It is safe to call this to any switch.
2903  */
2904 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2905 {
2906 	struct tb_port *up, *down;
2907 	unsigned int width;
2908 	int ret;
2909 
2910 	if (!tb_switch_lane_bonding_possible(sw))
2911 		return 0;
2912 
2913 	up = tb_upstream_port(sw);
2914 	down = tb_switch_downstream_port(sw);
2915 
2916 	if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2917 	    !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2918 		return 0;
2919 
2920 	/*
2921 	 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922 	 * CL0 and check just for lane 1.
2923 	 */
2924 	if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2925 		return -ENOTCONN;
2926 
2927 	ret = tb_port_lane_bonding_enable(up);
2928 	if (ret) {
2929 		tb_port_warn(up, "failed to enable lane bonding\n");
2930 		return ret;
2931 	}
2932 
2933 	ret = tb_port_lane_bonding_enable(down);
2934 	if (ret) {
2935 		tb_port_warn(down, "failed to enable lane bonding\n");
2936 		tb_port_lane_bonding_disable(up);
2937 		return ret;
2938 	}
2939 
2940 	/* Any of the widths are all bonded */
2941 	width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2942 		TB_LINK_WIDTH_ASYM_RX;
2943 
2944 	return tb_port_wait_for_link_width(down, width, 100);
2945 }
2946 
2947 /**
2948  * tb_switch_lane_bonding_disable() - Disable lane bonding
2949  * @sw: Switch whose lane bonding to disable
2950  *
2951  * Disables lane bonding between @sw and parent. This can be called even
2952  * if lanes were not bonded originally.
2953  */
2954 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2955 {
2956 	struct tb_port *up, *down;
2957 	int ret;
2958 
2959 	up = tb_upstream_port(sw);
2960 	if (!up->bonded)
2961 		return 0;
2962 
2963 	/*
2964 	 * If the link is Gen 4 there is no way to switch the link to
2965 	 * two single lane links so avoid that here. Also don't bother
2966 	 * if the link is not up anymore (sw is unplugged).
2967 	 */
2968 	ret = tb_port_get_link_generation(up);
2969 	if (ret < 0)
2970 		return ret;
2971 	if (ret >= 4)
2972 		return -EOPNOTSUPP;
2973 
2974 	down = tb_switch_downstream_port(sw);
2975 	tb_port_lane_bonding_disable(up);
2976 	tb_port_lane_bonding_disable(down);
2977 
2978 	/*
2979 	 * It is fine if we get other errors as the router might have
2980 	 * been unplugged.
2981 	 */
2982 	return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2983 }
2984 
2985 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2987 {
2988 	struct tb_port *up, *down, *port;
2989 	enum tb_link_width down_width;
2990 	int ret;
2991 
2992 	up = tb_upstream_port(sw);
2993 	down = tb_switch_downstream_port(sw);
2994 
2995 	if (width == TB_LINK_WIDTH_ASYM_TX) {
2996 		down_width = TB_LINK_WIDTH_ASYM_RX;
2997 		port = down;
2998 	} else {
2999 		down_width = TB_LINK_WIDTH_ASYM_TX;
3000 		port = up;
3001 	}
3002 
3003 	ret = tb_port_set_link_width(up, width);
3004 	if (ret)
3005 		return ret;
3006 
3007 	ret = tb_port_set_link_width(down, down_width);
3008 	if (ret)
3009 		return ret;
3010 
3011 	/*
3012 	 * Initiate the change in the router that one of its TX lanes is
3013 	 * changing to RX but do so only if there is an actual change.
3014 	 */
3015 	if (sw->link_width != width) {
3016 		ret = usb4_port_asym_start(port);
3017 		if (ret)
3018 			return ret;
3019 
3020 		ret = tb_port_wait_for_link_width(up, width, 100);
3021 		if (ret)
3022 			return ret;
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029 static int tb_switch_asym_disable(struct tb_switch *sw)
3030 {
3031 	struct tb_port *up, *down;
3032 	int ret;
3033 
3034 	up = tb_upstream_port(sw);
3035 	down = tb_switch_downstream_port(sw);
3036 
3037 	ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3038 	if (ret)
3039 		return ret;
3040 
3041 	ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3042 	if (ret)
3043 		return ret;
3044 
3045 	/*
3046 	 * Initiate the change in the router that has three TX lanes and
3047 	 * is changing one of its TX lanes to RX but only if there is a
3048 	 * change in the link width.
