xref: /linux/drivers/thunderbolt/switch.c (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18 
19 #include "tb.h"
20 
21 /* Switch NVM support */
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 static bool clx_enabled = true;
30 module_param_named(clx, clx_enabled, bool, 0444);
31 MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
32 
33 /*
34  * Hold NVM authentication failure status per switch This information
35  * needs to stay around even when the switch gets power cycled so we
36  * keep it separately.
37  */
38 static LIST_HEAD(nvm_auth_status_cache);
39 static DEFINE_MUTEX(nvm_auth_status_lock);
40 
41 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
42 {
43 	struct nvm_auth_status *st;
44 
45 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
46 		if (uuid_equal(&st->uuid, sw->uuid))
47 			return st;
48 	}
49 
50 	return NULL;
51 }
52 
53 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
54 {
55 	struct nvm_auth_status *st;
56 
57 	mutex_lock(&nvm_auth_status_lock);
58 	st = __nvm_get_auth_status(sw);
59 	mutex_unlock(&nvm_auth_status_lock);
60 
61 	*status = st ? st->status : 0;
62 }
63 
64 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
65 {
66 	struct nvm_auth_status *st;
67 
68 	if (WARN_ON(!sw->uuid))
69 		return;
70 
71 	mutex_lock(&nvm_auth_status_lock);
72 	st = __nvm_get_auth_status(sw);
73 
74 	if (!st) {
75 		st = kzalloc(sizeof(*st), GFP_KERNEL);
76 		if (!st)
77 			goto unlock;
78 
79 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
80 		INIT_LIST_HEAD(&st->list);
81 		list_add_tail(&st->list, &nvm_auth_status_cache);
82 	}
83 
84 	st->status = status;
85 unlock:
86 	mutex_unlock(&nvm_auth_status_lock);
87 }
88 
89 static void nvm_clear_auth_status(const struct tb_switch *sw)
90 {
91 	struct nvm_auth_status *st;
92 
93 	mutex_lock(&nvm_auth_status_lock);
94 	st = __nvm_get_auth_status(sw);
95 	if (st) {
96 		list_del(&st->list);
97 		kfree(st);
98 	}
99 	mutex_unlock(&nvm_auth_status_lock);
100 }
101 
102 static int nvm_validate_and_write(struct tb_switch *sw)
103 {
104 	unsigned int image_size;
105 	const u8 *buf;
106 	int ret;
107 
108 	ret = tb_nvm_validate(sw->nvm);
109 	if (ret)
110 		return ret;
111 
112 	ret = tb_nvm_write_headers(sw->nvm);
113 	if (ret)
114 		return ret;
115 
116 	buf = sw->nvm->buf_data_start;
117 	image_size = sw->nvm->buf_data_size;
118 
119 	if (tb_switch_is_usb4(sw))
120 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
121 	else
122 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
123 	if (ret)
124 		return ret;
125 
126 	sw->nvm->flushed = true;
127 	return 0;
128 }
129 
130 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
131 {
132 	int ret = 0;
133 
134 	/*
135 	 * Root switch NVM upgrade requires that we disconnect the
136 	 * existing paths first (in case it is not in safe mode
137 	 * already).
138 	 */
139 	if (!sw->safe_mode) {
140 		u32 status;
141 
142 		ret = tb_domain_disconnect_all_paths(sw->tb);
143 		if (ret)
144 			return ret;
145 		/*
146 		 * The host controller goes away pretty soon after this if
147 		 * everything goes well so getting timeout is expected.
148 		 */
149 		ret = dma_port_flash_update_auth(sw->dma_port);
150 		if (!ret || ret == -ETIMEDOUT)
151 			return 0;
152 
153 		/*
154 		 * Any error from update auth operation requires power
155 		 * cycling of the host router.
156 		 */
157 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
158 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
159 			nvm_set_auth_status(sw, status);
160 	}
161 
162 	/*
163 	 * From safe mode we can get out by just power cycling the
164 	 * switch.
165 	 */
166 	dma_port_power_cycle(sw->dma_port);
167 	return ret;
168 }
169 
170 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
171 {
172 	int ret, retries = 10;
173 
174 	ret = dma_port_flash_update_auth(sw->dma_port);
175 	switch (ret) {
176 	case 0:
177 	case -ETIMEDOUT:
178 	case -EACCES:
179 	case -EINVAL:
180 		/* Power cycle is required */
181 		break;
182 	default:
183 		return ret;
184 	}
185 
186 	/*
187 	 * Poll here for the authentication status. It takes some time
188 	 * for the device to respond (we get timeout for a while). Once
189 	 * we get response the device needs to be power cycled in order
190 	 * to the new NVM to be taken into use.
191 	 */
192 	do {
193 		u32 status;
194 
195 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
196 		if (ret < 0 && ret != -ETIMEDOUT)
197 			return ret;
198 		if (ret > 0) {
199 			if (status) {
200 				tb_sw_warn(sw, "failed to authenticate NVM\n");
201 				nvm_set_auth_status(sw, status);
202 			}
203 
204 			tb_sw_info(sw, "power cycling the switch now\n");
205 			dma_port_power_cycle(sw->dma_port);
206 			return 0;
207 		}
208 
209 		msleep(500);
210 	} while (--retries);
211 
212 	return -ETIMEDOUT;
213 }
214 
215 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
216 {
217 	struct pci_dev *root_port;
218 
219 	/*
220 	 * During host router NVM upgrade we should not allow root port to
221 	 * go into D3cold because some root ports cannot trigger PME
222 	 * itself. To be on the safe side keep the root port in D0 during
223 	 * the whole upgrade process.
224 	 */
225 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
226 	if (root_port)
227 		pm_runtime_get_noresume(&root_port->dev);
228 }
229 
230 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
231 {
232 	struct pci_dev *root_port;
233 
234 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
235 	if (root_port)
236 		pm_runtime_put(&root_port->dev);
237 }
238 
239 static inline bool nvm_readable(struct tb_switch *sw)
240 {
241 	if (tb_switch_is_usb4(sw)) {
242 		/*
243 		 * USB4 devices must support NVM operations but it is
244 		 * optional for hosts. Therefore we query the NVM sector
245 		 * size here and if it is supported assume NVM
246 		 * operations are implemented.
247 		 */
248 		return usb4_switch_nvm_sector_size(sw) > 0;
249 	}
250 
251 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
252 	return !!sw->dma_port;
253 }
254 
255 static inline bool nvm_upgradeable(struct tb_switch *sw)
256 {
257 	if (sw->no_nvm_upgrade)
258 		return false;
259 	return nvm_readable(sw);
260 }
261 
262 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
263 {
264 	int ret;
265 
266 	if (tb_switch_is_usb4(sw)) {
267 		if (auth_only) {
268 			ret = usb4_switch_nvm_set_offset(sw, 0);
269 			if (ret)
270 				return ret;
271 		}
272 		sw->nvm->authenticating = true;
273 		return usb4_switch_nvm_authenticate(sw);
274 	} else if (auth_only) {
275 		return -EOPNOTSUPP;
276 	}
277 
278 	sw->nvm->authenticating = true;
279 	if (!tb_route(sw)) {
280 		nvm_authenticate_start_dma_port(sw);
281 		ret = nvm_authenticate_host_dma_port(sw);
282 	} else {
283 		ret = nvm_authenticate_device_dma_port(sw);
284 	}
285 
286 	return ret;
287 }
288 
289 /**
290  * tb_switch_nvm_read() - Read router NVM
291  * @sw: Router whose NVM to read
292  * @address: Start address on the NVM
293  * @buf: Buffer where the read data is copied
294  * @size: Size of the buffer in bytes
295  *
296  * Reads from router NVM and returns the requested data in @buf. Locking
297  * is up to the caller. Returns %0 in success and negative errno in case
298  * of failure.
299  */
300 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
301 		       size_t size)
302 {
303 	if (tb_switch_is_usb4(sw))
304 		return usb4_switch_nvm_read(sw, address, buf, size);
305 	return dma_port_flash_read(sw->dma_port, address, buf, size);
306 }
307 
308 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
309 {
310 	struct tb_nvm *nvm = priv;
311 	struct tb_switch *sw = tb_to_switch(nvm->dev);
312 	int ret;
313 
314 	pm_runtime_get_sync(&sw->dev);
315 
316 	if (!mutex_trylock(&sw->tb->lock)) {
317 		ret = restart_syscall();
318 		goto out;
319 	}
320 
321 	ret = tb_switch_nvm_read(sw, offset, val, bytes);
322 	mutex_unlock(&sw->tb->lock);
323 
324 out:
325 	pm_runtime_mark_last_busy(&sw->dev);
326 	pm_runtime_put_autosuspend(&sw->dev);
327 
328 	return ret;
329 }
330 
331 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
332 {
333 	struct tb_nvm *nvm = priv;
334 	struct tb_switch *sw = tb_to_switch(nvm->dev);
335 	int ret;
336 
337 	if (!mutex_trylock(&sw->tb->lock))
338 		return restart_syscall();
339 
340 	/*
341 	 * Since writing the NVM image might require some special steps,
342 	 * for example when CSS headers are written, we cache the image
343 	 * locally here and handle the special cases when the user asks
344 	 * us to authenticate the image.
345 	 */
346 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
347 	mutex_unlock(&sw->tb->lock);
348 
349 	return ret;
350 }
351 
352 static int tb_switch_nvm_add(struct tb_switch *sw)
353 {
354 	struct tb_nvm *nvm;
355 	int ret;
356 
357 	if (!nvm_readable(sw))
358 		return 0;
359 
360 	nvm = tb_nvm_alloc(&sw->dev);
361 	if (IS_ERR(nvm)) {
362 		ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
363 		goto err_nvm;
364 	}
365 
366 	ret = tb_nvm_read_version(nvm);
367 	if (ret)
368 		goto err_nvm;
369 
370 	/*
371 	 * If the switch is in safe-mode the only accessible portion of
372 	 * the NVM is the non-active one where userspace is expected to
373 	 * write new functional NVM.
374 	 */
375 	if (!sw->safe_mode) {
376 		ret = tb_nvm_add_active(nvm, nvm_read);
377 		if (ret)
378 			goto err_nvm;
379 	}
380 
381 	if (!sw->no_nvm_upgrade) {
382 		ret = tb_nvm_add_non_active(nvm, nvm_write);
383 		if (ret)
384 			goto err_nvm;
385 	}
386 
387 	sw->nvm = nvm;
388 	return 0;
389 
390 err_nvm:
391 	tb_sw_dbg(sw, "NVM upgrade disabled\n");
392 	sw->no_nvm_upgrade = true;
393 	if (!IS_ERR(nvm))
394 		tb_nvm_free(nvm);
395 
396 	return ret;
397 }
398 
399 static void tb_switch_nvm_remove(struct tb_switch *sw)
400 {
401 	struct tb_nvm *nvm;
402 
403 	nvm = sw->nvm;
404 	sw->nvm = NULL;
405 
406 	if (!nvm)
407 		return;
408 
409 	/* Remove authentication status in case the switch is unplugged */
410 	if (!nvm->authenticating)
411 		nvm_clear_auth_status(sw);
412 
413 	tb_nvm_free(nvm);
414 }
415 
416 /* port utility functions */
417 
418 static const char *tb_port_type(const struct tb_regs_port_header *port)
419 {
420 	switch (port->type >> 16) {
421 	case 0:
422 		switch ((u8) port->type) {
423 		case 0:
424 			return "Inactive";
425 		case 1:
426 			return "Port";
427 		case 2:
428 			return "NHI";
429 		default:
430 			return "unknown";
431 		}
432 	case 0x2:
433 		return "Ethernet";
434 	case 0x8:
435 		return "SATA";
436 	case 0xe:
437 		return "DP/HDMI";
438 	case 0x10:
439 		return "PCIe";
440 	case 0x20:
441 		return "USB";
442 	default:
443 		return "unknown";
444 	}
445 }
446 
447 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
448 {
449 	const struct tb_regs_port_header *regs = &port->config;
450 
451 	tb_dbg(tb,
452 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
453 	       regs->port_number, regs->vendor_id, regs->device_id,
454 	       regs->revision, regs->thunderbolt_version, tb_port_type(regs),
455 	       regs->type);
456 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
457 	       regs->max_in_hop_id, regs->max_out_hop_id);
458 	tb_dbg(tb, "  Max counters: %d\n", regs->max_counters);
459 	tb_dbg(tb, "  NFC Credits: %#x\n", regs->nfc_credits);
460 	tb_dbg(tb, "  Credits (total/control): %u/%u\n", port->total_credits,
461 	       port->ctl_credits);
462 }
463 
464 /**
465  * tb_port_state() - get connectedness state of a port
466  * @port: the port to check
467  *
468  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
469  *
470  * Return: Returns an enum tb_port_state on success or an error code on failure.
471  */
472 int tb_port_state(struct tb_port *port)
473 {
474 	struct tb_cap_phy phy;
475 	int res;
476 	if (port->cap_phy == 0) {
477 		tb_port_WARN(port, "does not have a PHY\n");
478 		return -EINVAL;
479 	}
480 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
481 	if (res)
482 		return res;
483 	return phy.state;
484 }
485 
486 /**
487  * tb_wait_for_port() - wait for a port to become ready
488  * @port: Port to wait
489  * @wait_if_unplugged: Wait also when port is unplugged
490  *
491  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
492  * wait_if_unplugged is set then we also wait if the port is in state
493  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
494  * switch resume). Otherwise we only wait if a device is registered but the link
495  * has not yet been established.
496  *
497  * Return: Returns an error code on failure. Returns 0 if the port is not
498  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
499  * if the port is connected and in state TB_PORT_UP.
