xref: /linux/drivers/thunderbolt/switch.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - switch/port utility functions
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 
17 #include "tb.h"
18 
19 /* Switch NVM support */
20 
21 #define NVM_CSS			0x10
22 
23 struct nvm_auth_status {
24 	struct list_head list;
25 	uuid_t uuid;
26 	u32 status;
27 };
28 
29 enum nvm_write_ops {
30 	WRITE_AND_AUTHENTICATE = 1,
31 	WRITE_ONLY = 2,
32 };
33 
34 /*
35  * Hold NVM authentication failure status per switch This information
36  * needs to stay around even when the switch gets power cycled so we
37  * keep it separately.
38  */
39 static LIST_HEAD(nvm_auth_status_cache);
40 static DEFINE_MUTEX(nvm_auth_status_lock);
41 
42 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43 {
44 	struct nvm_auth_status *st;
45 
46 	list_for_each_entry(st, &nvm_auth_status_cache, list) {
47 		if (uuid_equal(&st->uuid, sw->uuid))
48 			return st;
49 	}
50 
51 	return NULL;
52 }
53 
54 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55 {
56 	struct nvm_auth_status *st;
57 
58 	mutex_lock(&nvm_auth_status_lock);
59 	st = __nvm_get_auth_status(sw);
60 	mutex_unlock(&nvm_auth_status_lock);
61 
62 	*status = st ? st->status : 0;
63 }
64 
65 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66 {
67 	struct nvm_auth_status *st;
68 
69 	if (WARN_ON(!sw->uuid))
70 		return;
71 
72 	mutex_lock(&nvm_auth_status_lock);
73 	st = __nvm_get_auth_status(sw);
74 
75 	if (!st) {
76 		st = kzalloc(sizeof(*st), GFP_KERNEL);
77 		if (!st)
78 			goto unlock;
79 
80 		memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 		INIT_LIST_HEAD(&st->list);
82 		list_add_tail(&st->list, &nvm_auth_status_cache);
83 	}
84 
85 	st->status = status;
86 unlock:
87 	mutex_unlock(&nvm_auth_status_lock);
88 }
89 
90 static void nvm_clear_auth_status(const struct tb_switch *sw)
91 {
92 	struct nvm_auth_status *st;
93 
94 	mutex_lock(&nvm_auth_status_lock);
95 	st = __nvm_get_auth_status(sw);
96 	if (st) {
97 		list_del(&st->list);
98 		kfree(st);
99 	}
100 	mutex_unlock(&nvm_auth_status_lock);
101 }
102 
103 static int nvm_validate_and_write(struct tb_switch *sw)
104 {
105 	unsigned int image_size, hdr_size;
106 	const u8 *buf = sw->nvm->buf;
107 	u16 ds_size;
108 	int ret;
109 
110 	if (!buf)
111 		return -EINVAL;
112 
113 	image_size = sw->nvm->buf_data_size;
114 	if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 		return -EINVAL;
116 
117 	/*
118 	 * FARB pointer must point inside the image and must at least
119 	 * contain parts of the digital section we will be reading here.
120 	 */
121 	hdr_size = (*(u32 *)buf) & 0xffffff;
122 	if (hdr_size + NVM_DEVID + 2 >= image_size)
123 		return -EINVAL;
124 
125 	/* Digital section start should be aligned to 4k page */
126 	if (!IS_ALIGNED(hdr_size, SZ_4K))
127 		return -EINVAL;
128 
129 	/*
130 	 * Read digital section size and check that it also fits inside
131 	 * the image.
132 	 */
133 	ds_size = *(u16 *)(buf + hdr_size);
134 	if (ds_size >= image_size)
135 		return -EINVAL;
136 
137 	if (!sw->safe_mode) {
138 		u16 device_id;
139 
140 		/*
141 		 * Make sure the device ID in the image matches the one
142 		 * we read from the switch config space.
143 		 */
144 		device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 		if (device_id != sw->config.device_id)
146 			return -EINVAL;
147 
148 		if (sw->generation < 3) {
149 			/* Write CSS headers first */
150 			ret = dma_port_flash_write(sw->dma_port,
151 				DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 				DMA_PORT_CSS_MAX_SIZE);
153 			if (ret)
154 				return ret;
155 		}
156 
157 		/* Skip headers in the image */
158 		buf += hdr_size;
159 		image_size -= hdr_size;
160 	}
161 
162 	if (tb_switch_is_usb4(sw))
163 		ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 	else
165 		ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 	if (!ret)
167 		sw->nvm->flushed = true;
168 	return ret;
169 }
170 
171 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
172 {
173 	int ret = 0;
174 
175 	/*
176 	 * Root switch NVM upgrade requires that we disconnect the
177 	 * existing paths first (in case it is not in safe mode
178 	 * already).
179 	 */
180 	if (!sw->safe_mode) {
181 		u32 status;
182 
183 		ret = tb_domain_disconnect_all_paths(sw->tb);
184 		if (ret)
185 			return ret;
186 		/*
187 		 * The host controller goes away pretty soon after this if
188 		 * everything goes well so getting timeout is expected.
189 		 */
190 		ret = dma_port_flash_update_auth(sw->dma_port);
191 		if (!ret || ret == -ETIMEDOUT)
192 			return 0;
193 
194 		/*
195 		 * Any error from update auth operation requires power
196 		 * cycling of the host router.
197 		 */
198 		tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 		if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 			nvm_set_auth_status(sw, status);
201 	}
202 
203 	/*
204 	 * From safe mode we can get out by just power cycling the
205 	 * switch.
206 	 */
207 	dma_port_power_cycle(sw->dma_port);
208 	return ret;
209 }
210 
211 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
212 {
213 	int ret, retries = 10;
214 
215 	ret = dma_port_flash_update_auth(sw->dma_port);
216 	switch (ret) {
217 	case 0:
218 	case -ETIMEDOUT:
219 	case -EACCES:
220 	case -EINVAL:
221 		/* Power cycle is required */
222 		break;
223 	default:
224 		return ret;
225 	}
226 
227 	/*
228 	 * Poll here for the authentication status. It takes some time
229 	 * for the device to respond (we get timeout for a while). Once
230 	 * we get response the device needs to be power cycled in order
231 	 * to the new NVM to be taken into use.