3049 	 */
3050 	if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3051 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3052 			ret = usb4_port_asym_start(up);
3053 		else
3054 			ret = usb4_port_asym_start(down);
3055 		if (ret)
3056 			return ret;
3057 
3058 		ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3059 		if (ret)
3060 			return ret;
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 /**
3067  * tb_switch_set_link_width() - Configure router link width
3068  * @sw: Router to configure
3069  * @width: The new link width
3070  *
3071  * Set device router link width to @width from router upstream port
3072  * perspective. Supports also asymmetric links if the routers boths side
3073  * of the link supports it.
3074  *
3075  * Does nothing for host router.
3076  *
3077  * Returns %0 in case of success, negative errno otherwise.
3078  */
3079 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3080 {
3081 	struct tb_port *up, *down;
3082 	int ret = 0;
3083 
3084 	if (!tb_route(sw))
3085 		return 0;
3086 
3087 	up = tb_upstream_port(sw);
3088 	down = tb_switch_downstream_port(sw);
3089 
3090 	switch (width) {
3091 	case TB_LINK_WIDTH_SINGLE:
3092 		ret = tb_switch_lane_bonding_disable(sw);
3093 		break;
3094 
3095 	case TB_LINK_WIDTH_DUAL:
3096 		if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3097 		    sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3098 			ret = tb_switch_asym_disable(sw);
3099 			if (ret)
3100 				break;
3101 		}
3102 		ret = tb_switch_lane_bonding_enable(sw);
3103 		break;
3104 
3105 	case TB_LINK_WIDTH_ASYM_TX:
3106 	case TB_LINK_WIDTH_ASYM_RX:
3107 		ret = tb_switch_asym_enable(sw, width);
3108 		break;
3109 	}
3110 
3111 	switch (ret) {
3112 	case 0:
3113 		break;
3114 
3115 	case -ETIMEDOUT:
3116 		tb_sw_warn(sw, "timeout changing link width\n");
3117 		return ret;
3118 
3119 	case -ENOTCONN:
3120 	case -EOPNOTSUPP:
3121 	case -ENODEV:
3122 		return ret;
3123 
3124 	default:
3125 		tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3126 		return ret;
3127 	}
3128 
3129 	tb_port_update_credits(down);
3130 	tb_port_update_credits(up);
3131 
3132 	tb_switch_update_link_attributes(sw);
3133 
3134 	tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3135 	return ret;
3136 }
3137 
3138 /**
3139  * tb_switch_configure_link() - Set link configured
3140  * @sw: Switch whose link is configured
3141  *
3142  * Sets the link upstream from @sw configured (from both ends) so that
3143  * it will not be disconnected when the domain exits sleep. Can be
3144  * called for any switch.
3145  *
3146  * It is recommended that this is called after lane bonding is enabled.
3147  *
3148  * Returns %0 on success and negative errno in case of error.
3149  */
3150 int tb_switch_configure_link(struct tb_switch *sw)
3151 {
3152 	struct tb_port *up, *down;
3153 	int ret;
3154 
3155 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3156 		return 0;
3157 
3158 	up = tb_upstream_port(sw);
3159 	if (tb_switch_is_usb4(up->sw))
3160 		ret = usb4_port_configure(up);
3161 	else
3162 		ret = tb_lc_configure_port(up);
3163 	if (ret)
3164 		return ret;
3165 
3166 	down = up->remote;
3167 	if (tb_switch_is_usb4(down->sw))
3168 		return usb4_port_configure(down);
3169 	return tb_lc_configure_port(down);
3170 }
3171 
3172 /**
3173  * tb_switch_unconfigure_link() - Unconfigure link
3174  * @sw: Switch whose link is unconfigured
3175  *
3176  * Sets the link unconfigured so the @sw will be disconnected if the
3177  * domain exists sleep.