500  */
501 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
502 {
503 	int retries = 10;
504 	int state;
505 	if (!port->cap_phy) {
506 		tb_port_WARN(port, "does not have PHY\n");
507 		return -EINVAL;
508 	}
509 	if (tb_is_upstream_port(port)) {
510 		tb_port_WARN(port, "is the upstream port\n");
511 		return -EINVAL;
512 	}
513 
514 	while (retries--) {
515 		state = tb_port_state(port);
516 		switch (state) {
517 		case TB_PORT_DISABLED:
518 			tb_port_dbg(port, "is disabled (state: 0)\n");
519 			return 0;
520 
521 		case TB_PORT_UNPLUGGED:
522 			if (wait_if_unplugged) {
523 				/* used during resume */
524 				tb_port_dbg(port,
525 					    "is unplugged (state: 7), retrying...\n");
526 				msleep(100);
527 				break;
528 			}
529 			tb_port_dbg(port, "is unplugged (state: 7)\n");
530 			return 0;
531 
532 		case TB_PORT_UP:
533 		case TB_PORT_TX_CL0S:
534 		case TB_PORT_RX_CL0S:
535 		case TB_PORT_CL1:
536 		case TB_PORT_CL2:
537 			tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
538 			return 1;
539 
540 		default:
541 			if (state < 0)
542 				return state;
543 
544 			/*
545 			 * After plug-in the state is TB_PORT_CONNECTING. Give it some
546 			 * time.
547 			 */
548 			tb_port_dbg(port,
549 				    "is connected, link is not up (state: %d), retrying...\n",
550 				    state);
551 			msleep(100);
552 		}
553 
554 	}
555 	tb_port_warn(port,
556 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
557 	return 0;
558 }
559 
560 /**
561  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
562  * @port: Port to add/remove NFC credits
563  * @credits: Credits to add/remove
564  *
565  * Change the number of NFC credits allocated to @port by @credits. To remove
566  * NFC credits pass a negative amount of credits.
567  *
568  * Return: Returns 0 on success or an error code on failure.
569  */
570 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
571 {
572 	u32 nfc_credits;
573 
574 	if (credits == 0 || port->sw->is_unplugged)
575 		return 0;
576 
577 	/*
578 	 * USB4 restricts programming NFC buffers to lane adapters only
579 	 * so skip other ports.
580 	 */
581 	if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
582 		return 0;
583 
584 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
585 	if (credits < 0)
586 		credits = max_t(int, -nfc_credits, credits);
587 
588 	nfc_credits += credits;
589 
590 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
591 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
592 
593 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
594 	port->config.nfc_credits |= nfc_credits;
595 
596 	return tb_port_write(port, &port->config.nfc_credits,
597 			     TB_CFG_PORT, ADP_CS_4, 1);
598 }
599 
600 /**
601  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
602  * @port: Port whose counters to clear
603  * @counter: Counter index to clear
604  *
605  * Return: Returns 0 on success or an error code on failure.
606  */
607 int tb_port_clear_counter(struct tb_port *port, int counter)
608 {
609 	u32 zero[3] = { 0, 0, 0 };
610 	tb_port_dbg(port, "clearing counter %d\n", counter);
611 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
612 }
613 
614 /**
615  * tb_port_unlock() - Unlock downstream port
616  * @port: Port to unlock
617  *
618  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
619  * downstream router accessible for CM.
620  */
621 int tb_port_unlock(struct tb_port *port)
622 {
623 	if (tb_switch_is_icm(port->sw))
624 		return 0;
625 	if (!tb_port_is_null(port))
626 		return -EINVAL;
627 	if (tb_switch_is_usb4(port->sw))
628 		return usb4_port_unlock(port);
629 	return 0;
630 }
631 
632 static int __tb_port_enable(struct tb_port *port, bool enable)
633 {
634 	int ret;
635 	u32 phy;
636 
637 	if (!tb_port_is_null(port))
638 		return -EINVAL;
639 
640 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
641 			   port->cap_phy + LANE_ADP_CS_1, 1);
642 	if (ret)
643 		return ret;
644 
645 	if (enable)
646 		phy &= ~LANE_ADP_CS_1_LD;
647 	else
648 		phy |= LANE_ADP_CS_1_LD;
649 
650 
651 	ret = tb_port_write(port, &phy, TB_CFG_PORT,
652 			    port->cap_phy + LANE_ADP_CS_1, 1);
653 	if (ret)
654 		return ret;
655 
656 	tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
657 	return 0;
658 }
659 
660 /**
661  * tb_port_enable() - Enable lane adapter
662  * @port: Port to enable (can be %NULL)
663  *
664  * This is used for lane 0 and 1 adapters to enable it.
665  */
666 int tb_port_enable(struct tb_port *port)
667 {
668 	return __tb_port_enable(port, true);
669 }
670 
671 /**
672  * tb_port_disable() - Disable lane adapter
673  * @port: Port to disable (can be %NULL)
674  *
675  * This is used for lane 0 and 1 adapters to disable it.
676  */
677 int tb_port_disable(struct tb_port *port)
678 {
679 	return __tb_port_enable(port, false);
680 }
681 
682 /*
683  * tb_init_port() - initialize a port
684  *
685  * This is a helper method for tb_switch_alloc. Does not check or initialize
686  * any downstream switches.
687  *
688  * Return: Returns 0 on success or an error code on failure.
689  */
690 static int tb_init_port(struct tb_port *port)
691 {
692 	int res;
693 	int cap;
694 
695 	INIT_LIST_HEAD(&port->list);
696 
697 	/* Control adapter does not have configuration space */
698 	if (!port->port)
699 		return 0;
700 
701 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
702 	if (res) {
703 		if (res == -ENODEV) {
704 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
705 			       port->port);
706 			port->disabled = true;
707 			return 0;
708 		}
709 		return res;
710 	}
711 
712 	/* Port 0 is the switch itself and has no PHY. */
713 	if (port->config.type == TB_TYPE_PORT) {
714 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
715 
716 		if (cap > 0)
717 			port->cap_phy = cap;
718 		else
719 			tb_port_WARN(port, "non switch port without a PHY\n");
720 
721 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
722 		if (cap > 0)
723 			port->cap_usb4 = cap;
724 
725 		/*
726 		 * USB4 ports the buffers allocated for the control path
727 		 * can be read from the path config space. Legacy
728 		 * devices we use hard-coded value.
729 		 */
730 		if (tb_switch_is_usb4(port->sw)) {
731 			struct tb_regs_hop hop;
732 
733 			if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
734 				port->ctl_credits = hop.initial_credits;
735 		}
736 		if (!port->ctl_credits)
737 			port->ctl_credits = 2;
738 
739 	} else {
740 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
741 		if (cap > 0)
742 			port->cap_adap = cap;
743 	}
744 
745 	port->total_credits =
746 		(port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
747 		ADP_CS_4_TOTAL_BUFFERS_SHIFT;
748 
749 	tb_dump_port(port->sw->tb, port);
750 	return 0;
751 }
752 
753 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
754 			       int max_hopid)
755 {
756 	int port_max_hopid;
757 	struct ida *ida;
758 
759 	if (in) {
760 		port_max_hopid = port->config.max_in_hop_id;
761 		ida = &port->in_hopids;
762 	} else {
763 		port_max_hopid = port->config.max_out_hop_id;
764 		ida = &port->out_hopids;
765 	}
766 
767 	/*
768 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
769 	 * reserved.
770 	 */
771 	if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
772 		min_hopid = TB_PATH_MIN_HOPID;
773 
774 	if (max_hopid < 0 || max_hopid > port_max_hopid)
775 		max_hopid = port_max_hopid;
776 
777 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
778 }
779 
780 /**
781  * tb_port_alloc_in_hopid() - Allocate input HopID from port
782  * @port: Port to allocate HopID for
783  * @min_hopid: Minimum acceptable input HopID
784  * @max_hopid: Maximum acceptable input HopID
785  *
786  * Return: HopID between @min_hopid and @max_hopid or negative errno in
787  * case of error.
788  */
789 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
790 {
791 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
792 }
793 
794 /**
795  * tb_port_alloc_out_hopid() - Allocate output HopID from port
796  * @port: Port to allocate HopID for
797  * @min_hopid: Minimum acceptable output HopID
798  * @max_hopid: Maximum acceptable output HopID
799  *
800  * Return: HopID between @min_hopid and @max_hopid or negative errno in
801  * case of error.
802  */
803 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
804 {
805 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
806 }
807 
808 /**
809  * tb_port_release_in_hopid() - Release allocated input HopID from port
810  * @port: Port whose HopID to release
811  * @hopid: HopID to release
812  */
813 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
814 {
815 	ida_simple_remove(&port->in_hopids, hopid);
816 }
817 
818 /**
819  * tb_port_release_out_hopid() - Release allocated output HopID from port
820  * @port: Port whose HopID to release
821  * @hopid: HopID to release
822  */
823 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
824 {
825 	ida_simple_remove(&port->out_hopids, hopid);
826 }
827 
828 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
829 					  const struct tb_switch *sw)
830 {
831 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
832 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
833 }
834 
835 /**
836  * tb_next_port_on_path() - Return next port for given port on a path
837  * @start: Start port of the walk
838  * @end: End port of the walk
839  * @prev: Previous port (%NULL if this is the first)
840  *
841  * This function can be used to walk from one port to another if they
842  * are connected through zero or more switches. If the @prev is dual
843  * link port, the function follows that link and returns another end on
844  * that same link.
845  *
846  * If the @end port has been reached, return %NULL.
847  *
848  * Domain tb->lock must be held when this function is called.
849  */
850 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
851 				     struct tb_port *prev)
852 {
853 	struct tb_port *next;
854 
855 	if (!prev)
856 		return start;
857 
858 	if (prev->sw == end->sw) {
859 		if (prev == end)
860 			return NULL;
861 		return end;
862 	}
863 
864 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
865 		next = tb_port_at(tb_route(end->sw), prev->sw);
866 		/* Walk down the topology if next == prev */
867 		if (prev->remote &&
868 		    (next == prev || next->dual_link_port == prev))
869 			next = prev->remote;
870 	} else {
871 		if (tb_is_upstream_port(prev)) {
872 			next = prev->remote;
873 		} else {
874 			next = tb_upstream_port(prev->sw);
875 			/*
876 			 * Keep the same link if prev and next are both
877 			 * dual link ports.
878 			 */
879 			if (next->dual_link_port &&
880 			    next->link_nr != prev->link_nr) {
881 				next = next->dual_link_port;
882 			}
883 		}
884 	}
885 
886 	return next != prev ? next : NULL;
887 }
888 
889 /**
890  * tb_port_get_link_speed() - Get current link speed
891  * @port: Port to check (USB4 or CIO)
892  *
893  * Returns link speed in Gb/s or negative errno in case of failure.
894  */
895 int tb_port_get_link_speed(struct tb_port *port)
896 {
897 	u32 val, speed;
898 	int ret;
899 
900 	if (!port->cap_phy)
901 		return -EINVAL;
902 
903 	ret = tb_port_read(port, &val, TB_CFG_PORT,
904 			   port->cap_phy + LANE_ADP_CS_1, 1);
905 	if (ret)
906 		return ret;
907 
908 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
909 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
910 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
911 }
912 
913 /**
914  * tb_port_get_link_width() - Get current link width
915  * @port: Port to check (USB4 or CIO)
916  *
917  * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
918  * or negative errno in case of failure.
919  */
920 int tb_port_get_link_width(struct tb_port *port)
921 {
922 	u32 val;
923 	int ret;
924 
925 	if (!port->cap_phy)
926 		return -EINVAL;
927 
928 	ret = tb_port_read(port, &val, TB_CFG_PORT,
929 			   port->cap_phy + LANE_ADP_CS_1, 1);
930 	if (ret)
931 		return ret;
932 
933 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
934 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
935 }
936 
937 static bool tb_port_is_width_supported(struct tb_port *port, int width)
938 {
939 	u32 phy, widths;
940 	int ret;
941 
942 	if (!port->cap_phy)
943 		return false;
944 
945 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
946 			   port->cap_phy + LANE_ADP_CS_0, 1);
947 	if (ret)
948 		return false;
949 
950 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
951 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
952 
953 	return !!(widths & width);
954 }
955 
956 /**
957  * tb_port_set_link_width() - Set target link width of the lane adapter
958  * @port: Lane adapter
959  * @width: Target link width (%1 or %2)
960  *
961  * Sets the target link width of the lane adapter to @width. Does not
962  * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
963  *
964  * Return: %0 in case of success and negative errno in case of error
965  */
966 int tb_port_set_link_width(struct tb_port *port, unsigned int width)
967 {
968 	u32 val;
969 	int ret;
970 
971 	if (!port->cap_phy)
972 		return -EINVAL;
973 
974 	ret = tb_port_read(port, &val, TB_CFG_PORT,
975 			   port->cap_phy + LANE_ADP_CS_1, 1);
976 	if (ret)
977 		return ret;
978 
979 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
980 	switch (width) {
981 	case 1:
982 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
983 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
984 		break;
985 	case 2:
986 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
987 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
988 		break;
989 	default:
990 		return -EINVAL;
991 	}
992 
993 	return tb_port_write(port, &val, TB_CFG_PORT,
994 			     port->cap_phy + LANE_ADP_CS_1, 1);
995 }
996 
997 /**
998  * tb_port_set_lane_bonding() - Enable/disable lane bonding
999  * @port: Lane adapter
1000  * @bonding: enable/disable bonding
1001  *
1002  * Enables or disables lane bonding. This should be called after target
1003  * link width has been set (tb_port_set_link_width()). Note in most
1004  * cases one should use tb_port_lane_bonding_enable() instead to enable
1005  * lane bonding.
1006  *
1007  * As a side effect sets @port->bonding accordingly (and does the same
1008  * for lane 1 too).
1009  *
1010  * Return: %0 in case of success and negative errno in case of error
1011  */
1012 int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1013 {
1014 	u32 val;
1015 	int ret;
1016 
1017 	if (!port->cap_phy)
1018 		return -EINVAL;
1019 
1020 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1021 			   port->cap_phy + LANE_ADP_CS_1, 1);
1022 	if (ret)
1023 		return ret;
1024 
1025 	if (bonding)
1026 		val |= LANE_ADP_CS_1_LB;
1027 	else
1028 		val &= ~LANE_ADP_CS_1_LB;
1029 
1030 	ret = tb_port_write(port, &val, TB_CFG_PORT,
1031 			    port->cap_phy + LANE_ADP_CS_1, 1);
1032 	if (ret)
1033 		return ret;
1034 
1035 	/*
1036 	 * When lane 0 bonding is set it will affect lane 1 too so
1037 	 * update both.