232 	 */
233 	do {
234 		u32 status;
235 
236 		ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 		if (ret < 0 && ret != -ETIMEDOUT)
238 			return ret;
239 		if (ret > 0) {
240 			if (status) {
241 				tb_sw_warn(sw, "failed to authenticate NVM\n");
242 				nvm_set_auth_status(sw, status);
243 			}
244 
245 			tb_sw_info(sw, "power cycling the switch now\n");
246 			dma_port_power_cycle(sw->dma_port);
247 			return 0;
248 		}
249 
250 		msleep(500);
251 	} while (--retries);
252 
253 	return -ETIMEDOUT;
254 }
255 
256 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257 {
258 	struct pci_dev *root_port;
259 
260 	/*
261 	 * During host router NVM upgrade we should not allow root port to
262 	 * go into D3cold because some root ports cannot trigger PME
263 	 * itself. To be on the safe side keep the root port in D0 during
264 	 * the whole upgrade process.
265 	 */
266 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
267 	if (root_port)
268 		pm_runtime_get_noresume(&root_port->dev);
269 }
270 
271 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272 {
273 	struct pci_dev *root_port;
274 
275 	root_port = pcie_find_root_port(sw->tb->nhi->pdev);
276 	if (root_port)
277 		pm_runtime_put(&root_port->dev);
278 }
279 
280 static inline bool nvm_readable(struct tb_switch *sw)
281 {
282 	if (tb_switch_is_usb4(sw)) {
283 		/*
284 		 * USB4 devices must support NVM operations but it is
285 		 * optional for hosts. Therefore we query the NVM sector
286 		 * size here and if it is supported assume NVM
287 		 * operations are implemented.
288 		 */
289 		return usb4_switch_nvm_sector_size(sw) > 0;
290 	}
291 
292 	/* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 	return !!sw->dma_port;
294 }
295 
296 static inline bool nvm_upgradeable(struct tb_switch *sw)
297 {
298 	if (sw->no_nvm_upgrade)
299 		return false;
300 	return nvm_readable(sw);
301 }
302 
303 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 			   void *buf, size_t size)
305 {
306 	if (tb_switch_is_usb4(sw))
307 		return usb4_switch_nvm_read(sw, address, buf, size);
308 	return dma_port_flash_read(sw->dma_port, address, buf, size);
309 }
310 
311 static int nvm_authenticate(struct tb_switch *sw)
312 {
313 	int ret;
314 
315 	if (tb_switch_is_usb4(sw))
316 		return usb4_switch_nvm_authenticate(sw);
317 
318 	if (!tb_route(sw)) {
319 		nvm_authenticate_start_dma_port(sw);
320 		ret = nvm_authenticate_host_dma_port(sw);
321 	} else {
322 		ret = nvm_authenticate_device_dma_port(sw);
323 	}
324 
325 	return ret;
326 }
327 
328 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 			      size_t bytes)
330 {
331 	struct tb_nvm *nvm = priv;
332 	struct tb_switch *sw = tb_to_switch(nvm->dev);
333 	int ret;
334 
335 	pm_runtime_get_sync(&sw->dev);
336 
337 	if (!mutex_trylock(&sw->tb->lock)) {
338 		ret = restart_syscall();
339 		goto out;
340 	}
341 
342 	ret = nvm_read(sw, offset, val, bytes);
343 	mutex_unlock(&sw->tb->lock);
344 
345 out:
346 	pm_runtime_mark_last_busy(&sw->dev);
347 	pm_runtime_put_autosuspend(&sw->dev);
348 
349 	return ret;
350 }
351 
352 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 			       size_t bytes)
354 {
355 	struct tb_nvm *nvm = priv;
356 	struct tb_switch *sw = tb_to_switch(nvm->dev);
357 	int ret;
358 
359 	if (!mutex_trylock(&sw->tb->lock))
360 		return restart_syscall();
361 
362 	/*
363 	 * Since writing the NVM image might require some special steps,
364 	 * for example when CSS headers are written, we cache the image
365 	 * locally here and handle the special cases when the user asks
366 	 * us to authenticate the image.
367 	 */
368 	ret = tb_nvm_write_buf(nvm, offset, val, bytes);
369 	mutex_unlock(&sw->tb->lock);
370 
371 	return ret;
372 }
373 
374 static int tb_switch_nvm_add(struct tb_switch *sw)
375 {
376 	struct tb_nvm *nvm;
377 	u32 val;
378 	int ret;
379 
380 	if (!nvm_readable(sw))
381 		return 0;
382 
383 	/*
384 	 * The NVM format of non-Intel hardware is not known so
385 	 * currently restrict NVM upgrade for Intel hardware. We may
386 	 * relax this in the future when we learn other NVM formats.
387 	 */
388 	if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 	    sw->config.vendor_id != 0x8087) {
390 		dev_info(&sw->dev,
391 			 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 			 sw->config.vendor_id);
393 		return 0;
394 	}
395 
396 	nvm = tb_nvm_alloc(&sw->dev);
397 	if (IS_ERR(nvm))
398 		return PTR_ERR(nvm);
399 
400 	/*
401 	 * If the switch is in safe-mode the only accessible portion of
402 	 * the NVM is the non-active one where userspace is expected to
403 	 * write new functional NVM.