3178  */
3179 void tb_switch_unconfigure_link(struct tb_switch *sw)
3180 {
3181 	struct tb_port *up, *down;
3182 
3183 	if (!tb_route(sw) || tb_switch_is_icm(sw))
3184 		return;
3185 
3186 	/*
3187 	 * Unconfigure downstream port so that wake-on-connect can be
3188 	 * configured after router unplug. No need to unconfigure upstream port
3189 	 * since its router is unplugged.
3190 	 */
3191 	up = tb_upstream_port(sw);
3192 	down = up->remote;
3193 	if (tb_switch_is_usb4(down->sw))
3194 		usb4_port_unconfigure(down);
3195 	else
3196 		tb_lc_unconfigure_port(down);
3197 
3198 	if (sw->is_unplugged)
3199 		return;
3200 
3201 	up = tb_upstream_port(sw);
3202 	if (tb_switch_is_usb4(up->sw))
3203 		usb4_port_unconfigure(up);
3204 	else
3205 		tb_lc_unconfigure_port(up);
3206 }
3207 
3208 static void tb_switch_credits_init(struct tb_switch *sw)
3209 {
3210 	if (tb_switch_is_icm(sw))
3211 		return;
3212 	if (!tb_switch_is_usb4(sw))
3213 		return;
3214 	if (usb4_switch_credits_init(sw))
3215 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3216 }
3217 
3218 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3219 {
3220 	struct tb_port *port;
3221 
3222 	if (tb_switch_is_icm(sw))
3223 		return 0;
3224 
3225 	tb_switch_for_each_port(sw, port) {
3226 		int res;
3227 
3228 		if (!port->cap_usb4)
3229 			continue;
3230 
3231 		res = usb4_port_hotplug_enable(port);
3232 		if (res)
3233 			return res;
3234 	}
3235 	return 0;
3236 }
3237 
3238 /**
3239  * tb_switch_add() - Add a switch to the domain
3240  * @sw: Switch to add
3241  *
3242  * This is the last step in adding switch to the domain. It will read
3243  * identification information from DROM and initializes ports so that
3244  * they can be used to connect other switches. The switch will be
3245  * exposed to the userspace when this function successfully returns. To
3246  * remove and release the switch, call tb_switch_remove().
3247  *
3248  * Return: %0 in case of success and negative errno in case of failure
3249  */
3250 int tb_switch_add(struct tb_switch *sw)
3251 {
3252 	int i, ret;
3253 
3254 	/*
3255 	 * Initialize DMA control port now before we read DROM. Recent
3256 	 * host controllers have more complete DROM on NVM that includes
3257 	 * vendor and model identification strings which we then expose
3258 	 * to the userspace. NVM can be accessed through DMA
3259 	 * configuration based mailbox.