1038 	 */
1039 	port->bonded = bonding;
1040 	port->dual_link_port->bonded = bonding;
1041 
1042 	return 0;
1043 }
1044 
1045 /**
1046  * tb_port_lane_bonding_enable() - Enable bonding on port
1047  * @port: port to enable
1048  *
1049  * Enable bonding by setting the link width of the port and the other
1050  * port in case of dual link port. Does not wait for the link to
1051  * actually reach the bonded state so caller needs to call
1052  * tb_port_wait_for_link_width() before enabling any paths through the
1053  * link to make sure the link is in expected state.
1054  *
1055  * Return: %0 in case of success and negative errno in case of error
1056  */
1057 int tb_port_lane_bonding_enable(struct tb_port *port)
1058 {
1059 	int ret;
1060 
1061 	/*
1062 	 * Enable lane bonding for both links if not already enabled by
1063 	 * for example the boot firmware.
1064 	 */
1065 	ret = tb_port_get_link_width(port);
1066 	if (ret == 1) {
1067 		ret = tb_port_set_link_width(port, 2);
1068 		if (ret)
1069 			goto err_lane0;
1070 	}
1071 
1072 	ret = tb_port_get_link_width(port->dual_link_port);
1073 	if (ret == 1) {
1074 		ret = tb_port_set_link_width(port->dual_link_port, 2);
1075 		if (ret)
1076 			goto err_lane0;
1077 	}
1078 
1079 	ret = tb_port_set_lane_bonding(port, true);
1080 	if (ret)
1081 		goto err_lane1;
1082 
1083 	return 0;
1084 
1085 err_lane1:
1086 	tb_port_set_link_width(port->dual_link_port, 1);
1087 err_lane0:
1088 	tb_port_set_link_width(port, 1);
1089 	return ret;
1090 }
1091 
1092 /**
1093  * tb_port_lane_bonding_disable() - Disable bonding on port
1094  * @port: port to disable
1095  *
1096  * Disable bonding by setting the link width of the port and the
1097  * other port in case of dual link port.
1098  */
1099 void tb_port_lane_bonding_disable(struct tb_port *port)
1100 {
1101 	tb_port_set_lane_bonding(port, false);
1102 	tb_port_set_link_width(port->dual_link_port, 1);
1103 	tb_port_set_link_width(port, 1);
1104 }
1105 
1106 /**
1107  * tb_port_wait_for_link_width() - Wait until link reaches specific width
1108  * @port: Port to wait for
1109  * @width: Expected link width (%1 or %2)
1110  * @timeout_msec: Timeout in ms how long to wait
1111  *
1112  * Should be used after both ends of the link have been bonded (or
1113  * bonding has been disabled) to wait until the link actually reaches
1114  * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1115  * within the given timeout, %0 if it did.
1116  */
1117 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1118 				int timeout_msec)
1119 {
1120 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1121 	int ret;
1122 
1123 	do {
1124 		ret = tb_port_get_link_width(port);
1125 		if (ret < 0) {
1126 			/*
1127 			 * Sometimes we get port locked error when
1128 			 * polling the lanes so we can ignore it and
1129 			 * retry.
1130 			 */
1131 			if (ret != -EACCES)
1132 				return ret;
1133 		} else if (ret == width) {
1134 			return 0;
1135 		}
1136 
1137 		usleep_range(1000, 2000);
1138 	} while (ktime_before(ktime_get(), timeout));
1139 
1140 	return -ETIMEDOUT;
1141 }
1142 
1143 static int tb_port_do_update_credits(struct tb_port *port)
1144 {
1145 	u32 nfc_credits;
1146 	int ret;
1147 
1148 	ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1149 	if (ret)
1150 		return ret;
1151 
1152 	if (nfc_credits != port->config.nfc_credits) {
1153 		u32 total;
1154 
1155 		total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1156 			ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1157 
1158 		tb_port_dbg(port, "total credits changed %u -> %u\n",
1159 			    port->total_credits, total);
1160 
1161 		port->config.nfc_credits = nfc_credits;
1162 		port->total_credits = total;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * tb_port_update_credits() - Re-read port total credits
1170  * @port: Port to update
1171  *
1172  * After the link is bonded (or bonding was disabled) the port total
1173  * credits may change, so this function needs to be called to re-read
1174  * the credits. Updates also the second lane adapter.
1175  */
1176 int tb_port_update_credits(struct tb_port *port)
1177 {
1178 	int ret;
1179 
1180 	ret = tb_port_do_update_credits(port);
1181 	if (ret)
1182 		return ret;
1183 	return tb_port_do_update_credits(port->dual_link_port);
1184 }
1185 
1186 static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
1187 {
1188 	u32 phy;
1189 	int ret;
1190 
1191 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1192 			   port->cap_phy + LANE_ADP_CS_1, 1);
1193 	if (ret)
1194 		return ret;
1195 
1196 	if (secondary)
1197 		phy |= LANE_ADP_CS_1_PMS;
1198 	else
1199 		phy &= ~LANE_ADP_CS_1_PMS;
1200 
1201 	return tb_port_write(port, &phy, TB_CFG_PORT,
1202 			     port->cap_phy + LANE_ADP_CS_1, 1);
1203 }
1204 
1205 static int tb_port_pm_secondary_enable(struct tb_port *port)
1206 {
1207 	return __tb_port_pm_secondary_set(port, true);
1208 }
1209 
1210 static int tb_port_pm_secondary_disable(struct tb_port *port)
1211 {
1212 	return __tb_port_pm_secondary_set(port, false);
1213 }
1214 
1215 /* Called for USB4 or Titan Ridge routers only */
1216 static bool tb_port_clx_supported(struct tb_port *port, unsigned int clx_mask)
1217 {
1218 	u32 val, mask = 0;
1219 	bool ret;
1220 
1221 	/* Don't enable CLx in case of two single-lane links */
1222 	if (!port->bonded && port->dual_link_port)
1223 		return false;
1224 
1225 	/* Don't enable CLx in case of inter-domain link */
1226 	if (port->xdomain)
1227 		return false;
1228 
1229 	if (tb_switch_is_usb4(port->sw)) {
1230 		if (!usb4_port_clx_supported(port))
1231 			return false;
1232 	} else if (!tb_lc_is_clx_supported(port)) {
1233 		return false;
1234 	}
1235 
1236 	if (clx_mask & TB_CL1) {
1237 		/* CL0s and CL1 are enabled and supported together */
1238 		mask |= LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
1239 	}
1240 	if (clx_mask & TB_CL2)
1241 		mask |= LANE_ADP_CS_0_CL2_SUPPORT;
1242 
1243 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1244 			   port->cap_phy + LANE_ADP_CS_0, 1);
1245 	if (ret)
1246 		return false;
1247 
1248 	return !!(val & mask);
1249 }
1250 
1251 static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable)
1252 {
1253 	u32 phy, mask;
1254 	int ret;
1255 
1256 	/* CL0s and CL1 are enabled and supported together */
1257 	if (clx == TB_CL1)
1258 		mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1259 	else
1260 		/* For now we support only CL0s and CL1. Not CL2 */
1261 		return -EOPNOTSUPP;
1262 
1263 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
1264 			   port->cap_phy + LANE_ADP_CS_1, 1);
1265 	if (ret)
1266 		return ret;
1267 
1268 	if (enable)
1269 		phy |= mask;
1270 	else
1271 		phy &= ~mask;
1272 
1273 	return tb_port_write(port, &phy, TB_CFG_PORT,
1274 			     port->cap_phy + LANE_ADP_CS_1, 1);
1275 }
1276 
1277 static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx)
1278 {
1279 	return __tb_port_clx_set(port, clx, false);
1280 }
1281 
1282 static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx)
1283 {
1284 	return __tb_port_clx_set(port, clx, true);
1285 }
1286 
1287 /**
1288  * tb_port_is_clx_enabled() - Is given CL state enabled
1289  * @port: USB4 port to check
1290  * @clx_mask: Mask of CL states to check
1291  *
1292  * Returns true if any of the given CL states is enabled for @port.
1293  */
1294 bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx_mask)
1295 {
1296 	u32 val, mask = 0;
1297 	int ret;
1298 
1299 	if (!tb_port_clx_supported(port, clx_mask))
1300 		return false;
1301 
1302 	if (clx_mask & TB_CL1)
1303 		mask |= LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
1304 	if (clx_mask & TB_CL2)
1305 		mask |= LANE_ADP_CS_1_CL2_ENABLE;
1306 
1307 	ret = tb_port_read(port, &val, TB_CFG_PORT,
1308 			   port->cap_phy + LANE_ADP_CS_1, 1);
1309 	if (ret)
1310 		return false;
1311 
1312 	return !!(val & mask);
1313 }
1314 
1315 static int tb_port_start_lane_initialization(struct tb_port *port)
1316 {
1317 	int ret;
1318 
1319 	if (tb_switch_is_usb4(port->sw))
1320 		return 0;
1321 
1322 	ret = tb_lc_start_lane_initialization(port);
1323 	return ret == -EINVAL ? 0 : ret;
1324 }
1325 
1326 /*
1327  * Returns true if the port had something (router, XDomain) connected
1328  * before suspend.
1329  */
1330 static bool tb_port_resume(struct tb_port *port)
1331 {
1332 	bool has_remote = tb_port_has_remote(port);
1333 
1334 	if (port->usb4) {
1335 		usb4_port_device_resume(port->usb4);
1336 	} else if (!has_remote) {
1337 		/*
1338 		 * For disconnected downstream lane adapters start lane
1339 		 * initialization now so we detect future connects.
1340 		 *
1341 		 * For XDomain start the lane initialzation now so the
1342 		 * link gets re-established.
1343 		 *
1344 		 * This is only needed for non-USB4 ports.
1345 		 */
1346 		if (!tb_is_upstream_port(port) || port->xdomain)
1347 			tb_port_start_lane_initialization(port);
1348 	}
1349 
1350 	return has_remote || port->xdomain;
1351 }
1352 
1353 /**
1354  * tb_port_is_enabled() - Is the adapter port enabled
1355  * @port: Port to check
1356  */
1357 bool tb_port_is_enabled(struct tb_port *port)
1358 {
1359 	switch (port->config.type) {
1360 	case TB_TYPE_PCIE_UP:
1361 	case TB_TYPE_PCIE_DOWN:
1362 		return tb_pci_port_is_enabled(port);
1363 
1364 	case TB_TYPE_DP_HDMI_IN:
1365 	case TB_TYPE_DP_HDMI_OUT:
1366 		return tb_dp_port_is_enabled(port);
1367 
1368 	case TB_TYPE_USB3_UP:
1369 	case TB_TYPE_USB3_DOWN:
1370 		return tb_usb3_port_is_enabled(port);
1371 
1372 	default:
1373 		return false;
1374 	}
1375 }
1376 
1377 /**
1378  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1379  * @port: USB3 adapter port to check
1380  */
1381 bool tb_usb3_port_is_enabled(struct tb_port *port)
1382 {
1383 	u32 data;
1384 
1385 	if (tb_port_read(port, &data, TB_CFG_PORT,
1386 			 port->cap_adap + ADP_USB3_CS_0, 1))
1387 		return false;
1388 
1389 	return !!(data & ADP_USB3_CS_0_PE);
1390 }
1391 
1392 /**
1393  * tb_usb3_port_enable() - Enable USB3 adapter port
1394  * @port: USB3 adapter port to enable
1395  * @enable: Enable/disable the USB3 adapter
1396  */
1397 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1398 {
1399 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1400 			  : ADP_USB3_CS_0_V;
1401 
1402 	if (!port->cap_adap)
1403 		return -ENXIO;
1404 	return tb_port_write(port, &word, TB_CFG_PORT,
1405 			     port->cap_adap + ADP_USB3_CS_0, 1);
1406 }
1407 
1408 /**
1409  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1410  * @port: PCIe port to check
1411  */
1412 bool tb_pci_port_is_enabled(struct tb_port *port)
1413 {
1414 	u32 data;
1415 
1416 	if (tb_port_read(port, &data, TB_CFG_PORT,
1417 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1418 		return false;
1419 
1420 	return !!(data & ADP_PCIE_CS_0_PE);
1421 }
1422 
1423 /**
1424  * tb_pci_port_enable() - Enable PCIe adapter port
1425  * @port: PCIe port to enable
1426  * @enable: Enable/disable the PCIe adapter
1427  */
1428 int tb_pci_port_enable(struct tb_port *port, bool enable)
1429 {
1430 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1431 	if (!port->cap_adap)
1432 		return -ENXIO;
1433 	return tb_port_write(port, &word, TB_CFG_PORT,
1434 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1435 }
1436 
1437 /**
1438  * tb_dp_port_hpd_is_active() - Is HPD already active
1439  * @port: DP out port to check
1440  *
1441  * Checks if the DP OUT adapter port has HDP bit already set.
1442  */
1443 int tb_dp_port_hpd_is_active(struct tb_port *port)
1444 {
1445 	u32 data;
1446 	int ret;
1447 
1448 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1449 			   port->cap_adap + ADP_DP_CS_2, 1);
1450 	if (ret)
1451 		return ret;
1452 
1453 	return !!(data & ADP_DP_CS_2_HDP);
1454 }
1455 
1456 /**
1457  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1458  * @port: Port to clear HPD
1459  *
1460  * If the DP IN port has HDP set, this function can be used to clear it.
1461  */
1462 int tb_dp_port_hpd_clear(struct tb_port *port)
1463 {
1464 	u32 data;
1465 	int ret;
1466 
1467 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1468 			   port->cap_adap + ADP_DP_CS_3, 1);
1469 	if (ret)
1470 		return ret;
1471 
1472 	data |= ADP_DP_CS_3_HDPC;
1473 	return tb_port_write(port, &data, TB_CFG_PORT,
1474 			     port->cap_adap + ADP_DP_CS_3, 1);
1475 }
1476 
1477 /**
1478  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1479  * @port: DP IN/OUT port to set hops
1480  * @video: Video Hop ID
1481  * @aux_tx: AUX TX Hop ID
1482  * @aux_rx: AUX RX Hop ID
1483  *
1484  * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1485  * router DP adapters too but does not program the values as the fields
1486  * are read-only.