404 	 */
405 	if (!sw->safe_mode) {
406 		u32 nvm_size, hdr_size;
407 
408 		ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
409 		if (ret)
410 			goto err_nvm;
411 
412 		hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 		nvm_size = (SZ_1M << (val & 7)) / 8;
414 		nvm_size = (nvm_size - hdr_size) / 2;
415 
416 		ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
417 		if (ret)
418 			goto err_nvm;
419 
420 		nvm->major = val >> 16;
421 		nvm->minor = val >> 8;
422 
423 		ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 		if (ret)
425 			goto err_nvm;
426 	}
427 
428 	if (!sw->no_nvm_upgrade) {
429 		ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 					    tb_switch_nvm_write);
431 		if (ret)
432 			goto err_nvm;
433 	}
434 
435 	sw->nvm = nvm;
436 	return 0;
437 
438 err_nvm:
439 	tb_nvm_free(nvm);
440 	return ret;
441 }
442 
443 static void tb_switch_nvm_remove(struct tb_switch *sw)
444 {
445 	struct tb_nvm *nvm;
446 
447 	nvm = sw->nvm;
448 	sw->nvm = NULL;
449 
450 	if (!nvm)
451 		return;
452 
453 	/* Remove authentication status in case the switch is unplugged */
454 	if (!nvm->authenticating)
455 		nvm_clear_auth_status(sw);
456 
457 	tb_nvm_free(nvm);
458 }
459 
460 /* port utility functions */
461 
462 static const char *tb_port_type(struct tb_regs_port_header *port)
463 {
464 	switch (port->type >> 16) {
465 	case 0:
466 		switch ((u8) port->type) {
467 		case 0:
468 			return "Inactive";
469 		case 1:
470 			return "Port";
471 		case 2:
472 			return "NHI";
473 		default:
474 			return "unknown";
475 		}
476 	case 0x2:
477 		return "Ethernet";
478 	case 0x8:
479 		return "SATA";
480 	case 0xe:
481 		return "DP/HDMI";
482 	case 0x10:
483 		return "PCIe";
484 	case 0x20:
485 		return "USB";
486 	default:
487 		return "unknown";
488 	}
489 }
490 
491 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492 {
493 	tb_dbg(tb,
494 	       " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 	       port->port_number, port->vendor_id, port->device_id,
496 	       port->revision, port->thunderbolt_version, tb_port_type(port),
497 	       port->type);
498 	tb_dbg(tb, "  Max hop id (in/out): %d/%d\n",
499 	       port->max_in_hop_id, port->max_out_hop_id);
500 	tb_dbg(tb, "  Max counters: %d\n", port->max_counters);
501 	tb_dbg(tb, "  NFC Credits: %#x\n", port->nfc_credits);
502 }
503 
504 /**
505  * tb_port_state() - get connectedness state of a port
506  *
507  * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508  *
509  * Return: Returns an enum tb_port_state on success or an error code on failure.
510  */
511 static int tb_port_state(struct tb_port *port)
512 {
513 	struct tb_cap_phy phy;
514 	int res;
515 	if (port->cap_phy == 0) {
516 		tb_port_WARN(port, "does not have a PHY\n");
517 		return -EINVAL;
518 	}
519 	res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 	if (res)
521 		return res;
522 	return phy.state;
523 }
524 
525 /**
526  * tb_wait_for_port() - wait for a port to become ready
527  *
528  * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529  * wait_if_unplugged is set then we also wait if the port is in state
530  * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531  * switch resume). Otherwise we only wait if a device is registered but the link
532  * has not yet been established.
533  *
534  * Return: Returns an error code on failure. Returns 0 if the port is not
535  * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536  * if the port is connected and in state TB_PORT_UP.
537  */
538 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539 {
540 	int retries = 10;
541 	int state;
542 	if (!port->cap_phy) {
543 		tb_port_WARN(port, "does not have PHY\n");
544 		return -EINVAL;
545 	}
546 	if (tb_is_upstream_port(port)) {
547 		tb_port_WARN(port, "is the upstream port\n");
548 		return -EINVAL;
549 	}
550 
551 	while (retries--) {
552 		state = tb_port_state(port);
553 		if (state < 0)
554 			return state;
555 		if (state == TB_PORT_DISABLED) {
556 			tb_port_dbg(port, "is disabled (state: 0)\n");
557 			return 0;
558 		}
559 		if (state == TB_PORT_UNPLUGGED) {
560 			if (wait_if_unplugged) {
561 				/* used during resume */
562 				tb_port_dbg(port,
563 					    "is unplugged (state: 7), retrying...\n");
564 				msleep(100);
565 				continue;
566 			}
567 			tb_port_dbg(port, "is unplugged (state: 7)\n");
568 			return 0;
569 		}
570 		if (state == TB_PORT_UP) {
571 			tb_port_dbg(port, "is connected, link is up (state: 2)\n");
572 			return 1;
573 		}
574 
575 		/*
576 		 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 		 * time.
578 		 */
579 		tb_port_dbg(port,
580 			    "is connected, link is not up (state: %d), retrying...\n",
581 			    state);
582 		msleep(100);
583 	}
584 	tb_port_warn(port,
585 		     "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 	return 0;
587 }
588 
589 /**
590  * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591  *
592  * Change the number of NFC credits allocated to @port by @credits. To remove
593  * NFC credits pass a negative amount of credits.
594  *
595  * Return: Returns 0 on success or an error code on failure.
596  */
597 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598 {
599 	u32 nfc_credits;
600 
601 	if (credits == 0 || port->sw->is_unplugged)
602 		return 0;
603 
604 	nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
605 	nfc_credits += credits;
606 
607 	tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
608 		    port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
609 
610 	port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
611 	port->config.nfc_credits |= nfc_credits;
612 
613 	return tb_port_write(port, &port->config.nfc_credits,
614 			     TB_CFG_PORT, ADP_CS_4, 1);
615 }
616 
617 /**
618  * tb_port_set_initial_credits() - Set initial port link credits allocated
619  * @port: Port to set the initial credits
620  * @credits: Number of credits to to allocate
621  *
622  * Set initial credits value to be used for ingress shared buffering.
623  */
624 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
625 {
626 	u32 data;
627 	int ret;
628 
629 	ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
630 	if (ret)
631 		return ret;
632 
633 	data &= ~ADP_CS_5_LCA_MASK;
634 	data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
635 
636 	return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
637 }
638 
639 /**
640  * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
641  *
642  * Return: Returns 0 on success or an error code on failure.