3260 	 */
3261 	ret = tb_switch_add_dma_port(sw);
3262 	if (ret) {
3263 		dev_err(&sw->dev, "failed to add DMA port\n");
3264 		return ret;
3265 	}
3266 
3267 	if (!sw->safe_mode) {
3268 		tb_switch_credits_init(sw);
3269 
3270 		/* read drom */
3271 		ret = tb_drom_read(sw);
3272 		if (ret)
3273 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3274 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3275 
3276 		ret = tb_switch_set_uuid(sw);
3277 		if (ret) {
3278 			dev_err(&sw->dev, "failed to set UUID\n");
3279 			return ret;
3280 		}
3281 
3282 		for (i = 0; i <= sw->config.max_port_number; i++) {
3283 			if (sw->ports[i].disabled) {
3284 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3285 				continue;
3286 			}
3287 			ret = tb_init_port(&sw->ports[i]);
3288 			if (ret) {
3289 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
3290 				return ret;
3291 			}
3292 		}
3293 
3294 		tb_check_quirks(sw);
3295 
3296 		tb_switch_default_link_ports(sw);
3297 
3298 		ret = tb_switch_update_link_attributes(sw);
3299 		if (ret)
3300 			return ret;
3301 
3302 		tb_switch_link_init(sw);
3303 
3304 		ret = tb_switch_clx_init(sw);
3305 		if (ret)
3306 			return ret;
3307 
3308 		ret = tb_switch_tmu_init(sw);
3309 		if (ret)
3310 			return ret;
3311 	}
3312 
3313 	ret = tb_switch_port_hotplug_enable(sw);
3314 	if (ret)
3315 		return ret;
3316 
3317 	ret = device_add(&sw->dev);
3318 	if (ret) {
3319 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3320 		return ret;
3321 	}
3322 
3323 	if (tb_route(sw)) {
3324 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3325 			 sw->vendor, sw->device);
3326 		if (sw->vendor_name && sw->device_name)
3327 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3328 				 sw->device_name);
3329 	}
3330 
3331 	ret = usb4_switch_add_ports(sw);
3332 	if (ret) {
3333 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3334 		goto err_del;
3335 	}
3336 
3337 	ret = tb_switch_nvm_add(sw);
3338 	if (ret) {
3339 		dev_err(&sw->dev, "failed to add NVM devices\n");
3340 		goto err_ports;
3341 	}
3342 
3343 	/*
3344 	 * Thunderbolt routers do not generate wakeups themselves but
3345 	 * they forward wakeups from tunneled protocols, so enable it
3346 	 * here.
3347 	 */
3348 	device_init_wakeup(&sw->dev, true);
3349 
3350 	pm_runtime_set_active(&sw->dev);
3351 	if (sw->rpm) {
3352 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3353 		pm_runtime_use_autosuspend(&sw->dev);
3354 		pm_runtime_mark_last_busy(&sw->dev);
3355 		pm_runtime_enable(&sw->dev);
3356 		pm_request_autosuspend(&sw->dev);
3357 	}
3358 
3359 	tb_switch_debugfs_init(sw);
3360 	return 0;
3361 
3362 err_ports:
3363 	usb4_switch_remove_ports(sw);
3364 err_del:
3365 	device_del(&sw->dev);
3366 
3367 	return ret;
3368 }
3369 
3370 /**
3371  * tb_switch_remove() - Remove and release a switch
3372  * @sw: Switch to remove
3373  *
3374  * This will remove the switch from the domain and release it after last
3375  * reference count drops to zero. If there are switches connected below
3376  * this switch, they will be removed as well.
3377  */
3378 void tb_switch_remove(struct tb_switch *sw)
3379 {
3380 	struct tb_port *port;
3381 
3382 	tb_switch_debugfs_remove(sw);
3383 
3384 	if (sw->rpm) {
3385 		pm_runtime_get_sync(&sw->dev);
3386 		pm_runtime_disable(&sw->dev);
3387 	}
3388 
3389 	/* port 0 is the switch itself and never has a remote */
3390 	tb_switch_for_each_port(sw, port) {
3391 		if (tb_port_has_remote(port)) {
3392 			tb_switch_remove(port->remote->sw);
3393 			port->remote = NULL;
3394 		} else if (port->xdomain) {
3395 			tb_xdomain_remove(port->xdomain);
3396 			port->xdomain = NULL;
3397 		}
3398 
3399 		/* Remove any downstream retimers */
3400 		tb_retimer_remove_all(port);
3401 	}
3402 
3403 	if (!sw->is_unplugged)
3404 		tb_plug_events_active(sw, false);
3405 
3406 	tb_switch_nvm_remove(sw);
3407 	usb4_switch_remove_ports(sw);
3408 
3409 	if (tb_route(sw))
3410 		dev_info(&sw->dev, "device disconnected\n");