1487  */
1488 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1489 			unsigned int aux_tx, unsigned int aux_rx)
1490 {
1491 	u32 data[2];
1492 	int ret;
1493 
1494 	if (tb_switch_is_usb4(port->sw))
1495 		return 0;
1496 
1497 	ret = tb_port_read(port, data, TB_CFG_PORT,
1498 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1499 	if (ret)
1500 		return ret;
1501 
1502 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1503 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1504 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1505 
1506 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1507 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1508 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1509 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1510 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1511 
1512 	return tb_port_write(port, data, TB_CFG_PORT,
1513 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1514 }
1515 
1516 /**
1517  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1518  * @port: DP adapter port to check
1519  */
1520 bool tb_dp_port_is_enabled(struct tb_port *port)
1521 {
1522 	u32 data[2];
1523 
1524 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1525 			 ARRAY_SIZE(data)))
1526 		return false;
1527 
1528 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1529 }
1530 
1531 /**
1532  * tb_dp_port_enable() - Enables/disables DP paths of a port
1533  * @port: DP IN/OUT port
1534  * @enable: Enable/disable DP path
1535  *
1536  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1537  * calling this function.
1538  */
1539 int tb_dp_port_enable(struct tb_port *port, bool enable)
1540 {
1541 	u32 data[2];
1542 	int ret;
1543 
1544 	ret = tb_port_read(port, data, TB_CFG_PORT,
1545 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1546 	if (ret)
1547 		return ret;
1548 
1549 	if (enable)
1550 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1551 	else
1552 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1553 
1554 	return tb_port_write(port, data, TB_CFG_PORT,
1555 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1556 }
1557 
1558 /* switch utility functions */
1559 
1560 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1561 {
1562 	switch (sw->generation) {
1563 	case 1:
1564 		return "Thunderbolt 1";
1565 	case 2:
1566 		return "Thunderbolt 2";
1567 	case 3:
1568 		return "Thunderbolt 3";
1569 	case 4:
1570 		return "USB4";
1571 	default:
1572 		return "Unknown";
1573 	}
1574 }
1575 
1576 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1577 {
1578 	const struct tb_regs_switch_header *regs = &sw->config;
1579 
1580 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1581 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1582 	       regs->revision, regs->thunderbolt_version);
1583 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1584 	tb_dbg(tb, "  Config:\n");
1585 	tb_dbg(tb,
1586 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1587 	       regs->upstream_port_number, regs->depth,
1588 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1589 	       regs->enabled, regs->plug_events_delay);
1590 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1591 	       regs->__unknown1, regs->__unknown4);
1592 }
1593 
1594 /**
1595  * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1596  * @sw: Switch to reset
1597  *
1598  * Return: Returns 0 on success or an error code on failure.
1599  */
1600 int tb_switch_reset(struct tb_switch *sw)
1601 {
1602 	struct tb_cfg_result res;
1603 
1604 	if (sw->generation > 1)
1605 		return 0;
1606 
1607 	tb_sw_dbg(sw, "resetting switch\n");
1608 
1609 	res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1610 			      TB_CFG_SWITCH, 2, 2);
1611 	if (res.err)
1612 		return res.err;
1613 	res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1614 	if (res.err > 0)
1615 		return -EIO;
1616 	return res.err;
1617 }
1618 
1619 /**
1620  * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1621  * @sw: Router to read the offset value from
1622  * @offset: Offset in the router config space to read from
1623  * @bit: Bit mask in the offset to wait for
1624  * @value: Value of the bits to wait for
1625  * @timeout_msec: Timeout in ms how long to wait
1626  *
1627  * Wait till the specified bits in specified offset reach specified value.
1628  * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1629  * within the given timeout or a negative errno in case of failure.
1630  */
1631 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1632 			   u32 value, int timeout_msec)
1633 {
1634 	ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1635 
1636 	do {
1637 		u32 val;
1638 		int ret;
1639 
1640 		ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1641 		if (ret)
1642 			return ret;
1643 
1644 		if ((val & bit) == value)
1645 			return 0;
1646 
1647 		usleep_range(50, 100);
1648 	} while (ktime_before(ktime_get(), timeout));
1649 
1650 	return -ETIMEDOUT;
1651 }
1652 
1653 /*
1654  * tb_plug_events_active() - enable/disable plug events on a switch
1655  *
1656  * Also configures a sane plug_events_delay of 255ms.
1657  *
1658  * Return: Returns 0 on success or an error code on failure.
1659  */
1660 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1661 {
1662 	u32 data;
1663 	int res;
1664 
1665 	if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1666 		return 0;
1667 
1668 	sw->config.plug_events_delay = 0xff;
1669 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1670 	if (res)
1671 		return res;
1672 
1673 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1674 	if (res)
1675 		return res;
1676 
1677 	if (active) {
1678 		data = data & 0xFFFFFF83;
1679 		switch (sw->config.device_id) {
1680 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1681 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1682 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1683 			break;
1684 		default:
1685 			/*
1686 			 * Skip Alpine Ridge, it needs to have vendor
1687 			 * specific USB hotplug event enabled for the
1688 			 * internal xHCI to work.
1689 			 */
1690 			if (!tb_switch_is_alpine_ridge(sw))
1691 				data |= TB_PLUG_EVENTS_USB_DISABLE;
1692 		}
1693 	} else {
1694 		data = data | 0x7c;
1695 	}
1696 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1697 			   sw->cap_plug_events + 1, 1);
1698 }
1699 
1700 static ssize_t authorized_show(struct device *dev,
1701 			       struct device_attribute *attr,
1702 			       char *buf)
1703 {
1704 	struct tb_switch *sw = tb_to_switch(dev);
1705 
1706 	return sysfs_emit(buf, "%u\n", sw->authorized);
1707 }
1708 
1709 static int disapprove_switch(struct device *dev, void *not_used)
1710 {
1711 	char *envp[] = { "AUTHORIZED=0", NULL };
1712 	struct tb_switch *sw;
1713 
1714 	sw = tb_to_switch(dev);
1715 	if (sw && sw->authorized) {
1716 		int ret;
1717 
1718 		/* First children */
1719 		ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1720 		if (ret)
1721 			return ret;
1722 
1723 		ret = tb_domain_disapprove_switch(sw->tb, sw);
1724 		if (ret)
1725 			return ret;
1726 
1727 		sw->authorized = 0;
1728 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1735 {
1736 	char envp_string[13];
1737 	int ret = -EINVAL;
1738 	char *envp[] = { envp_string, NULL };
1739 
1740 	if (!mutex_trylock(&sw->tb->lock))
1741 		return restart_syscall();
1742 
1743 	if (!!sw->authorized == !!val)
1744 		goto unlock;
1745 
1746 	switch (val) {
1747 	/* Disapprove switch */
1748 	case 0:
1749 		if (tb_route(sw)) {
1750 			ret = disapprove_switch(&sw->dev, NULL);
1751 			goto unlock;
1752 		}
1753 		break;
1754 
1755 	/* Approve switch */
1756 	case 1:
1757 		if (sw->key)
1758 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1759 		else
1760 			ret = tb_domain_approve_switch(sw->tb, sw);
1761 		break;
1762 
1763 	/* Challenge switch */
1764 	case 2:
1765 		if (sw->key)
1766 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1767 		break;
1768 
1769 	default:
1770 		break;
1771 	}
1772 
1773 	if (!ret) {
1774 		sw->authorized = val;
1775 		/*
1776 		 * Notify status change to the userspace, informing the new
1777 		 * value of /sys/bus/thunderbolt/devices/.../authorized.
1778 		 */
1779 		sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1780 		kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1781 	}
1782 
1783 unlock:
1784 	mutex_unlock(&sw->tb->lock);
1785 	return ret;
1786 }
1787 
1788 static ssize_t authorized_store(struct device *dev,
1789 				struct device_attribute *attr,
1790 				const char *buf, size_t count)
1791 {
1792 	struct tb_switch *sw = tb_to_switch(dev);
1793 	unsigned int val;
1794 	ssize_t ret;
1795 
1796 	ret = kstrtouint(buf, 0, &val);
1797 	if (ret)
1798 		return ret;
1799 	if (val > 2)
1800 		return -EINVAL;
1801 
1802 	pm_runtime_get_sync(&sw->dev);
1803 	ret = tb_switch_set_authorized(sw, val);
1804 	pm_runtime_mark_last_busy(&sw->dev);
1805 	pm_runtime_put_autosuspend(&sw->dev);
1806 
1807 	return ret ? ret : count;
1808 }
1809 static DEVICE_ATTR_RW(authorized);
1810 
1811 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1812 			 char *buf)
1813 {
1814 	struct tb_switch *sw = tb_to_switch(dev);
1815 
1816 	return sysfs_emit(buf, "%u\n", sw->boot);
1817 }
1818 static DEVICE_ATTR_RO(boot);
1819 
1820 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1821 			   char *buf)
1822 {
1823 	struct tb_switch *sw = tb_to_switch(dev);
1824 
1825 	return sysfs_emit(buf, "%#x\n", sw->device);
1826 }
1827 static DEVICE_ATTR_RO(device);
1828 
1829 static ssize_t
1830 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1831 {
1832 	struct tb_switch *sw = tb_to_switch(dev);
1833 
1834 	return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1835 }
1836 static DEVICE_ATTR_RO(device_name);
1837 
1838 static ssize_t
1839 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1840 {
1841 	struct tb_switch *sw = tb_to_switch(dev);
1842 
1843 	return sysfs_emit(buf, "%u\n", sw->generation);
1844 }
1845 static DEVICE_ATTR_RO(generation);
1846 
1847 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1848 			char *buf)
1849 {
1850 	struct tb_switch *sw = tb_to_switch(dev);
1851 	ssize_t ret;
1852 
1853 	if (!mutex_trylock(&sw->tb->lock))
1854 		return restart_syscall();
1855 
1856 	if (sw->key)
1857 		ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1858 	else
1859 		ret = sysfs_emit(buf, "\n");
1860 
1861 	mutex_unlock(&sw->tb->lock);
1862 	return ret;
1863 }
1864 
1865 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1866 			 const char *buf, size_t count)
1867 {
1868 	struct tb_switch *sw = tb_to_switch(dev);
1869 	u8 key[TB_SWITCH_KEY_SIZE];
1870 	ssize_t ret = count;
1871 	bool clear = false;
1872 
1873 	if (!strcmp(buf, "\n"))
1874 		clear = true;
1875 	else if (hex2bin(key, buf, sizeof(key)))
1876 		return -EINVAL;
1877 
1878 	if (!mutex_trylock(&sw->tb->lock))
1879 		return restart_syscall();
1880 
1881 	if (sw->authorized) {
1882 		ret = -EBUSY;
1883 	} else {
1884 		kfree(sw->key);
1885 		if (clear) {
1886 			sw->key = NULL;
1887 		} else {
1888 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1889 			if (!sw->key)
1890 				ret = -ENOMEM;
1891 		}
1892 	}
1893 
1894 	mutex_unlock(&sw->tb->lock);
1895 	return ret;
1896 }
1897 static DEVICE_ATTR(key, 0600, key_show, key_store);
1898 
1899 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1900 			  char *buf)
1901 {
1902 	struct tb_switch *sw = tb_to_switch(dev);
1903 
1904 	return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1905 }
1906 
1907 /*
1908  * Currently all lanes must run at the same speed but we expose here
1909  * both directions to allow possible asymmetric links in the future.
1910  */
1911 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1912 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1913 
1914 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1915 			  char *buf)
1916 {
1917 	struct tb_switch *sw = tb_to_switch(dev);
1918 
1919 	return sysfs_emit(buf, "%u\n", sw->link_width);
1920 }
1921 
1922 /*
1923  * Currently link has same amount of lanes both directions (1 or 2) but
1924  * expose them separately to allow possible asymmetric links in the future.