643  */
644 int tb_port_clear_counter(struct tb_port *port, int counter)
645 {
646 	u32 zero[3] = { 0, 0, 0 };
647 	tb_port_dbg(port, "clearing counter %d\n", counter);
648 	return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
649 }
650 
651 /**
652  * tb_port_unlock() - Unlock downstream port
653  * @port: Port to unlock
654  *
655  * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
656  * downstream router accessible for CM.
657  */
658 int tb_port_unlock(struct tb_port *port)
659 {
660 	if (tb_switch_is_icm(port->sw))
661 		return 0;
662 	if (!tb_port_is_null(port))
663 		return -EINVAL;
664 	if (tb_switch_is_usb4(port->sw))
665 		return usb4_port_unlock(port);
666 	return 0;
667 }
668 
669 /**
670  * tb_init_port() - initialize a port
671  *
672  * This is a helper method for tb_switch_alloc. Does not check or initialize
673  * any downstream switches.
674  *
675  * Return: Returns 0 on success or an error code on failure.
676  */
677 static int tb_init_port(struct tb_port *port)
678 {
679 	int res;
680 	int cap;
681 
682 	res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
683 	if (res) {
684 		if (res == -ENODEV) {
685 			tb_dbg(port->sw->tb, " Port %d: not implemented\n",
686 			       port->port);
687 			port->disabled = true;
688 			return 0;
689 		}
690 		return res;
691 	}
692 
693 	/* Port 0 is the switch itself and has no PHY. */
694 	if (port->config.type == TB_TYPE_PORT && port->port != 0) {
695 		cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
696 
697 		if (cap > 0)
698 			port->cap_phy = cap;
699 		else
700 			tb_port_WARN(port, "non switch port without a PHY\n");
701 
702 		cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
703 		if (cap > 0)
704 			port->cap_usb4 = cap;
705 	} else if (port->port != 0) {
706 		cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
707 		if (cap > 0)
708 			port->cap_adap = cap;
709 	}
710 
711 	tb_dump_port(port->sw->tb, &port->config);
712 
713 	/* Control port does not need HopID allocation */
714 	if (port->port) {
715 		ida_init(&port->in_hopids);
716 		ida_init(&port->out_hopids);
717 	}
718 
719 	INIT_LIST_HEAD(&port->list);
720 	return 0;
721 
722 }
723 
724 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
725 			       int max_hopid)
726 {
727 	int port_max_hopid;
728 	struct ida *ida;
729 
730 	if (in) {
731 		port_max_hopid = port->config.max_in_hop_id;
732 		ida = &port->in_hopids;
733 	} else {
734 		port_max_hopid = port->config.max_out_hop_id;
735 		ida = &port->out_hopids;
736 	}
737 
738 	/*
739 	 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
740 	 * reserved.
741 	 */
742 	if (port->config.type != TB_TYPE_NHI && min_hopid < TB_PATH_MIN_HOPID)
743 		min_hopid = TB_PATH_MIN_HOPID;
744 
745 	if (max_hopid < 0 || max_hopid > port_max_hopid)
746 		max_hopid = port_max_hopid;
747 
748 	return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
749 }
750 
751 /**
752  * tb_port_alloc_in_hopid() - Allocate input HopID from port
753  * @port: Port to allocate HopID for
754  * @min_hopid: Minimum acceptable input HopID
755  * @max_hopid: Maximum acceptable input HopID
756  *
757  * Return: HopID between @min_hopid and @max_hopid or negative errno in
758  * case of error.
759  */
760 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
761 {
762 	return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
763 }
764 
765 /**
766  * tb_port_alloc_out_hopid() - Allocate output HopID from port
767  * @port: Port to allocate HopID for
768  * @min_hopid: Minimum acceptable output HopID
769  * @max_hopid: Maximum acceptable output HopID
770  *
771  * Return: HopID between @min_hopid and @max_hopid or negative errno in
772  * case of error.
773  */
774 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
775 {
776 	return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
777 }
778 
779 /**
780  * tb_port_release_in_hopid() - Release allocated input HopID from port
781  * @port: Port whose HopID to release
782  * @hopid: HopID to release
783  */
784 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
785 {
786 	ida_simple_remove(&port->in_hopids, hopid);
787 }
788 
789 /**
790  * tb_port_release_out_hopid() - Release allocated output HopID from port
791  * @port: Port whose HopID to release
792  * @hopid: HopID to release
793  */
794 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
795 {
796 	ida_simple_remove(&port->out_hopids, hopid);
797 }
798 
799 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
800 					  const struct tb_switch *sw)
801 {
802 	u64 mask = (1ULL << parent->config.depth * 8) - 1;
803 	return (tb_route(parent) & mask) == (tb_route(sw) & mask);
804 }
805 
806 /**
807  * tb_next_port_on_path() - Return next port for given port on a path
808  * @start: Start port of the walk
809  * @end: End port of the walk
810  * @prev: Previous port (%NULL if this is the first)
811  *
812  * This function can be used to walk from one port to another if they
813  * are connected through zero or more switches. If the @prev is dual
814  * link port, the function follows that link and returns another end on
815  * that same link.
816  *
817  * If the @end port has been reached, return %NULL.
818  *
819  * Domain tb->lock must be held when this function is called.
820  */
821 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
822 				     struct tb_port *prev)
823 {
824 	struct tb_port *next;
825 
826 	if (!prev)
827 		return start;
828 
829 	if (prev->sw == end->sw) {
830 		if (prev == end)
831 			return NULL;
832 		return end;
833 	}
834 
835 	if (tb_switch_is_reachable(prev->sw, end->sw)) {
836 		next = tb_port_at(tb_route(end->sw), prev->sw);
837 		/* Walk down the topology if next == prev */
838 		if (prev->remote &&
839 		    (next == prev || next->dual_link_port == prev))
840 			next = prev->remote;
841 	} else {
842 		if (tb_is_upstream_port(prev)) {
843 			next = prev->remote;
844 		} else {
845 			next = tb_upstream_port(prev->sw);
846 			/*
847 			 * Keep the same link if prev and next are both
848 			 * dual link ports.