3411 	device_unregister(&sw->dev);
3412 }
3413 
3414 /**
3415  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3416  * @sw: Router to mark unplugged
3417  */
3418 void tb_sw_set_unplugged(struct tb_switch *sw)
3419 {
3420 	struct tb_port *port;
3421 
3422 	if (sw == sw->tb->root_switch) {
3423 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3424 		return;
3425 	}
3426 	if (sw->is_unplugged) {
3427 		tb_sw_WARN(sw, "is_unplugged already set\n");
3428 		return;
3429 	}
3430 	sw->is_unplugged = true;
3431 	tb_switch_for_each_port(sw, port) {
3432 		if (tb_port_has_remote(port))
3433 			tb_sw_set_unplugged(port->remote->sw);
3434 		else if (port->xdomain)
3435 			port->xdomain->is_unplugged = true;
3436 	}
3437 }
3438 
3439 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3440 {
3441 	if (flags)
3442 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3443 	else
3444 		tb_sw_dbg(sw, "disabling wakeup\n");
3445 
3446 	if (tb_switch_is_usb4(sw))
3447 		return usb4_switch_set_wake(sw, flags);
3448 	return tb_lc_set_wake(sw, flags);
3449 }
3450 
3451 static void tb_switch_check_wakes(struct tb_switch *sw)
3452 {
3453 	if (device_may_wakeup(&sw->dev)) {
3454 		if (tb_switch_is_usb4(sw))
3455 			usb4_switch_check_wakes(sw);
3456 	}
3457 }
3458 
3459 /**
3460  * tb_switch_resume() - Resume a switch after sleep
3461  * @sw: Switch to resume
3462  * @runtime: Is this resume from runtime suspend or system sleep
3463  *
3464  * Resumes and re-enumerates router (and all its children), if still plugged
3465  * after suspend. Don't enumerate device router whose UID was changed during
3466  * suspend. If this is resume from system sleep, notifies PM core about the
3467  * wakes occurred during suspend. Disables all wakes, except USB4 wake of
3468  * upstream port for USB4 routers that shall be always enabled.
3469  */
3470 int tb_switch_resume(struct tb_switch *sw, bool runtime)
3471 {
3472 	struct tb_port *port;
3473 	int err;
3474 
3475 	tb_sw_dbg(sw, "resuming switch\n");
3476 
3477 	/*
3478 	 * Check for UID of the connected switches except for root
3479 	 * switch which we assume cannot be removed.
3480 	 */
3481 	if (tb_route(sw)) {
3482 		u64 uid;
3483 
3484 		/*
3485 		 * Check first that we can still read the switch config
3486 		 * space. It may be that there is now another domain
3487 		 * connected.
3488 		 */
3489 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3490 		if (err < 0) {
3491 			tb_sw_info(sw, "switch not present anymore\n");
3492 			return err;
3493 		}
3494 
3495 		/* We don't have any way to confirm this was the same device */
3496 		if (!sw->uid)
3497 			return -ENODEV;
3498 
3499 		if (tb_switch_is_usb4(sw))
3500 			err = usb4_switch_read_uid(sw, &uid);
3501 		else
3502 			err = tb_drom_read_uid_only(sw, &uid);
3503 		if (err) {
3504 			tb_sw_warn(sw, "uid read failed\n");
3505 			return err;
3506 		}
3507 		if (sw->uid != uid) {
3508 			tb_sw_info(sw,
3509 				"changed while suspended (uid %#llx -> %#llx)\n",
3510 				sw->uid, uid);
3511 			return -ENODEV;
3512 		}
3513 	}
3514 
3515 	err = tb_switch_configure(sw);
3516 	if (err)
3517 		return err;
3518 
3519 	if (!runtime)
3520 		tb_switch_check_wakes(sw);
3521 
3522 	/* Disable wakes */
3523 	tb_switch_set_wake(sw, 0);
3524 
3525 	err = tb_switch_tmu_init(sw);
3526 	if (err)
3527 		return err;
3528 
3529 	/* check for surviving downstream switches */
3530 	tb_switch_for_each_port(sw, port) {
3531 		if (!tb_port_is_null(port))
3532 			continue;
3533 
3534 		if (!tb_port_resume(port))
3535 			continue;
3536 
3537 		if (tb_wait_for_port(port, true) <= 0) {
3538 			tb_port_warn(port,
3539 				     "lost during suspend, disconnecting\n");
3540 			if (tb_port_has_remote(port))
3541 				tb_sw_set_unplugged(port->remote->sw);
3542 			else if (port->xdomain)
3543 				port->xdomain->is_unplugged = true;
3544 		} else {
3545 			/*
3546 			 * Always unlock the port so the downstream
3547 			 * switch/domain is accessible.