1925  */
1926 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1927 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1928 
1929 static ssize_t nvm_authenticate_show(struct device *dev,
1930 	struct device_attribute *attr, char *buf)
1931 {
1932 	struct tb_switch *sw = tb_to_switch(dev);
1933 	u32 status;
1934 
1935 	nvm_get_auth_status(sw, &status);
1936 	return sysfs_emit(buf, "%#x\n", status);
1937 }
1938 
1939 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1940 				      bool disconnect)
1941 {
1942 	struct tb_switch *sw = tb_to_switch(dev);
1943 	int val, ret;
1944 
1945 	pm_runtime_get_sync(&sw->dev);
1946 
1947 	if (!mutex_trylock(&sw->tb->lock)) {
1948 		ret = restart_syscall();
1949 		goto exit_rpm;
1950 	}
1951 
1952 	if (sw->no_nvm_upgrade) {
1953 		ret = -EOPNOTSUPP;
1954 		goto exit_unlock;
1955 	}
1956 
1957 	/* If NVMem devices are not yet added */
1958 	if (!sw->nvm) {
1959 		ret = -EAGAIN;
1960 		goto exit_unlock;
1961 	}
1962 
1963 	ret = kstrtoint(buf, 10, &val);
1964 	if (ret)
1965 		goto exit_unlock;
1966 
1967 	/* Always clear the authentication status */
1968 	nvm_clear_auth_status(sw);
1969 
1970 	if (val > 0) {
1971 		if (val == AUTHENTICATE_ONLY) {
1972 			if (disconnect)
1973 				ret = -EINVAL;
1974 			else
1975 				ret = nvm_authenticate(sw, true);
1976 		} else {
1977 			if (!sw->nvm->flushed) {
1978 				if (!sw->nvm->buf) {
1979 					ret = -EINVAL;
1980 					goto exit_unlock;
1981 				}
1982 
1983 				ret = nvm_validate_and_write(sw);
1984 				if (ret || val == WRITE_ONLY)
1985 					goto exit_unlock;
1986 			}
1987 			if (val == WRITE_AND_AUTHENTICATE) {
1988 				if (disconnect)
1989 					ret = tb_lc_force_power(sw);
1990 				else
1991 					ret = nvm_authenticate(sw, false);
1992 			}
1993 		}
1994 	}
1995 
1996 exit_unlock:
1997 	mutex_unlock(&sw->tb->lock);
1998 exit_rpm:
1999 	pm_runtime_mark_last_busy(&sw->dev);
2000 	pm_runtime_put_autosuspend(&sw->dev);
2001 
2002 	return ret;
2003 }
2004 
2005 static ssize_t nvm_authenticate_store(struct device *dev,
2006 	struct device_attribute *attr, const char *buf, size_t count)
2007 {
2008 	int ret = nvm_authenticate_sysfs(dev, buf, false);
2009 	if (ret)
2010 		return ret;
2011 	return count;
2012 }
2013 static DEVICE_ATTR_RW(nvm_authenticate);
2014 
2015 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2016 	struct device_attribute *attr, char *buf)
2017 {
2018 	return nvm_authenticate_show(dev, attr, buf);
2019 }
2020 
2021 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2022 	struct device_attribute *attr, const char *buf, size_t count)
2023 {
2024 	int ret;
2025 
2026 	ret = nvm_authenticate_sysfs(dev, buf, true);
2027 	return ret ? ret : count;
2028 }
2029 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2030 
2031 static ssize_t nvm_version_show(struct device *dev,
2032 				struct device_attribute *attr, char *buf)
2033 {
2034 	struct tb_switch *sw = tb_to_switch(dev);
2035 	int ret;
2036 
2037 	if (!mutex_trylock(&sw->tb->lock))
2038 		return restart_syscall();
2039 
2040 	if (sw->safe_mode)
2041 		ret = -ENODATA;
2042 	else if (!sw->nvm)
2043 		ret = -EAGAIN;
2044 	else
2045 		ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2046 
2047 	mutex_unlock(&sw->tb->lock);
2048 
2049 	return ret;
2050 }
2051 static DEVICE_ATTR_RO(nvm_version);
2052 
2053 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2054 			   char *buf)
2055 {
2056 	struct tb_switch *sw = tb_to_switch(dev);
2057 
2058 	return sysfs_emit(buf, "%#x\n", sw->vendor);
2059 }
2060 static DEVICE_ATTR_RO(vendor);
2061 
2062 static ssize_t
2063 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2064 {
2065 	struct tb_switch *sw = tb_to_switch(dev);
2066 
2067 	return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2068 }
2069 static DEVICE_ATTR_RO(vendor_name);
2070 
2071 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2072 			      char *buf)
2073 {
2074 	struct tb_switch *sw = tb_to_switch(dev);
2075 
2076 	return sysfs_emit(buf, "%pUb\n", sw->uuid);
2077 }
2078 static DEVICE_ATTR_RO(unique_id);
2079 
2080 static struct attribute *switch_attrs[] = {
2081 	&dev_attr_authorized.attr,
2082 	&dev_attr_boot.attr,
2083 	&dev_attr_device.attr,
2084 	&dev_attr_device_name.attr,
2085 	&dev_attr_generation.attr,
2086 	&dev_attr_key.attr,
2087 	&dev_attr_nvm_authenticate.attr,
2088 	&dev_attr_nvm_authenticate_on_disconnect.attr,
2089 	&dev_attr_nvm_version.attr,
2090 	&dev_attr_rx_speed.attr,
2091 	&dev_attr_rx_lanes.attr,
2092 	&dev_attr_tx_speed.attr,
2093 	&dev_attr_tx_lanes.attr,
2094 	&dev_attr_vendor.attr,
2095 	&dev_attr_vendor_name.attr,
2096 	&dev_attr_unique_id.attr,
2097 	NULL,
2098 };
2099 
2100 static umode_t switch_attr_is_visible(struct kobject *kobj,
2101 				      struct attribute *attr, int n)
2102 {
2103 	struct device *dev = kobj_to_dev(kobj);
2104 	struct tb_switch *sw = tb_to_switch(dev);
2105 
2106 	if (attr == &dev_attr_authorized.attr) {
2107 		if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2108 		    sw->tb->security_level == TB_SECURITY_DPONLY)
2109 			return 0;
2110 	} else if (attr == &dev_attr_device.attr) {
2111 		if (!sw->device)
2112 			return 0;
2113 	} else if (attr == &dev_attr_device_name.attr) {
2114 		if (!sw->device_name)
2115 			return 0;
2116 	} else if (attr == &dev_attr_vendor.attr)  {
2117 		if (!sw->vendor)
2118 			return 0;
2119 	} else if (attr == &dev_attr_vendor_name.attr)  {
2120 		if (!sw->vendor_name)
2121 			return 0;
2122 	} else if (attr == &dev_attr_key.attr) {
2123 		if (tb_route(sw) &&
2124 		    sw->tb->security_level == TB_SECURITY_SECURE &&
2125 		    sw->security_level == TB_SECURITY_SECURE)
2126 			return attr->mode;
2127 		return 0;
2128 	} else if (attr == &dev_attr_rx_speed.attr ||
2129 		   attr == &dev_attr_rx_lanes.attr ||
2130 		   attr == &dev_attr_tx_speed.attr ||
2131 		   attr == &dev_attr_tx_lanes.attr) {
2132 		if (tb_route(sw))
2133 			return attr->mode;
2134 		return 0;
2135 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
2136 		if (nvm_upgradeable(sw))
2137 			return attr->mode;
2138 		return 0;
2139 	} else if (attr == &dev_attr_nvm_version.attr) {
2140 		if (nvm_readable(sw))
2141 			return attr->mode;
2142 		return 0;
2143 	} else if (attr == &dev_attr_boot.attr) {
2144 		if (tb_route(sw))
2145 			return attr->mode;
2146 		return 0;
2147 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2148 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2149 			return attr->mode;
2150 		return 0;
2151 	}
2152 
2153 	return sw->safe_mode ? 0 : attr->mode;
2154 }
2155 
2156 static const struct attribute_group switch_group = {
2157 	.is_visible = switch_attr_is_visible,
2158 	.attrs = switch_attrs,
2159 };
2160 
2161 static const struct attribute_group *switch_groups[] = {
2162 	&switch_group,
2163 	NULL,
2164 };
2165 
2166 static void tb_switch_release(struct device *dev)
2167 {
2168 	struct tb_switch *sw = tb_to_switch(dev);
2169 	struct tb_port *port;
2170 
2171 	dma_port_free(sw->dma_port);
2172 
2173 	tb_switch_for_each_port(sw, port) {
2174 		ida_destroy(&port->in_hopids);
2175 		ida_destroy(&port->out_hopids);
2176 	}
2177 
2178 	kfree(sw->uuid);
2179 	kfree(sw->device_name);
2180 	kfree(sw->vendor_name);
2181 	kfree(sw->ports);
2182 	kfree(sw->drom);
2183 	kfree(sw->key);
2184 	kfree(sw);
2185 }
2186 
2187 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2188 {
2189 	const struct tb_switch *sw = tb_to_switch(dev);
2190 	const char *type;
2191 
2192 	if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2193 		if (add_uevent_var(env, "USB4_VERSION=1.0"))
2194 			return -ENOMEM;
2195 	}
2196 
2197 	if (!tb_route(sw)) {
2198 		type = "host";
2199 	} else {
2200 		const struct tb_port *port;
2201 		bool hub = false;
2202 
2203 		/* Device is hub if it has any downstream ports */
2204 		tb_switch_for_each_port(sw, port) {
2205 			if (!port->disabled && !tb_is_upstream_port(port) &&
2206 			     tb_port_is_null(port)) {
2207 				hub = true;
2208 				break;
2209 			}
2210 		}
2211 
2212 		type = hub ? "hub" : "device";
2213 	}
2214 
2215 	if (add_uevent_var(env, "USB4_TYPE=%s", type))
2216 		return -ENOMEM;
2217 	return 0;
2218 }
2219 
2220 /*
2221  * Currently only need to provide the callbacks. Everything else is handled
2222  * in the connection manager.
2223  */
2224 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2225 {
2226 	struct tb_switch *sw = tb_to_switch(dev);
2227 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2228 
2229 	if (cm_ops->runtime_suspend_switch)
2230 		return cm_ops->runtime_suspend_switch(sw);
2231 
2232 	return 0;
2233 }
2234 
2235 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2236 {
2237 	struct tb_switch *sw = tb_to_switch(dev);
2238 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2239 
2240 	if (cm_ops->runtime_resume_switch)
2241 		return cm_ops->runtime_resume_switch(sw);
2242 	return 0;
2243 }
2244 
2245 static const struct dev_pm_ops tb_switch_pm_ops = {
2246 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2247 			   NULL)
2248 };
2249 
2250 struct device_type tb_switch_type = {
2251 	.name = "thunderbolt_device",
2252 	.release = tb_switch_release,
2253 	.uevent = tb_switch_uevent,
2254 	.pm = &tb_switch_pm_ops,
2255 };
2256 
2257 static int tb_switch_get_generation(struct tb_switch *sw)
2258 {
2259 	switch (sw->config.device_id) {
2260 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2261 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2262 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2263 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2264 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2265 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2266 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2267 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2268 		return 1;
2269 
2270 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2271 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2272 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2273 		return 2;
2274 
2275 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2276 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2277 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2278 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2279 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2280 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2281 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2282 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2283 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2284 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2285 		return 3;
2286 
2287 	default:
2288 		if (tb_switch_is_usb4(sw))
2289 			return 4;
2290 
2291 		/*
2292 		 * For unknown switches assume generation to be 1 to be
2293 		 * on the safe side.
2294 		 */
2295 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
2296 			   sw->config.device_id);
2297 		return 1;
2298 	}
2299 }
2300 
2301 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2302 {
2303 	int max_depth;
2304 
2305 	if (tb_switch_is_usb4(sw) ||
2306 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2307 		max_depth = USB4_SWITCH_MAX_DEPTH;
2308 	else
2309 		max_depth = TB_SWITCH_MAX_DEPTH;
2310 
2311 	return depth > max_depth;
2312 }
2313 
2314 /**
2315  * tb_switch_alloc() - allocate a switch
2316  * @tb: Pointer to the owning domain
2317  * @parent: Parent device for this switch
2318  * @route: Route string for this switch
2319  *
2320  * Allocates and initializes a switch. Will not upload configuration to
2321  * the switch. For that you need to call tb_switch_configure()
2322  * separately. The returned switch should be released by calling
2323  * tb_switch_put().
2324  *
2325  * Return: Pointer to the allocated switch or ERR_PTR() in case of
2326  * failure.
2327  */
2328 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2329 				  u64 route)
2330 {
2331 	struct tb_switch *sw;
2332 	int upstream_port;
2333 	int i, ret, depth;
2334 
2335 	/* Unlock the downstream port so we can access the switch below */
2336 	if (route) {
2337 		struct tb_switch *parent_sw = tb_to_switch(parent);
2338 		struct tb_port *down;
2339 
2340 		down = tb_port_at(route, parent_sw);
2341 		tb_port_unlock(down);
2342 	}
2343 
2344 	depth = tb_route_length(route);
2345 
2346 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2347 	if (upstream_port < 0)
2348 		return ERR_PTR(upstream_port);
2349 
2350 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2351 	if (!sw)
2352 		return ERR_PTR(-ENOMEM);
2353 
2354 	sw->tb = tb;
2355 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2356 	if (ret)
2357 		goto err_free_sw_ports;
2358 
2359 	sw->generation = tb_switch_get_generation(sw);
2360 
2361 	tb_dbg(tb, "current switch config:\n");
2362 	tb_dump_switch(tb, sw);
2363 
2364 	/* configure switch */
2365 	sw->config.upstream_port_number = upstream_port;
2366 	sw->config.depth = depth;
2367 	sw->config.route_hi = upper_32_bits(route);
2368 	sw->config.route_lo = lower_32_bits(route);
2369 	sw->config.enabled = 0;
2370 
2371 	/* Make sure we do not exceed maximum topology limit */
2372 	if (tb_switch_exceeds_max_depth(sw, depth)) {
2373 		ret = -EADDRNOTAVAIL;
2374 		goto err_free_sw_ports;
2375 	}
2376 
2377 	/* initialize ports */
2378 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2379 				GFP_KERNEL);
2380 	if (!sw->ports) {
2381 		ret = -ENOMEM;
2382 		goto err_free_sw_ports;
2383 	}
2384 
2385 	for (i = 0; i <= sw->config.max_port_number; i++) {
2386 		/* minimum setup for tb_find_cap and tb_drom_read to work */
2387 		sw->ports[i].sw = sw;
2388 		sw->ports[i].port = i;
2389 
2390 		/* Control port does not need HopID allocation */
2391 		if (i) {
2392 			ida_init(&sw->ports[i].in_hopids);
2393 			ida_init(&sw->ports[i].out_hopids);
2394 		}
2395 	}
2396 
2397 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2398 	if (ret > 0)
2399 		sw->cap_plug_events = ret;
2400 
2401 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2402 	if (ret > 0)
2403 		sw->cap_vsec_tmu = ret;
2404 
2405 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2406 	if (ret > 0)
2407 		sw->cap_lc = ret;
2408 
2409 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2410 	if (ret > 0)
2411 		sw->cap_lp = ret;
2412 
2413 	/* Root switch is always authorized */
2414 	if (!route)
2415 		sw->authorized = true;
2416 
2417 	device_initialize(&sw->dev);
2418 	sw->dev.parent = parent;
2419 	sw->dev.bus = &tb_bus_type;
2420 	sw->dev.type = &tb_switch_type;
2421 	sw->dev.groups = switch_groups;
2422 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2423 
2424 	return sw;
2425 
2426 err_free_sw_ports:
2427 	kfree(sw->ports);
2428 	kfree(sw);
2429 
2430 	return ERR_PTR(ret);
2431 }
2432 
2433 /**
2434  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2435  * @tb: Pointer to the owning domain
2436  * @parent: Parent device for this switch
2437  * @route: Route string for this switch
2438  *
2439  * This creates a switch in safe mode. This means the switch pretty much
2440  * lacks all capabilities except DMA configuration port before it is
2441  * flashed with a valid NVM firmware.
2442  *
2443  * The returned switch must be released by calling tb_switch_put().
2444  *
2445  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2446  */
2447 struct tb_switch *
2448 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2449 {
2450 	struct tb_switch *sw;
2451 
2452 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2453 	if (!sw)
2454 		return ERR_PTR(-ENOMEM);
2455 
2456 	sw->tb = tb;
2457 	sw->config.depth = tb_route_length(route);
2458 	sw->config.route_hi = upper_32_bits(route);
2459 	sw->config.route_lo = lower_32_bits(route);
2460 	sw->safe_mode = true;
2461 
2462 	device_initialize(&sw->dev);
2463 	sw->dev.parent = parent;
2464 	sw->dev.bus = &tb_bus_type;
2465 	sw->dev.type = &tb_switch_type;
2466 	sw->dev.groups = switch_groups;
2467 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2468 
2469 	return sw;
2470 }
2471 
2472 /**
2473  * tb_switch_configure() - Uploads configuration to the switch
2474  * @sw: Switch to configure
2475  *
2476  * Call this function before the switch is added to the system. It will
2477  * upload configuration to the switch and makes it available for the
2478  * connection manager to use. Can be called to the switch again after
2479  * resume from low power states to re-initialize it.