849 			 */
850 			if (next->dual_link_port &&
851 			    next->link_nr != prev->link_nr) {
852 				next = next->dual_link_port;
853 			}
854 		}
855 	}
856 
857 	return next != prev ? next : NULL;
858 }
859 
860 /**
861  * tb_port_get_link_speed() - Get current link speed
862  * @port: Port to check (USB4 or CIO)
863  *
864  * Returns link speed in Gb/s or negative errno in case of failure.
865  */
866 int tb_port_get_link_speed(struct tb_port *port)
867 {
868 	u32 val, speed;
869 	int ret;
870 
871 	if (!port->cap_phy)
872 		return -EINVAL;
873 
874 	ret = tb_port_read(port, &val, TB_CFG_PORT,
875 			   port->cap_phy + LANE_ADP_CS_1, 1);
876 	if (ret)
877 		return ret;
878 
879 	speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
880 		LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
881 	return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
882 }
883 
884 static int tb_port_get_link_width(struct tb_port *port)
885 {
886 	u32 val;
887 	int ret;
888 
889 	if (!port->cap_phy)
890 		return -EINVAL;
891 
892 	ret = tb_port_read(port, &val, TB_CFG_PORT,
893 			   port->cap_phy + LANE_ADP_CS_1, 1);
894 	if (ret)
895 		return ret;
896 
897 	return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
898 		LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
899 }
900 
901 static bool tb_port_is_width_supported(struct tb_port *port, int width)
902 {
903 	u32 phy, widths;
904 	int ret;
905 
906 	if (!port->cap_phy)
907 		return false;
908 
909 	ret = tb_port_read(port, &phy, TB_CFG_PORT,
910 			   port->cap_phy + LANE_ADP_CS_0, 1);
911 	if (ret)
912 		return false;
913 
914 	widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
915 		LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
916 
917 	return !!(widths & width);
918 }
919 
920 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
921 {
922 	u32 val;
923 	int ret;
924 
925 	if (!port->cap_phy)
926 		return -EINVAL;
927 
928 	ret = tb_port_read(port, &val, TB_CFG_PORT,
929 			   port->cap_phy + LANE_ADP_CS_1, 1);
930 	if (ret)
931 		return ret;
932 
933 	val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
934 	switch (width) {
935 	case 1:
936 		val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
937 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
938 		break;
939 	case 2:
940 		val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
941 			LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
942 		break;
943 	default:
944 		return -EINVAL;
945 	}
946 
947 	val |= LANE_ADP_CS_1_LB;
948 
949 	return tb_port_write(port, &val, TB_CFG_PORT,
950 			     port->cap_phy + LANE_ADP_CS_1, 1);
951 }
952 
953 static int tb_port_lane_bonding_enable(struct tb_port *port)
954 {
955 	int ret;
956 
957 	/*
958 	 * Enable lane bonding for both links if not already enabled by
959 	 * for example the boot firmware.
960 	 */
961 	ret = tb_port_get_link_width(port);
962 	if (ret == 1) {
963 		ret = tb_port_set_link_width(port, 2);
964 		if (ret)
965 			return ret;
966 	}
967 
968 	ret = tb_port_get_link_width(port->dual_link_port);
969 	if (ret == 1) {
970 		ret = tb_port_set_link_width(port->dual_link_port, 2);
971 		if (ret) {
972 			tb_port_set_link_width(port, 1);
973 			return ret;
974 		}
975 	}
976 
977 	port->bonded = true;
978 	port->dual_link_port->bonded = true;
979 
980 	return 0;
981 }
982 
983 static void tb_port_lane_bonding_disable(struct tb_port *port)
984 {
985 	port->dual_link_port->bonded = false;
986 	port->bonded = false;
987 
988 	tb_port_set_link_width(port->dual_link_port, 1);
989 	tb_port_set_link_width(port, 1);
990 }
991 
992 /**
993  * tb_port_is_enabled() - Is the adapter port enabled
994  * @port: Port to check
995  */
996 bool tb_port_is_enabled(struct tb_port *port)
997 {
998 	switch (port->config.type) {
999 	case TB_TYPE_PCIE_UP:
1000 	case TB_TYPE_PCIE_DOWN:
1001 		return tb_pci_port_is_enabled(port);
1002 
1003 	case TB_TYPE_DP_HDMI_IN:
1004 	case TB_TYPE_DP_HDMI_OUT:
1005 		return tb_dp_port_is_enabled(port);
1006 
1007 	case TB_TYPE_USB3_UP:
1008 	case TB_TYPE_USB3_DOWN:
1009 		return tb_usb3_port_is_enabled(port);
1010 
1011 	default:
1012 		return false;
1013 	}
1014 }
1015 
1016 /**
1017  * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1018  * @port: USB3 adapter port to check
1019  */
1020 bool tb_usb3_port_is_enabled(struct tb_port *port)
1021 {
1022 	u32 data;
1023 
1024 	if (tb_port_read(port, &data, TB_CFG_PORT,
1025 			 port->cap_adap + ADP_USB3_CS_0, 1))
1026 		return false;
1027 
1028 	return !!(data & ADP_USB3_CS_0_PE);
1029 }
1030 
1031 /**
1032  * tb_usb3_port_enable() - Enable USB3 adapter port
1033  * @port: USB3 adapter port to enable
1034  * @enable: Enable/disable the USB3 adapter
1035  */
1036 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1037 {
1038 	u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1039 			  : ADP_USB3_CS_0_V;
1040 
1041 	if (!port->cap_adap)
1042 		return -ENXIO;
1043 	return tb_port_write(port, &word, TB_CFG_PORT,
1044 			     port->cap_adap + ADP_USB3_CS_0, 1);
1045 }
1046 
1047 /**
1048  * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1049  * @port: PCIe port to check
1050  */
1051 bool tb_pci_port_is_enabled(struct tb_port *port)
1052 {
1053 	u32 data;
1054 
1055 	if (tb_port_read(port, &data, TB_CFG_PORT,
1056 			 port->cap_adap + ADP_PCIE_CS_0, 1))
1057 		return false;
1058 
1059 	return !!(data & ADP_PCIE_CS_0_PE);
1060 }
1061 
1062 /**
1063  * tb_pci_port_enable() - Enable PCIe adapter port
1064  * @port: PCIe port to enable
1065  * @enable: Enable/disable the PCIe adapter
1066  */
1067 int tb_pci_port_enable(struct tb_port *port, bool enable)
1068 {
1069 	u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1070 	if (!port->cap_adap)
1071 		return -ENXIO;
1072 	return tb_port_write(port, &word, TB_CFG_PORT,
1073 			     port->cap_adap + ADP_PCIE_CS_0, 1);
1074 }
1075 
1076 /**
1077  * tb_dp_port_hpd_is_active() - Is HPD already active
1078  * @port: DP out port to check
1079  *
1080  * Checks if the DP OUT adapter port has HDP bit already set.