3548 			 */
3549 			if (tb_port_unlock(port))
3550 				tb_port_warn(port, "failed to unlock port\n");
3551 			if (port->remote &&
3552 			    tb_switch_resume(port->remote->sw, runtime)) {
3553 				tb_port_warn(port,
3554 					     "lost during suspend, disconnecting\n");
3555 				tb_sw_set_unplugged(port->remote->sw);
3556 			}
3557 		}
3558 	}
3559 	return 0;
3560 }
3561 
3562 /**
3563  * tb_switch_suspend() - Put a switch to sleep
3564  * @sw: Switch to suspend
3565  * @runtime: Is this runtime suspend or system sleep
3566  *
3567  * Suspends router and all its children. Enables wakes according to
3568  * value of @runtime and then sets sleep bit for the router. If @sw is
3569  * host router the domain is ready to go to sleep once this function
3570  * returns.
3571  */
3572 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3573 {
3574 	unsigned int flags = 0;
3575 	struct tb_port *port;
3576 	int err;
3577 
3578 	tb_sw_dbg(sw, "suspending switch\n");
3579 
3580 	/*
3581 	 * Actually only needed for Titan Ridge but for simplicity can be
3582 	 * done for USB4 device too as CLx is re-enabled at resume.
3583 	 */
3584 	tb_switch_clx_disable(sw);
3585 
3586 	err = tb_plug_events_active(sw, false);
3587 	if (err)
3588 		return;
3589 
3590 	tb_switch_for_each_port(sw, port) {
3591 		if (tb_port_has_remote(port))
3592 			tb_switch_suspend(port->remote->sw, runtime);
3593 	}
3594 
3595 	if (runtime) {
3596 		/* Trigger wake when something is plugged in/out */
3597 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3598 		flags |= TB_WAKE_ON_USB4;
3599 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3600 	} else if (device_may_wakeup(&sw->dev)) {
3601 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3602 	}
3603 
3604 	tb_switch_set_wake(sw, flags);
3605 
3606 	if (tb_switch_is_usb4(sw))
3607 		usb4_switch_set_sleep(sw);
3608 	else
3609 		tb_lc_set_sleep(sw);
3610 }
3611 
3612 /**
3613  * tb_switch_query_dp_resource() - Query availability of DP resource
3614  * @sw: Switch whose DP resource is queried
3615  * @in: DP IN port
3616  *
3617  * Queries availability of DP resource for DP tunneling using switch
3618  * specific means. Returns %true if resource is available.
3619  */
3620 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3621 {
3622 	if (tb_switch_is_usb4(sw))
3623 		return usb4_switch_query_dp_resource(sw, in);
3624 	return tb_lc_dp_sink_query(sw, in);
3625 }
3626 
3627 /**
3628  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3629  * @sw: Switch whose DP resource is allocated
3630  * @in: DP IN port
3631  *
3632  * Allocates DP resource for DP tunneling. The resource must be
3633  * available for this to succeed (see tb_switch_query_dp_resource()).
3634  * Returns %0 in success and negative errno otherwise.
3635  */
3636 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3637 {
3638 	int ret;
3639 
3640 	if (tb_switch_is_usb4(sw))
3641 		ret = usb4_switch_alloc_dp_resource(sw, in);
3642 	else
3643 		ret = tb_lc_dp_sink_alloc(sw, in);
3644 
3645 	if (ret)
3646 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3647 			   in->port);
3648 	else
3649 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3650 
3651 	return ret;
3652 }
3653 
3654 /**
3655  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3656  * @sw: Switch whose DP resource is de-allocated
3657  * @in: DP IN port
3658  *
3659  * De-allocates DP resource that was previously allocated for DP
3660  * tunneling.