2480  *
2481  * Return: %0 in case of success and negative errno in case of failure
2482  */
2483 int tb_switch_configure(struct tb_switch *sw)
2484 {
2485 	struct tb *tb = sw->tb;
2486 	u64 route;
2487 	int ret;
2488 
2489 	route = tb_route(sw);
2490 
2491 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2492 	       sw->config.enabled ? "restoring" : "initializing", route,
2493 	       tb_route_length(route), sw->config.upstream_port_number);
2494 
2495 	sw->config.enabled = 1;
2496 
2497 	if (tb_switch_is_usb4(sw)) {
2498 		/*
2499 		 * For USB4 devices, we need to program the CM version
2500 		 * accordingly so that it knows to expose all the
2501 		 * additional capabilities.
2502 		 */
2503 		sw->config.cmuv = USB4_VERSION_1_0;
2504 		sw->config.plug_events_delay = 0xa;
2505 
2506 		/* Enumerate the switch */
2507 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2508 				  ROUTER_CS_1, 4);
2509 		if (ret)
2510 			return ret;
2511 
2512 		ret = usb4_switch_setup(sw);
2513 	} else {
2514 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2515 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2516 				   sw->config.vendor_id);
2517 
2518 		if (!sw->cap_plug_events) {
2519 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2520 			return -ENODEV;
2521 		}
2522 
2523 		/* Enumerate the switch */
2524 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2525 				  ROUTER_CS_1, 3);
2526 	}
2527 	if (ret)
2528 		return ret;
2529 
2530 	return tb_plug_events_active(sw, true);
2531 }
2532 
2533 static int tb_switch_set_uuid(struct tb_switch *sw)
2534 {
2535 	bool uid = false;
2536 	u32 uuid[4];
2537 	int ret;
2538 
2539 	if (sw->uuid)
2540 		return 0;
2541 
2542 	if (tb_switch_is_usb4(sw)) {
2543 		ret = usb4_switch_read_uid(sw, &sw->uid);
2544 		if (ret)
2545 			return ret;
2546 		uid = true;
2547 	} else {
2548 		/*
2549 		 * The newer controllers include fused UUID as part of
2550 		 * link controller specific registers
2551 		 */
2552 		ret = tb_lc_read_uuid(sw, uuid);
2553 		if (ret) {
2554 			if (ret != -EINVAL)
2555 				return ret;
2556 			uid = true;
2557 		}
2558 	}
2559 
2560 	if (uid) {
2561 		/*
2562 		 * ICM generates UUID based on UID and fills the upper
2563 		 * two words with ones. This is not strictly following
2564 		 * UUID format but we want to be compatible with it so
2565 		 * we do the same here.
2566 		 */
2567 		uuid[0] = sw->uid & 0xffffffff;
2568 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2569 		uuid[2] = 0xffffffff;
2570 		uuid[3] = 0xffffffff;
2571 	}
2572 
2573 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2574 	if (!sw->uuid)
2575 		return -ENOMEM;
2576 	return 0;
2577 }
2578 
2579 static int tb_switch_add_dma_port(struct tb_switch *sw)
2580 {
2581 	u32 status;
2582 	int ret;
2583 
2584 	switch (sw->generation) {
2585 	case 2:
2586 		/* Only root switch can be upgraded */
2587 		if (tb_route(sw))
2588 			return 0;
2589 
2590 		fallthrough;
2591 	case 3:
2592 	case 4:
2593 		ret = tb_switch_set_uuid(sw);
2594 		if (ret)
2595 			return ret;
2596 		break;
2597 
2598 	default:
2599 		/*
2600 		 * DMA port is the only thing available when the switch
2601 		 * is in safe mode.
2602 		 */
2603 		if (!sw->safe_mode)
2604 			return 0;
2605 		break;
2606 	}
2607 
2608 	if (sw->no_nvm_upgrade)
2609 		return 0;
2610 
2611 	if (tb_switch_is_usb4(sw)) {
2612 		ret = usb4_switch_nvm_authenticate_status(sw, &status);
2613 		if (ret)
2614 			return ret;
2615 
2616 		if (status) {
2617 			tb_sw_info(sw, "switch flash authentication failed\n");
2618 			nvm_set_auth_status(sw, status);
2619 		}
2620 
2621 		return 0;
2622 	}
2623 
2624 	/* Root switch DMA port requires running firmware */
2625 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2626 		return 0;
2627 
2628 	sw->dma_port = dma_port_alloc(sw);
2629 	if (!sw->dma_port)
2630 		return 0;
2631 
2632 	/*
2633 	 * If there is status already set then authentication failed
2634 	 * when the dma_port_flash_update_auth() returned. Power cycling
2635 	 * is not needed (it was done already) so only thing we do here
2636 	 * is to unblock runtime PM of the root port.
2637 	 */
2638 	nvm_get_auth_status(sw, &status);
2639 	if (status) {
2640 		if (!tb_route(sw))
2641 			nvm_authenticate_complete_dma_port(sw);
2642 		return 0;
2643 	}
2644 
2645 	/*
2646 	 * Check status of the previous flash authentication. If there
2647 	 * is one we need to power cycle the switch in any case to make
2648 	 * it functional again.
2649 	 */
2650 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2651 	if (ret <= 0)
2652 		return ret;
2653 
2654 	/* Now we can allow root port to suspend again */
2655 	if (!tb_route(sw))
2656 		nvm_authenticate_complete_dma_port(sw);
2657 
2658 	if (status) {
2659 		tb_sw_info(sw, "switch flash authentication failed\n");
2660 		nvm_set_auth_status(sw, status);
2661 	}
2662 
2663 	tb_sw_info(sw, "power cycling the switch now\n");
2664 	dma_port_power_cycle(sw->dma_port);
2665 
2666 	/*
2667 	 * We return error here which causes the switch adding failure.
2668 	 * It should appear back after power cycle is complete.
2669 	 */
2670 	return -ESHUTDOWN;
2671 }
2672 
2673 static void tb_switch_default_link_ports(struct tb_switch *sw)
2674 {
2675 	int i;
2676 
2677 	for (i = 1; i <= sw->config.max_port_number; i++) {
2678 		struct tb_port *port = &sw->ports[i];
2679 		struct tb_port *subordinate;
2680 
2681 		if (!tb_port_is_null(port))
2682 			continue;
2683 
2684 		/* Check for the subordinate port */
2685 		if (i == sw->config.max_port_number ||
2686 		    !tb_port_is_null(&sw->ports[i + 1]))
2687 			continue;
2688 
2689 		/* Link them if not already done so (by DROM) */
2690 		subordinate = &sw->ports[i + 1];
2691 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2692 			port->link_nr = 0;
2693 			port->dual_link_port = subordinate;
2694 			subordinate->link_nr = 1;
2695 			subordinate->dual_link_port = port;
2696 
2697 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2698 				  port->port, subordinate->port);
2699 		}
2700 	}
2701 }
2702 
2703 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2704 {
2705 	const struct tb_port *up = tb_upstream_port(sw);
2706 
2707 	if (!up->dual_link_port || !up->dual_link_port->remote)
2708 		return false;
2709 
2710 	if (tb_switch_is_usb4(sw))
2711 		return usb4_switch_lane_bonding_possible(sw);
2712 	return tb_lc_lane_bonding_possible(sw);
2713 }
2714 
2715 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2716 {
2717 	struct tb_port *up;
2718 	bool change = false;
2719 	int ret;
2720 
2721 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2722 		return 0;
2723 
2724 	up = tb_upstream_port(sw);
2725 
2726 	ret = tb_port_get_link_speed(up);
2727 	if (ret < 0)
2728 		return ret;
2729 	if (sw->link_speed != ret)
2730 		change = true;
2731 	sw->link_speed = ret;
2732 
2733 	ret = tb_port_get_link_width(up);
2734 	if (ret < 0)
2735 		return ret;
2736 	if (sw->link_width != ret)
2737 		change = true;
2738 	sw->link_width = ret;
2739 
2740 	/* Notify userspace that there is possible link attribute change */
2741 	if (device_is_registered(&sw->dev) && change)
2742 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2743 
2744 	return 0;
2745 }
2746 
2747 /**
2748  * tb_switch_lane_bonding_enable() - Enable lane bonding
2749  * @sw: Switch to enable lane bonding
2750  *
2751  * Connection manager can call this function to enable lane bonding of a
2752  * switch. If conditions are correct and both switches support the feature,
2753  * lanes are bonded. It is safe to call this to any switch.
2754  */
2755 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2756 {
2757 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2758 	struct tb_port *up, *down;
2759 	u64 route = tb_route(sw);
2760 	int ret;
2761 
2762 	if (!route)
2763 		return 0;
2764 
2765 	if (!tb_switch_lane_bonding_possible(sw))
2766 		return 0;
2767 
2768 	up = tb_upstream_port(sw);
2769 	down = tb_port_at(route, parent);
2770 
2771 	if (!tb_port_is_width_supported(up, 2) ||
2772 	    !tb_port_is_width_supported(down, 2))
2773 		return 0;
2774 
2775 	ret = tb_port_lane_bonding_enable(up);
2776 	if (ret) {
2777 		tb_port_warn(up, "failed to enable lane bonding\n");
2778 		return ret;
2779 	}
2780 
2781 	ret = tb_port_lane_bonding_enable(down);
2782 	if (ret) {
2783 		tb_port_warn(down, "failed to enable lane bonding\n");
2784 		tb_port_lane_bonding_disable(up);
2785 		return ret;
2786 	}
2787 
2788 	ret = tb_port_wait_for_link_width(down, 2, 100);
2789 	if (ret) {
2790 		tb_port_warn(down, "timeout enabling lane bonding\n");
2791 		return ret;
2792 	}
2793 
2794 	tb_port_update_credits(down);
2795 	tb_port_update_credits(up);
2796 	tb_switch_update_link_attributes(sw);
2797 
2798 	tb_sw_dbg(sw, "lane bonding enabled\n");
2799 	return ret;
2800 }
2801 
2802 /**
2803  * tb_switch_lane_bonding_disable() - Disable lane bonding
2804  * @sw: Switch whose lane bonding to disable
2805  *
2806  * Disables lane bonding between @sw and parent. This can be called even
2807  * if lanes were not bonded originally.
2808  */
2809 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2810 {
2811 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2812 	struct tb_port *up, *down;
2813 
2814 	if (!tb_route(sw))
2815 		return;
2816 
2817 	up = tb_upstream_port(sw);
2818 	if (!up->bonded)
2819 		return;
2820 
2821 	down = tb_port_at(tb_route(sw), parent);
2822 
2823 	tb_port_lane_bonding_disable(up);
2824 	tb_port_lane_bonding_disable(down);
2825 
2826 	/*
2827 	 * It is fine if we get other errors as the router might have
2828 	 * been unplugged.
2829 	 */
2830 	if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2831 		tb_sw_warn(sw, "timeout disabling lane bonding\n");
2832 
2833 	tb_port_update_credits(down);
2834 	tb_port_update_credits(up);
2835 	tb_switch_update_link_attributes(sw);
2836 
2837 	tb_sw_dbg(sw, "lane bonding disabled\n");
2838 }
2839 
2840 /**
2841  * tb_switch_configure_link() - Set link configured
2842  * @sw: Switch whose link is configured
2843  *
2844  * Sets the link upstream from @sw configured (from both ends) so that
2845  * it will not be disconnected when the domain exits sleep. Can be
2846  * called for any switch.
2847  *
2848  * It is recommended that this is called after lane bonding is enabled.
2849  *
2850  * Returns %0 on success and negative errno in case of error.
2851  */
2852 int tb_switch_configure_link(struct tb_switch *sw)
2853 {
2854 	struct tb_port *up, *down;
2855 	int ret;
2856 
2857 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2858 		return 0;
2859 
2860 	up = tb_upstream_port(sw);
2861 	if (tb_switch_is_usb4(up->sw))
2862 		ret = usb4_port_configure(up);
2863 	else
2864 		ret = tb_lc_configure_port(up);
2865 	if (ret)
2866 		return ret;
2867 
2868 	down = up->remote;
2869 	if (tb_switch_is_usb4(down->sw))
2870 		return usb4_port_configure(down);
2871 	return tb_lc_configure_port(down);
2872 }
2873 
2874 /**
2875  * tb_switch_unconfigure_link() - Unconfigure link
2876  * @sw: Switch whose link is unconfigured
2877  *
2878  * Sets the link unconfigured so the @sw will be disconnected if the
2879  * domain exists sleep.
2880  */
2881 void tb_switch_unconfigure_link(struct tb_switch *sw)
2882 {
2883 	struct tb_port *up, *down;
2884 
2885 	if (sw->is_unplugged)
2886 		return;
2887 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2888 		return;
2889 
2890 	up = tb_upstream_port(sw);
2891 	if (tb_switch_is_usb4(up->sw))
2892 		usb4_port_unconfigure(up);
2893 	else
2894 		tb_lc_unconfigure_port(up);
2895 
2896 	down = up->remote;
2897 	if (tb_switch_is_usb4(down->sw))
2898 		usb4_port_unconfigure(down);
2899 	else
2900 		tb_lc_unconfigure_port(down);
2901 }
2902 
2903 static void tb_switch_credits_init(struct tb_switch *sw)
2904 {
2905 	if (tb_switch_is_icm(sw))
2906 		return;
2907 	if (!tb_switch_is_usb4(sw))
2908 		return;
2909 	if (usb4_switch_credits_init(sw))
2910 		tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2911 }
2912 
2913 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2914 {
2915 	struct tb_port *port;
2916 
2917 	if (tb_switch_is_icm(sw))
2918 		return 0;
2919 
2920 	tb_switch_for_each_port(sw, port) {
2921 		int res;
2922 
2923 		if (!port->cap_usb4)
2924 			continue;
2925 
2926 		res = usb4_port_hotplug_enable(port);
2927 		if (res)
2928 			return res;
2929 	}
2930 	return 0;
2931 }
2932 
2933 /**
2934  * tb_switch_add() - Add a switch to the domain
2935  * @sw: Switch to add
2936  *
2937  * This is the last step in adding switch to the domain. It will read
2938  * identification information from DROM and initializes ports so that
2939  * they can be used to connect other switches. The switch will be
2940  * exposed to the userspace when this function successfully returns. To
2941  * remove and release the switch, call tb_switch_remove().