1081  */
1082 int tb_dp_port_hpd_is_active(struct tb_port *port)
1083 {
1084 	u32 data;
1085 	int ret;
1086 
1087 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1088 			   port->cap_adap + ADP_DP_CS_2, 1);
1089 	if (ret)
1090 		return ret;
1091 
1092 	return !!(data & ADP_DP_CS_2_HDP);
1093 }
1094 
1095 /**
1096  * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1097  * @port: Port to clear HPD
1098  *
1099  * If the DP IN port has HDP set, this function can be used to clear it.
1100  */
1101 int tb_dp_port_hpd_clear(struct tb_port *port)
1102 {
1103 	u32 data;
1104 	int ret;
1105 
1106 	ret = tb_port_read(port, &data, TB_CFG_PORT,
1107 			   port->cap_adap + ADP_DP_CS_3, 1);
1108 	if (ret)
1109 		return ret;
1110 
1111 	data |= ADP_DP_CS_3_HDPC;
1112 	return tb_port_write(port, &data, TB_CFG_PORT,
1113 			     port->cap_adap + ADP_DP_CS_3, 1);
1114 }
1115 
1116 /**
1117  * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1118  * @port: DP IN/OUT port to set hops
1119  * @video: Video Hop ID
1120  * @aux_tx: AUX TX Hop ID
1121  * @aux_rx: AUX RX Hop ID
1122  *
1123  * Programs specified Hop IDs for DP IN/OUT port.
1124  */
1125 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1126 			unsigned int aux_tx, unsigned int aux_rx)
1127 {
1128 	u32 data[2];
1129 	int ret;
1130 
1131 	ret = tb_port_read(port, data, TB_CFG_PORT,
1132 			   port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1133 	if (ret)
1134 		return ret;
1135 
1136 	data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1137 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1138 	data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1139 
1140 	data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1141 		ADP_DP_CS_0_VIDEO_HOPID_MASK;
1142 	data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1143 	data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1144 		ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1145 
1146 	return tb_port_write(port, data, TB_CFG_PORT,
1147 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1148 }
1149 
1150 /**
1151  * tb_dp_port_is_enabled() - Is DP adapter port enabled
1152  * @port: DP adapter port to check
1153  */
1154 bool tb_dp_port_is_enabled(struct tb_port *port)
1155 {
1156 	u32 data[2];
1157 
1158 	if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1159 			 ARRAY_SIZE(data)))
1160 		return false;
1161 
1162 	return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1163 }
1164 
1165 /**
1166  * tb_dp_port_enable() - Enables/disables DP paths of a port
1167  * @port: DP IN/OUT port
1168  * @enable: Enable/disable DP path
1169  *
1170  * Once Hop IDs are programmed DP paths can be enabled or disabled by
1171  * calling this function.
1172  */
1173 int tb_dp_port_enable(struct tb_port *port, bool enable)
1174 {
1175 	u32 data[2];
1176 	int ret;
1177 
1178 	ret = tb_port_read(port, data, TB_CFG_PORT,
1179 			  port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1180 	if (ret)
1181 		return ret;
1182 
1183 	if (enable)
1184 		data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1185 	else
1186 		data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1187 
1188 	return tb_port_write(port, data, TB_CFG_PORT,
1189 			     port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1190 }
1191 
1192 /* switch utility functions */
1193 
1194 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1195 {
1196 	switch (sw->generation) {
1197 	case 1:
1198 		return "Thunderbolt 1";
1199 	case 2:
1200 		return "Thunderbolt 2";
1201 	case 3:
1202 		return "Thunderbolt 3";
1203 	case 4:
1204 		return "USB4";
1205 	default:
1206 		return "Unknown";
1207 	}
1208 }
1209 
1210 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1211 {
1212 	const struct tb_regs_switch_header *regs = &sw->config;
1213 
1214 	tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1215 	       tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1216 	       regs->revision, regs->thunderbolt_version);
1217 	tb_dbg(tb, "  Max Port Number: %d\n", regs->max_port_number);
1218 	tb_dbg(tb, "  Config:\n");
1219 	tb_dbg(tb,
1220 		"   Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1221 	       regs->upstream_port_number, regs->depth,
1222 	       (((u64) regs->route_hi) << 32) | regs->route_lo,
1223 	       regs->enabled, regs->plug_events_delay);
1224 	tb_dbg(tb, "   unknown1: %#x unknown4: %#x\n",
1225 	       regs->__unknown1, regs->__unknown4);
1226 }
1227 
1228 /**
1229  * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1230  *
1231  * Return: Returns 0 on success or an error code on failure.
1232  */
1233 int tb_switch_reset(struct tb *tb, u64 route)
1234 {
1235 	struct tb_cfg_result res;
1236 	struct tb_regs_switch_header header = {
1237 		header.route_hi = route >> 32,
1238 		header.route_lo = route,
1239 		header.enabled = true,
1240 	};
1241 	tb_dbg(tb, "resetting switch at %llx\n", route);
1242 	res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1243 			0, 2, 2, 2);
1244 	if (res.err)
1245 		return res.err;
1246 	res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1247 	if (res.err > 0)
1248 		return -EIO;
1249 	return res.err;
1250 }
1251 
1252 /**
1253  * tb_plug_events_active() - enable/disable plug events on a switch
1254  *
1255  * Also configures a sane plug_events_delay of 255ms.