3661  */
3662 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3663 {
3664 	int ret;
3665 
3666 	if (tb_switch_is_usb4(sw))
3667 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3668 	else
3669 		ret = tb_lc_dp_sink_dealloc(sw, in);
3670 
3671 	if (ret)
3672 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3673 			   in->port);
3674 	else
3675 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3676 }
3677 
3678 struct tb_sw_lookup {
3679 	struct tb *tb;
3680 	u8 link;
3681 	u8 depth;
3682 	const uuid_t *uuid;
3683 	u64 route;
3684 };
3685 
3686 static int tb_switch_match(struct device *dev, const void *data)
3687 {
3688 	struct tb_switch *sw = tb_to_switch(dev);
3689 	const struct tb_sw_lookup *lookup = data;
3690 
3691 	if (!sw)
3692 		return 0;
3693 	if (sw->tb != lookup->tb)
3694 		return 0;
3695 
3696 	if (lookup->uuid)
3697 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3698 
3699 	if (lookup->route) {
3700 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3701 		       sw->config.route_hi == upper_32_bits(lookup->route);
3702 	}
3703 
3704 	/* Root switch is matched only by depth */
3705 	if (!lookup->depth)
3706 		return !sw->depth;
3707 
3708 	return sw->link == lookup->link && sw->depth == lookup->depth;
3709 }
3710 
3711 /**
3712  * tb_switch_find_by_link_depth() - Find switch by link and depth
3713  * @tb: Domain the switch belongs
3714  * @link: Link number the switch is connected
3715  * @depth: Depth of the switch in link
3716  *
3717  * Returned switch has reference count increased so the caller needs to
3718  * call tb_switch_put() when done with the switch.
3719  */
3720 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3721 {
3722 	struct tb_sw_lookup lookup;
3723 	struct device *dev;
3724 
3725 	memset(&lookup, 0, sizeof(lookup));
3726 	lookup.tb = tb;
3727 	lookup.link = link;
3728 	lookup.depth = depth;
3729 
3730 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3731 	if (dev)
3732 		return tb_to_switch(dev);
3733 
3734 	return NULL;
3735 }
3736 
3737 /**
3738  * tb_switch_find_by_uuid() - Find switch by UUID
3739  * @tb: Domain the switch belongs
3740  * @uuid: UUID to look for
3741  *
3742  * Returned switch has reference count increased so the caller needs to
3743  * call tb_switch_put() when done with the switch.
3744  */
3745 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3746 {
3747 	struct tb_sw_lookup lookup;
3748 	struct device *dev;
3749 
3750 	memset(&lookup, 0, sizeof(lookup));
3751 	lookup.tb = tb;
3752 	lookup.uuid = uuid;
3753 
3754 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3755 	if (dev)
3756 		return tb_to_switch(dev);
3757 
3758 	return NULL;
3759 }
3760 
3761 /**
3762  * tb_switch_find_by_route() - Find switch by route string
3763  * @tb: Domain the switch belongs
3764  * @route: Route string to look for
3765  *
3766  * Returned switch has reference count increased so the caller needs to
3767  * call tb_switch_put() when done with the switch.
3768  */
3769 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3770 {
3771 	struct tb_sw_lookup lookup;
3772 	struct device *dev;
3773 
3774 	if (!route)
3775 		return tb_switch_get(tb->root_switch);
3776 
3777 	memset(&lookup, 0, sizeof(lookup));
3778 	lookup.tb = tb;
3779 	lookup.route = route;
3780 
3781 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3782 	if (dev)
3783 		return tb_to_switch(dev);
3784 
3785 	return NULL;
3786 }
3787 
3788 /**
3789  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3790  * @sw: Switch to find the port from
3791  * @type: Port type to look for
3792  */
3793 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3794 				    enum tb_port_type type)
3795 {
3796 	struct tb_port *port;
3797 
3798 	tb_switch_for_each_port(sw, port) {
3799 		if (port->config.type == type)
3800 			return port;
3801 	}
3802 
3803 	return NULL;
3804 }
3805 
3806 /*
3807  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3808  * device. For now used only for Titan Ridge.