2942  *
2943  * Return: %0 in case of success and negative errno in case of failure
2944  */
2945 int tb_switch_add(struct tb_switch *sw)
2946 {
2947 	int i, ret;
2948 
2949 	/*
2950 	 * Initialize DMA control port now before we read DROM. Recent
2951 	 * host controllers have more complete DROM on NVM that includes
2952 	 * vendor and model identification strings which we then expose
2953 	 * to the userspace. NVM can be accessed through DMA
2954 	 * configuration based mailbox.
2955 	 */
2956 	ret = tb_switch_add_dma_port(sw);
2957 	if (ret) {
2958 		dev_err(&sw->dev, "failed to add DMA port\n");
2959 		return ret;
2960 	}
2961 
2962 	if (!sw->safe_mode) {
2963 		tb_switch_credits_init(sw);
2964 
2965 		/* read drom */
2966 		ret = tb_drom_read(sw);
2967 		if (ret)
2968 			dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2969 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2970 
2971 		ret = tb_switch_set_uuid(sw);
2972 		if (ret) {
2973 			dev_err(&sw->dev, "failed to set UUID\n");
2974 			return ret;
2975 		}
2976 
2977 		for (i = 0; i <= sw->config.max_port_number; i++) {
2978 			if (sw->ports[i].disabled) {
2979 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2980 				continue;
2981 			}
2982 			ret = tb_init_port(&sw->ports[i]);
2983 			if (ret) {
2984 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2985 				return ret;
2986 			}
2987 		}
2988 
2989 		tb_check_quirks(sw);
2990 
2991 		tb_switch_default_link_ports(sw);
2992 
2993 		ret = tb_switch_update_link_attributes(sw);
2994 		if (ret)
2995 			return ret;
2996 
2997 		ret = tb_switch_tmu_init(sw);
2998 		if (ret)
2999 			return ret;
3000 	}
3001 
3002 	ret = tb_switch_port_hotplug_enable(sw);
3003 	if (ret)
3004 		return ret;
3005 
3006 	ret = device_add(&sw->dev);
3007 	if (ret) {
3008 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
3009 		return ret;
3010 	}
3011 
3012 	if (tb_route(sw)) {
3013 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3014 			 sw->vendor, sw->device);
3015 		if (sw->vendor_name && sw->device_name)
3016 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3017 				 sw->device_name);
3018 	}
3019 
3020 	ret = usb4_switch_add_ports(sw);
3021 	if (ret) {
3022 		dev_err(&sw->dev, "failed to add USB4 ports\n");
3023 		goto err_del;
3024 	}
3025 
3026 	ret = tb_switch_nvm_add(sw);
3027 	if (ret) {
3028 		dev_err(&sw->dev, "failed to add NVM devices\n");
3029 		goto err_ports;
3030 	}
3031 
3032 	/*
3033 	 * Thunderbolt routers do not generate wakeups themselves but
3034 	 * they forward wakeups from tunneled protocols, so enable it
3035 	 * here.
3036 	 */
3037 	device_init_wakeup(&sw->dev, true);
3038 
3039 	pm_runtime_set_active(&sw->dev);
3040 	if (sw->rpm) {
3041 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3042 		pm_runtime_use_autosuspend(&sw->dev);
3043 		pm_runtime_mark_last_busy(&sw->dev);
3044 		pm_runtime_enable(&sw->dev);
3045 		pm_request_autosuspend(&sw->dev);
3046 	}
3047 
3048 	tb_switch_debugfs_init(sw);
3049 	return 0;
3050 
3051 err_ports:
3052 	usb4_switch_remove_ports(sw);
3053 err_del:
3054 	device_del(&sw->dev);
3055 
3056 	return ret;
3057 }
3058 
3059 /**
3060  * tb_switch_remove() - Remove and release a switch
3061  * @sw: Switch to remove
3062  *
3063  * This will remove the switch from the domain and release it after last
3064  * reference count drops to zero. If there are switches connected below
3065  * this switch, they will be removed as well.
3066  */
3067 void tb_switch_remove(struct tb_switch *sw)
3068 {
3069 	struct tb_port *port;
3070 
3071 	tb_switch_debugfs_remove(sw);
3072 
3073 	if (sw->rpm) {
3074 		pm_runtime_get_sync(&sw->dev);
3075 		pm_runtime_disable(&sw->dev);
3076 	}
3077 
3078 	/* port 0 is the switch itself and never has a remote */
3079 	tb_switch_for_each_port(sw, port) {
3080 		if (tb_port_has_remote(port)) {
3081 			tb_switch_remove(port->remote->sw);
3082 			port->remote = NULL;
3083 		} else if (port->xdomain) {
3084 			tb_xdomain_remove(port->xdomain);
3085 			port->xdomain = NULL;
3086 		}
3087 
3088 		/* Remove any downstream retimers */
3089 		tb_retimer_remove_all(port);
3090 	}
3091 
3092 	if (!sw->is_unplugged)
3093 		tb_plug_events_active(sw, false);
3094 
3095 	tb_switch_nvm_remove(sw);
3096 	usb4_switch_remove_ports(sw);
3097 
3098 	if (tb_route(sw))
3099 		dev_info(&sw->dev, "device disconnected\n");
3100 	device_unregister(&sw->dev);
3101 }
3102 
3103 /**
3104  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3105  * @sw: Router to mark unplugged
3106  */
3107 void tb_sw_set_unplugged(struct tb_switch *sw)
3108 {
3109 	struct tb_port *port;
3110 
3111 	if (sw == sw->tb->root_switch) {
3112 		tb_sw_WARN(sw, "cannot unplug root switch\n");
3113 		return;
3114 	}
3115 	if (sw->is_unplugged) {
3116 		tb_sw_WARN(sw, "is_unplugged already set\n");
3117 		return;
3118 	}
3119 	sw->is_unplugged = true;
3120 	tb_switch_for_each_port(sw, port) {
3121 		if (tb_port_has_remote(port))
3122 			tb_sw_set_unplugged(port->remote->sw);
3123 		else if (port->xdomain)
3124 			port->xdomain->is_unplugged = true;
3125 	}
3126 }
3127 
3128 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3129 {
3130 	if (flags)
3131 		tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3132 	else
3133 		tb_sw_dbg(sw, "disabling wakeup\n");
3134 
3135 	if (tb_switch_is_usb4(sw))
3136 		return usb4_switch_set_wake(sw, flags);
3137 	return tb_lc_set_wake(sw, flags);
3138 }
3139 
3140 int tb_switch_resume(struct tb_switch *sw)
3141 {
3142 	struct tb_port *port;
3143 	int err;
3144 
3145 	tb_sw_dbg(sw, "resuming switch\n");
3146 
3147 	/*
3148 	 * Check for UID of the connected switches except for root
3149 	 * switch which we assume cannot be removed.
3150 	 */
3151 	if (tb_route(sw)) {
3152 		u64 uid;
3153 
3154 		/*
3155 		 * Check first that we can still read the switch config
3156 		 * space. It may be that there is now another domain
3157 		 * connected.
3158 		 */
3159 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3160 		if (err < 0) {
3161 			tb_sw_info(sw, "switch not present anymore\n");
3162 			return err;
3163 		}
3164 
3165 		/* We don't have any way to confirm this was the same device */
3166 		if (!sw->uid)
3167 			return -ENODEV;
3168 
3169 		if (tb_switch_is_usb4(sw))
3170 			err = usb4_switch_read_uid(sw, &uid);
3171 		else
3172 			err = tb_drom_read_uid_only(sw, &uid);
3173 		if (err) {
3174 			tb_sw_warn(sw, "uid read failed\n");
3175 			return err;
3176 		}
3177 		if (sw->uid != uid) {
3178 			tb_sw_info(sw,
3179 				"changed while suspended (uid %#llx -> %#llx)\n",
3180 				sw->uid, uid);
3181 			return -ENODEV;
3182 		}
3183 	}
3184 
3185 	err = tb_switch_configure(sw);
3186 	if (err)
3187 		return err;
3188 
3189 	/* Disable wakes */
3190 	tb_switch_set_wake(sw, 0);
3191 
3192 	err = tb_switch_tmu_init(sw);
3193 	if (err)
3194 		return err;
3195 
3196 	/* check for surviving downstream switches */
3197 	tb_switch_for_each_port(sw, port) {
3198 		if (!tb_port_is_null(port))
3199 			continue;
3200 
3201 		if (!tb_port_resume(port))
3202 			continue;
3203 
3204 		if (tb_wait_for_port(port, true) <= 0) {
3205 			tb_port_warn(port,
3206 				     "lost during suspend, disconnecting\n");
3207 			if (tb_port_has_remote(port))
3208 				tb_sw_set_unplugged(port->remote->sw);
3209 			else if (port->xdomain)
3210 				port->xdomain->is_unplugged = true;
3211 		} else {
3212 			/*
3213 			 * Always unlock the port so the downstream
3214 			 * switch/domain is accessible.
3215 			 */
3216 			if (tb_port_unlock(port))
3217 				tb_port_warn(port, "failed to unlock port\n");
3218 			if (port->remote && tb_switch_resume(port->remote->sw)) {
3219 				tb_port_warn(port,
3220 					     "lost during suspend, disconnecting\n");
3221 				tb_sw_set_unplugged(port->remote->sw);
3222 			}
3223 		}
3224 	}
3225 	return 0;
3226 }
3227 
3228 /**
3229  * tb_switch_suspend() - Put a switch to sleep
3230  * @sw: Switch to suspend
3231  * @runtime: Is this runtime suspend or system sleep
3232  *
3233  * Suspends router and all its children. Enables wakes according to
3234  * value of @runtime and then sets sleep bit for the router. If @sw is
3235  * host router the domain is ready to go to sleep once this function
3236  * returns.
3237  */
3238 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3239 {
3240 	unsigned int flags = 0;
3241 	struct tb_port *port;
3242 	int err;
3243 
3244 	tb_sw_dbg(sw, "suspending switch\n");
3245 
3246 	/*
3247 	 * Actually only needed for Titan Ridge but for simplicity can be
3248 	 * done for USB4 device too as CLx is re-enabled at resume.
3249 	 * CL0s and CL1 are enabled and supported together.
3250 	 */
3251 	if (tb_switch_is_clx_enabled(sw, TB_CL1)) {
3252 		if (tb_switch_disable_clx(sw, TB_CL1))
3253 			tb_sw_warn(sw, "failed to disable %s on upstream port\n",
3254 				   tb_switch_clx_name(TB_CL1));
3255 	}
3256 
3257 	err = tb_plug_events_active(sw, false);
3258 	if (err)
3259 		return;
3260 
3261 	tb_switch_for_each_port(sw, port) {
3262 		if (tb_port_has_remote(port))
3263 			tb_switch_suspend(port->remote->sw, runtime);
3264 	}
3265 
3266 	if (runtime) {
3267 		/* Trigger wake when something is plugged in/out */
3268 		flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3269 		flags |= TB_WAKE_ON_USB4;
3270 		flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3271 	} else if (device_may_wakeup(&sw->dev)) {
3272 		flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3273 	}
3274 
3275 	tb_switch_set_wake(sw, flags);
3276 
3277 	if (tb_switch_is_usb4(sw))
3278 		usb4_switch_set_sleep(sw);
3279 	else
3280 		tb_lc_set_sleep(sw);
3281 }
3282 
3283 /**
3284  * tb_switch_query_dp_resource() - Query availability of DP resource
3285  * @sw: Switch whose DP resource is queried
3286  * @in: DP IN port
3287  *
3288  * Queries availability of DP resource for DP tunneling using switch
3289  * specific means. Returns %true if resource is available.
3290  */
3291 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3292 {
3293 	if (tb_switch_is_usb4(sw))
3294 		return usb4_switch_query_dp_resource(sw, in);
3295 	return tb_lc_dp_sink_query(sw, in);
3296 }
3297 
3298 /**
3299  * tb_switch_alloc_dp_resource() - Allocate available DP resource
3300  * @sw: Switch whose DP resource is allocated
3301  * @in: DP IN port
3302  *
3303  * Allocates DP resource for DP tunneling. The resource must be
3304  * available for this to succeed (see tb_switch_query_dp_resource()).
3305  * Returns %0 in success and negative errno otherwise.
3306  */
3307 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3308 {
3309 	int ret;
3310 
3311 	if (tb_switch_is_usb4(sw))
3312 		ret = usb4_switch_alloc_dp_resource(sw, in);
3313 	else
3314 		ret = tb_lc_dp_sink_alloc(sw, in);
3315 
3316 	if (ret)
3317 		tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3318 			   in->port);
3319 	else
3320 		tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3321 
3322 	return ret;
3323 }
3324 
3325 /**
3326  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3327  * @sw: Switch whose DP resource is de-allocated
3328  * @in: DP IN port
3329  *
3330  * De-allocates DP resource that was previously allocated for DP
3331  * tunneling.
3332  */
3333 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3334 {
3335 	int ret;
3336 
3337 	if (tb_switch_is_usb4(sw))
3338 		ret = usb4_switch_dealloc_dp_resource(sw, in);
3339 	else
3340 		ret = tb_lc_dp_sink_dealloc(sw, in);
3341 
3342 	if (ret)
3343 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3344 			   in->port);
3345 	else
3346 		tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3347 }
3348 
3349 struct tb_sw_lookup {
3350 	struct tb *tb;
3351 	u8 link;
3352 	u8 depth;
3353 	const uuid_t *uuid;
3354 	u64 route;
3355 };
3356 
3357 static int tb_switch_match(struct device *dev, const void *data)
3358 {
3359 	struct tb_switch *sw = tb_to_switch(dev);
3360 	const struct tb_sw_lookup *lookup = data;
3361 
3362 	if (!sw)
3363 		return 0;
3364 	if (sw->tb != lookup->tb)
3365 		return 0;
3366 
3367 	if (lookup->uuid)
3368 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3369 
3370 	if (lookup->route) {
3371 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
3372 		       sw->config.route_hi == upper_32_bits(lookup->route);
3373 	}
3374 
3375 	/* Root switch is matched only by depth */
3376 	if (!lookup->depth)
3377 		return !sw->depth;
3378 
3379 	return sw->link == lookup->link && sw->depth == lookup->depth;
3380 }
3381 
3382 /**
3383  * tb_switch_find_by_link_depth() - Find switch by link and depth
3384  * @tb: Domain the switch belongs
3385  * @link: Link number the switch is connected
3386  * @depth: Depth of the switch in link
3387  *
3388  * Returned switch has reference count increased so the caller needs to
3389  * call tb_switch_put() when done with the switch.