1256  *
1257  * Return: Returns 0 on success or an error code on failure.
1258  */
1259 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1260 {
1261 	u32 data;
1262 	int res;
1263 
1264 	if (tb_switch_is_icm(sw))
1265 		return 0;
1266 
1267 	sw->config.plug_events_delay = 0xff;
1268 	res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1269 	if (res)
1270 		return res;
1271 
1272 	/* Plug events are always enabled in USB4 */
1273 	if (tb_switch_is_usb4(sw))
1274 		return 0;
1275 
1276 	res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1277 	if (res)
1278 		return res;
1279 
1280 	if (active) {
1281 		data = data & 0xFFFFFF83;
1282 		switch (sw->config.device_id) {
1283 		case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1284 		case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1285 		case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1286 			break;
1287 		default:
1288 			data |= 4;
1289 		}
1290 	} else {
1291 		data = data | 0x7c;
1292 	}
1293 	return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1294 			   sw->cap_plug_events + 1, 1);
1295 }
1296 
1297 static ssize_t authorized_show(struct device *dev,
1298 			       struct device_attribute *attr,
1299 			       char *buf)
1300 {
1301 	struct tb_switch *sw = tb_to_switch(dev);
1302 
1303 	return sprintf(buf, "%u\n", sw->authorized);
1304 }
1305 
1306 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1307 {
1308 	int ret = -EINVAL;
1309 
1310 	if (!mutex_trylock(&sw->tb->lock))
1311 		return restart_syscall();
1312 
1313 	if (sw->authorized)
1314 		goto unlock;
1315 
1316 	switch (val) {
1317 	/* Approve switch */
1318 	case 1:
1319 		if (sw->key)
1320 			ret = tb_domain_approve_switch_key(sw->tb, sw);
1321 		else
1322 			ret = tb_domain_approve_switch(sw->tb, sw);
1323 		break;
1324 
1325 	/* Challenge switch */
1326 	case 2:
1327 		if (sw->key)
1328 			ret = tb_domain_challenge_switch_key(sw->tb, sw);
1329 		break;
1330 
1331 	default:
1332 		break;
1333 	}
1334 
1335 	if (!ret) {
1336 		sw->authorized = val;
1337 		/* Notify status change to the userspace */
1338 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1339 	}
1340 
1341 unlock:
1342 	mutex_unlock(&sw->tb->lock);
1343 	return ret;
1344 }
1345 
1346 static ssize_t authorized_store(struct device *dev,
1347 				struct device_attribute *attr,
1348 				const char *buf, size_t count)
1349 {
1350 	struct tb_switch *sw = tb_to_switch(dev);
1351 	unsigned int val;
1352 	ssize_t ret;
1353 
1354 	ret = kstrtouint(buf, 0, &val);
1355 	if (ret)
1356 		return ret;
1357 	if (val > 2)
1358 		return -EINVAL;
1359 
1360 	pm_runtime_get_sync(&sw->dev);
1361 	ret = tb_switch_set_authorized(sw, val);
1362 	pm_runtime_mark_last_busy(&sw->dev);
1363 	pm_runtime_put_autosuspend(&sw->dev);
1364 
1365 	return ret ? ret : count;
1366 }
1367 static DEVICE_ATTR_RW(authorized);
1368 
1369 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1370 			 char *buf)
1371 {
1372 	struct tb_switch *sw = tb_to_switch(dev);
1373 
1374 	return sprintf(buf, "%u\n", sw->boot);
1375 }
1376 static DEVICE_ATTR_RO(boot);
1377 
1378 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1379 			   char *buf)
1380 {
1381 	struct tb_switch *sw = tb_to_switch(dev);
1382 
1383 	return sprintf(buf, "%#x\n", sw->device);
1384 }
1385 static DEVICE_ATTR_RO(device);
1386 
1387 static ssize_t
1388 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1389 {
1390 	struct tb_switch *sw = tb_to_switch(dev);
1391 
1392 	return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1393 }
1394 static DEVICE_ATTR_RO(device_name);
1395 
1396 static ssize_t
1397 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1398 {
1399 	struct tb_switch *sw = tb_to_switch(dev);
1400 
1401 	return sprintf(buf, "%u\n", sw->generation);
1402 }
1403 static DEVICE_ATTR_RO(generation);
1404 
1405 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1406 			char *buf)
1407 {
1408 	struct tb_switch *sw = tb_to_switch(dev);
1409 	ssize_t ret;
1410 
1411 	if (!mutex_trylock(&sw->tb->lock))
1412 		return restart_syscall();
1413 
1414 	if (sw->key)
1415 		ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1416 	else
1417 		ret = sprintf(buf, "\n");
1418 
1419 	mutex_unlock(&sw->tb->lock);
1420 	return ret;
1421 }
1422 
1423 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1424 			 const char *buf, size_t count)
1425 {
1426 	struct tb_switch *sw = tb_to_switch(dev);
1427 	u8 key[TB_SWITCH_KEY_SIZE];
1428 	ssize_t ret = count;
1429 	bool clear = false;
1430 
1431 	if (!strcmp(buf, "\n"))
1432 		clear = true;
1433 	else if (hex2bin(key, buf, sizeof(key)))
1434 		return -EINVAL;
1435 
1436 	if (!mutex_trylock(&sw->tb->lock))
1437 		return restart_syscall();
1438 
1439 	if (sw->authorized) {
1440 		ret = -EBUSY;
1441 	} else {
1442 		kfree(sw->key);
1443 		if (clear) {
1444 			sw->key = NULL;
1445 		} else {
1446 			sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1447 			if (!sw->key)
1448 				ret = -ENOMEM;
1449 		}
1450 	}
1451 
1452 	mutex_unlock(&sw->tb->lock);
1453 	return ret;
1454 }
1455 static DEVICE_ATTR(key, 0600, key_show, key_store);
1456 
1457 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1458 			  char *buf)
1459 {
1460 	struct tb_switch *sw = tb_to_switch(dev);
1461 
1462 	return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1463 }
1464 
1465 /*
1466  * Currently all lanes must run at the same speed but we expose here
1467  * both directions to allow possible asymmetric links in the future.