3809  */
3810 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3811 				       unsigned int pcie_offset, u32 value)
3812 {
3813 	u32 offset, command, val;
3814 	int ret;
3815 
3816 	if (sw->generation != 3)
3817 		return -EOPNOTSUPP;
3818 
3819 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3820 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3821 	if (ret)
3822 		return ret;
3823 
3824 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3825 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3826 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3827 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3828 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3829 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3830 
3831 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3832 
3833 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3834 	if (ret)
3835 		return ret;
3836 
3837 	ret = tb_switch_wait_for_bit(sw, offset,
3838 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3839 	if (ret)
3840 		return ret;
3841 
3842 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3843 	if (ret)
3844 		return ret;
3845 
3846 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3847 		return -ETIMEDOUT;
3848 
3849 	return 0;
3850 }
3851 
3852 /**
3853  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3854  * @sw: Router to enable PCIe L1
3855  *
3856  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3857  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3858  * was configured. Due to Intel platforms limitation, shall be called only
3859  * for first hop switch.
3860  */
3861 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3862 {
3863 	struct tb_switch *parent = tb_switch_parent(sw);
3864 	int ret;
3865 
3866 	if (!tb_route(sw))
3867 		return 0;
3868 
3869 	if (!tb_switch_is_titan_ridge(sw))
3870 		return 0;
3871 
3872 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3873 	if (tb_route(parent))
3874 		return 0;
3875 
3876 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3877 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3878 	if (ret)
3879 		return ret;
3880 
3881 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3882 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3883 }
3884 
3885 /**
3886  * tb_switch_xhci_connect() - Connect internal xHCI
3887  * @sw: Router whose xHCI to connect
3888  *
3889  * Can be called to any router. For Alpine Ridge and Titan Ridge
3890  * performs special flows that bring the xHCI functional for any device
3891  * connected to the type-C port. Call only after PCIe tunnel has been
3892  * established. The function only does the connect if not done already
3893  * so can be called several times for the same router.
3894  */
3895 int tb_switch_xhci_connect(struct tb_switch *sw)
3896 {
3897 	struct tb_port *port1, *port3;
3898 	int ret;
3899 
3900 	if (sw->generation != 3)
3901 		return 0;
3902 
3903 	port1 = &sw->ports[1];
3904 	port3 = &sw->ports[3];
3905 
3906 	if (tb_switch_is_alpine_ridge(sw)) {
3907 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3908 
3909 		usb_port1 = tb_lc_is_usb_plugged(port1);
3910 		usb_port3 = tb_lc_is_usb_plugged(port3);
3911 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3912 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3913 
3914 		/* Figure out correct USB port to connect */
3915 		if (usb_port1 && !xhci_port1) {
3916 			ret = tb_lc_xhci_connect(port1);
3917 			if (ret)
3918 				return ret;
3919 		}
3920 		if (usb_port3 && !xhci_port3)
3921 			return tb_lc_xhci_connect(port3);
3922 	} else if (tb_switch_is_titan_ridge(sw)) {
3923 		ret = tb_lc_xhci_connect(port1);
3924 		if (ret)
3925 			return ret;
3926 		return tb_lc_xhci_connect(port3);
3927 	}
3928 
3929 	return 0;
3930 }
3931 
3932 /**
3933  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3934  * @sw: Router whose xHCI to disconnect
3935  *
3936  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3937  * ports.
3938  */
3939 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3940 {
3941 	if (sw->generation == 3) {
3942 		struct tb_port *port1 = &sw->ports[1];
3943 		struct tb_port *port3 = &sw->ports[3];
3944 
3945 		tb_lc_xhci_disconnect(port1);
3946 		tb_port_dbg(port1, "disconnected xHCI\n");
3947 		tb_lc_xhci_disconnect(port3);
3948 		tb_port_dbg(port3, "disconnected xHCI\n");
3949 	}
3950 }
3951