3390  */
3391 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3392 {
3393 	struct tb_sw_lookup lookup;
3394 	struct device *dev;
3395 
3396 	memset(&lookup, 0, sizeof(lookup));
3397 	lookup.tb = tb;
3398 	lookup.link = link;
3399 	lookup.depth = depth;
3400 
3401 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3402 	if (dev)
3403 		return tb_to_switch(dev);
3404 
3405 	return NULL;
3406 }
3407 
3408 /**
3409  * tb_switch_find_by_uuid() - Find switch by UUID
3410  * @tb: Domain the switch belongs
3411  * @uuid: UUID to look for
3412  *
3413  * Returned switch has reference count increased so the caller needs to
3414  * call tb_switch_put() when done with the switch.
3415  */
3416 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3417 {
3418 	struct tb_sw_lookup lookup;
3419 	struct device *dev;
3420 
3421 	memset(&lookup, 0, sizeof(lookup));
3422 	lookup.tb = tb;
3423 	lookup.uuid = uuid;
3424 
3425 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3426 	if (dev)
3427 		return tb_to_switch(dev);
3428 
3429 	return NULL;
3430 }
3431 
3432 /**
3433  * tb_switch_find_by_route() - Find switch by route string
3434  * @tb: Domain the switch belongs
3435  * @route: Route string to look for
3436  *
3437  * Returned switch has reference count increased so the caller needs to
3438  * call tb_switch_put() when done with the switch.
3439  */
3440 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3441 {
3442 	struct tb_sw_lookup lookup;
3443 	struct device *dev;
3444 
3445 	if (!route)
3446 		return tb_switch_get(tb->root_switch);
3447 
3448 	memset(&lookup, 0, sizeof(lookup));
3449 	lookup.tb = tb;
3450 	lookup.route = route;
3451 
3452 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3453 	if (dev)
3454 		return tb_to_switch(dev);
3455 
3456 	return NULL;
3457 }
3458 
3459 /**
3460  * tb_switch_find_port() - return the first port of @type on @sw or NULL
3461  * @sw: Switch to find the port from
3462  * @type: Port type to look for
3463  */
3464 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3465 				    enum tb_port_type type)
3466 {
3467 	struct tb_port *port;
3468 
3469 	tb_switch_for_each_port(sw, port) {
3470 		if (port->config.type == type)
3471 			return port;
3472 	}
3473 
3474 	return NULL;
3475 }
3476 
3477 static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3478 {
3479 	struct tb_switch *parent = tb_switch_parent(sw);
3480 	struct tb_port *up, *down;
3481 	int ret;
3482 
3483 	if (!tb_route(sw))
3484 		return 0;
3485 
3486 	up = tb_upstream_port(sw);
3487 	down = tb_port_at(tb_route(sw), parent);
3488 	ret = tb_port_pm_secondary_enable(up);
3489 	if (ret)
3490 		return ret;
3491 
3492 	return tb_port_pm_secondary_disable(down);
3493 }
3494 
3495 static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3496 {
3497 	struct tb_switch *parent = tb_switch_parent(sw);
3498 	bool up_clx_support, down_clx_support;
3499 	struct tb_port *up, *down;
3500 	int ret;
3501 
3502 	if (!tb_switch_is_clx_supported(sw))
3503 		return 0;
3504 
3505 	/*
3506 	 * Enable CLx for host router's downstream port as part of the
3507 	 * downstream router enabling procedure.
3508 	 */
3509 	if (!tb_route(sw))
3510 		return 0;
3511 
3512 	/* Enable CLx only for first hop router (depth = 1) */
3513 	if (tb_route(parent))
3514 		return 0;
3515 
3516 	ret = tb_switch_pm_secondary_resolve(sw);
3517 	if (ret)
3518 		return ret;
3519 
3520 	up = tb_upstream_port(sw);
3521 	down = tb_port_at(tb_route(sw), parent);
3522 
3523 	up_clx_support = tb_port_clx_supported(up, clx);
3524 	down_clx_support = tb_port_clx_supported(down, clx);
3525 
3526 	tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx),
3527 		    up_clx_support ? "" : "not ");
3528 	tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx),
3529 		    down_clx_support ? "" : "not ");
3530 
3531 	if (!up_clx_support || !down_clx_support)
3532 		return -EOPNOTSUPP;
3533 
3534 	ret = tb_port_clx_enable(up, clx);
3535 	if (ret)
3536 		return ret;
3537 
3538 	ret = tb_port_clx_enable(down, clx);
3539 	if (ret) {
3540 		tb_port_clx_disable(up, clx);
3541 		return ret;
3542 	}
3543 
3544 	ret = tb_switch_mask_clx_objections(sw);
3545 	if (ret) {
3546 		tb_port_clx_disable(up, clx);
3547 		tb_port_clx_disable(down, clx);
3548 		return ret;
3549 	}
3550 
3551 	sw->clx = clx;
3552 
3553 	tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx));
3554 	return 0;
3555 }
3556 
3557 /**
3558  * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3559  * @sw: Router to enable CLx for
3560  * @clx: The CLx state to enable
3561  *
3562  * Enable CLx state only for first hop router. That is the most common
3563  * use-case, that is intended for better thermal management, and so helps
3564  * to improve performance. CLx is enabled only if both sides of the link
3565  * support CLx, and if both sides of the link are not configured as two
3566  * single lane links and only if the link is not inter-domain link. The
3567  * complete set of conditions is described in CM Guide 1.0 section 8.1.
3568  *
3569  * Return: Returns 0 on success or an error code on failure.
3570  */
3571 int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3572 {
3573 	struct tb_switch *root_sw = sw->tb->root_switch;
3574 
3575 	if (!clx_enabled)
3576 		return 0;
3577 
3578 	/*
3579 	 * CLx is not enabled and validated on Intel USB4 platforms before
3580 	 * Alder Lake.
3581 	 */
3582 	if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3583 		return 0;
3584 
3585 	switch (clx) {
3586 	case TB_CL1:
3587 		/* CL0s and CL1 are enabled and supported together */
3588 		return __tb_switch_enable_clx(sw, clx);
3589 
3590 	default:
3591 		return -EOPNOTSUPP;
3592 	}
3593 }
3594 
3595 static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3596 {
3597 	struct tb_switch *parent = tb_switch_parent(sw);
3598 	struct tb_port *up, *down;
3599 	int ret;
3600 
3601 	if (!tb_switch_is_clx_supported(sw))
3602 		return 0;
3603 
3604 	/*
3605 	 * Disable CLx for host router's downstream port as part of the
3606 	 * downstream router enabling procedure.
3607 	 */
3608 	if (!tb_route(sw))
3609 		return 0;
3610 
3611 	/* Disable CLx only for first hop router (depth = 1) */
3612 	if (tb_route(parent))
3613 		return 0;
3614 
3615 	up = tb_upstream_port(sw);
3616 	down = tb_port_at(tb_route(sw), parent);
3617 	ret = tb_port_clx_disable(up, clx);
3618 	if (ret)
3619 		return ret;
3620 
3621 	ret = tb_port_clx_disable(down, clx);
3622 	if (ret)
3623 		return ret;
3624 
3625 	sw->clx = TB_CLX_DISABLE;
3626 
3627 	tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx));
3628 	return 0;
3629 }
3630 
3631 /**
3632  * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3633  * @sw: Router to disable CLx for
3634  * @clx: The CLx state to disable
3635  *
3636  * Return: Returns 0 on success or an error code on failure.
3637  */
3638 int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3639 {
3640 	if (!clx_enabled)
3641 		return 0;
3642 
3643 	switch (clx) {
3644 	case TB_CL1:
3645 		/* CL0s and CL1 are enabled and supported together */
3646 		return __tb_switch_disable_clx(sw, clx);
3647 
3648 	default:
3649 		return -EOPNOTSUPP;
3650 	}
3651 }
3652 
3653 /**
3654  * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3655  * @sw: Router to mask objections for
3656  *
3657  * Mask the objections coming from the second depth routers in order to
3658  * stop these objections from interfering with the CLx states of the first
3659  * depth link.
3660  */
3661 int tb_switch_mask_clx_objections(struct tb_switch *sw)
3662 {
3663 	int up_port = sw->config.upstream_port_number;
3664 	u32 offset, val[2], mask_obj, unmask_obj;
3665 	int ret, i;
3666 
3667 	/* Only Titan Ridge of pre-USB4 devices support CLx states */
3668 	if (!tb_switch_is_titan_ridge(sw))
3669 		return 0;
3670 
3671 	if (!tb_route(sw))
3672 		return 0;
3673 
3674 	/*
3675 	 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3676 	 * Port A consists of lane adapters 1,2 and
3677 	 * Port B consists of lane adapters 3,4
3678 	 * If upstream port is A, (lanes are 1,2), we mask objections from
3679 	 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3680 	 */
3681 	if (up_port == 1) {
3682 		mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3683 		unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3684 		offset = TB_LOW_PWR_C1_CL1;
3685 	} else {
3686 		mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3687 		unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3688 		offset = TB_LOW_PWR_C3_CL1;
3689 	}
3690 
3691 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3692 			 sw->cap_lp + offset, ARRAY_SIZE(val));
3693 	if (ret)
3694 		return ret;
3695 
3696 	for (i = 0; i < ARRAY_SIZE(val); i++) {
3697 		val[i] |= mask_obj;
3698 		val[i] &= ~unmask_obj;
3699 	}
3700 
3701 	return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3702 			   sw->cap_lp + offset, ARRAY_SIZE(val));
3703 }
3704 
3705 /*
3706  * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3707  * device. For now used only for Titan Ridge.
3708  */
3709 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3710 				       unsigned int pcie_offset, u32 value)
3711 {
3712 	u32 offset, command, val;
3713 	int ret;
3714 
3715 	if (sw->generation != 3)
3716 		return -EOPNOTSUPP;
3717 
3718 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3719 	ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3720 	if (ret)
3721 		return ret;
3722 
3723 	command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3724 	command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3725 	command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3726 	command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3727 			<< TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3728 	command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3729 
3730 	offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3731 
3732 	ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3733 	if (ret)
3734 		return ret;
3735 
3736 	ret = tb_switch_wait_for_bit(sw, offset,
3737 				     TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3738 	if (ret)
3739 		return ret;
3740 
3741 	ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3742 	if (ret)
3743 		return ret;
3744 
3745 	if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3746 		return -ETIMEDOUT;
3747 
3748 	return 0;
3749 }
3750 
3751 /**
3752  * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3753  * @sw: Router to enable PCIe L1
3754  *
3755  * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3756  * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3757  * was configured. Due to Intel platforms limitation, shall be called only
3758  * for first hop switch.
3759  */
3760 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3761 {
3762 	struct tb_switch *parent = tb_switch_parent(sw);
3763 	int ret;
3764 
3765 	if (!tb_route(sw))
3766 		return 0;
3767 
3768 	if (!tb_switch_is_titan_ridge(sw))
3769 		return 0;
3770 
3771 	/* Enable PCIe L1 enable only for first hop router (depth = 1) */
3772 	if (tb_route(parent))
3773 		return 0;
3774 
3775 	/* Write to downstream PCIe bridge #5 aka Dn4 */
3776 	ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3777 	if (ret)
3778 		return ret;
3779 
3780 	/* Write to Upstream PCIe bridge #0 aka Up0 */
3781 	return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3782 }
3783 
3784 /**
3785  * tb_switch_xhci_connect() - Connect internal xHCI
3786  * @sw: Router whose xHCI to connect
3787  *
3788  * Can be called to any router. For Alpine Ridge and Titan Ridge
3789  * performs special flows that bring the xHCI functional for any device
3790  * connected to the type-C port. Call only after PCIe tunnel has been
3791  * established. The function only does the connect if not done already
3792  * so can be called several times for the same router.
3793  */
3794 int tb_switch_xhci_connect(struct tb_switch *sw)
3795 {
3796 	struct tb_port *port1, *port3;
3797 	int ret;
3798 
3799 	if (sw->generation != 3)
3800 		return 0;
3801 
3802 	port1 = &sw->ports[1];
3803 	port3 = &sw->ports[3];
3804 
3805 	if (tb_switch_is_alpine_ridge(sw)) {
3806 		bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3807 
3808 		usb_port1 = tb_lc_is_usb_plugged(port1);
3809 		usb_port3 = tb_lc_is_usb_plugged(port3);
3810 		xhci_port1 = tb_lc_is_xhci_connected(port1);
3811 		xhci_port3 = tb_lc_is_xhci_connected(port3);
3812 
3813 		/* Figure out correct USB port to connect */
3814 		if (usb_port1 && !xhci_port1) {
3815 			ret = tb_lc_xhci_connect(port1);
3816 			if (ret)
3817 				return ret;
3818 		}
3819 		if (usb_port3 && !xhci_port3)
3820 			return tb_lc_xhci_connect(port3);
3821 	} else if (tb_switch_is_titan_ridge(sw)) {
3822 		ret = tb_lc_xhci_connect(port1);
3823 		if (ret)
3824 			return ret;
3825 		return tb_lc_xhci_connect(port3);
3826 	}
3827 
3828 	return 0;
3829 }
3830 
3831 /**
3832  * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3833  * @sw: Router whose xHCI to disconnect
3834  *
3835  * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3836  * ports.
3837  */
3838 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3839 {
3840 	if (sw->generation == 3) {
3841 		struct tb_port *port1 = &sw->ports[1];
3842 		struct tb_port *port3 = &sw->ports[3];
3843 
3844 		tb_lc_xhci_disconnect(port1);
3845 		tb_port_dbg(port1, "disconnected xHCI\n");
3846 		tb_lc_xhci_disconnect(port3);
3847 		tb_port_dbg(port3, "disconnected xHCI\n");
3848 	}
3849 }
3850