1468  */
1469 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1470 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1471 
1472 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1473 			  char *buf)
1474 {
1475 	struct tb_switch *sw = tb_to_switch(dev);
1476 
1477 	return sprintf(buf, "%u\n", sw->link_width);
1478 }
1479 
1480 /*
1481  * Currently link has same amount of lanes both directions (1 or 2) but
1482  * expose them separately to allow possible asymmetric links in the future.
1483  */
1484 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1485 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1486 
1487 static ssize_t nvm_authenticate_show(struct device *dev,
1488 	struct device_attribute *attr, char *buf)
1489 {
1490 	struct tb_switch *sw = tb_to_switch(dev);
1491 	u32 status;
1492 
1493 	nvm_get_auth_status(sw, &status);
1494 	return sprintf(buf, "%#x\n", status);
1495 }
1496 
1497 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1498 				      bool disconnect)
1499 {
1500 	struct tb_switch *sw = tb_to_switch(dev);
1501 	int val;
1502 	int ret;
1503 
1504 	pm_runtime_get_sync(&sw->dev);
1505 
1506 	if (!mutex_trylock(&sw->tb->lock)) {
1507 		ret = restart_syscall();
1508 		goto exit_rpm;
1509 	}
1510 
1511 	/* If NVMem devices are not yet added */
1512 	if (!sw->nvm) {
1513 		ret = -EAGAIN;
1514 		goto exit_unlock;
1515 	}
1516 
1517 	ret = kstrtoint(buf, 10, &val);
1518 	if (ret)
1519 		goto exit_unlock;
1520 
1521 	/* Always clear the authentication status */
1522 	nvm_clear_auth_status(sw);
1523 
1524 	if (val > 0) {
1525 		if (!sw->nvm->flushed) {
1526 			if (!sw->nvm->buf) {
1527 				ret = -EINVAL;
1528 				goto exit_unlock;
1529 			}
1530 
1531 			ret = nvm_validate_and_write(sw);
1532 			if (ret || val == WRITE_ONLY)
1533 				goto exit_unlock;
1534 		}
1535 		if (val == WRITE_AND_AUTHENTICATE) {
1536 			if (disconnect) {
1537 				ret = tb_lc_force_power(sw);
1538 			} else {
1539 				sw->nvm->authenticating = true;
1540 				ret = nvm_authenticate(sw);
1541 			}
1542 		}
1543 	}
1544 
1545 exit_unlock:
1546 	mutex_unlock(&sw->tb->lock);
1547 exit_rpm:
1548 	pm_runtime_mark_last_busy(&sw->dev);
1549 	pm_runtime_put_autosuspend(&sw->dev);
1550 
1551 	return ret;
1552 }
1553 
1554 static ssize_t nvm_authenticate_store(struct device *dev,
1555 	struct device_attribute *attr, const char *buf, size_t count)
1556 {
1557 	int ret = nvm_authenticate_sysfs(dev, buf, false);
1558 	if (ret)
1559 		return ret;
1560 	return count;
1561 }
1562 static DEVICE_ATTR_RW(nvm_authenticate);
1563 
1564 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1565 	struct device_attribute *attr, char *buf)
1566 {
1567 	return nvm_authenticate_show(dev, attr, buf);
1568 }
1569 
1570 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1571 	struct device_attribute *attr, const char *buf, size_t count)
1572 {
1573 	int ret;
1574 
1575 	ret = nvm_authenticate_sysfs(dev, buf, true);
1576 	return ret ? ret : count;
1577 }
1578 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1579 
1580 static ssize_t nvm_version_show(struct device *dev,
1581 				struct device_attribute *attr, char *buf)
1582 {
1583 	struct tb_switch *sw = tb_to_switch(dev);
1584 	int ret;
1585 
1586 	if (!mutex_trylock(&sw->tb->lock))
1587 		return restart_syscall();
1588 
1589 	if (sw->safe_mode)
1590 		ret = -ENODATA;
1591 	else if (!sw->nvm)
1592 		ret = -EAGAIN;
1593 	else
1594 		ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1595 
1596 	mutex_unlock(&sw->tb->lock);
1597 
1598 	return ret;
1599 }
1600 static DEVICE_ATTR_RO(nvm_version);
1601 
1602 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1603 			   char *buf)
1604 {
1605 	struct tb_switch *sw = tb_to_switch(dev);
1606 
1607 	return sprintf(buf, "%#x\n", sw->vendor);
1608 }
1609 static DEVICE_ATTR_RO(vendor);
1610 
1611 static ssize_t
1612 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1613 {
1614 	struct tb_switch *sw = tb_to_switch(dev);
1615 
1616 	return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1617 }
1618 static DEVICE_ATTR_RO(vendor_name);
1619 
1620 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1621 			      char *buf)
1622 {
1623 	struct tb_switch *sw = tb_to_switch(dev);
1624 
1625 	return sprintf(buf, "%pUb\n", sw->uuid);
1626 }
1627 static DEVICE_ATTR_RO(unique_id);
1628 
1629 static struct attribute *switch_attrs[] = {
1630 	&dev_attr_authorized.attr,
1631 	&dev_attr_boot.attr,
1632 	&dev_attr_device.attr,
1633 	&dev_attr_device_name.attr,
1634 	&dev_attr_generation.attr,
1635 	&dev_attr_key.attr,
1636 	&dev_attr_nvm_authenticate.attr,
1637 	&dev_attr_nvm_authenticate_on_disconnect.attr,
1638 	&dev_attr_nvm_version.attr,
1639 	&dev_attr_rx_speed.attr,
1640 	&dev_attr_rx_lanes.attr,
1641 	&dev_attr_tx_speed.attr,
1642 	&dev_attr_tx_lanes.attr,
1643 	&dev_attr_vendor.attr,
1644 	&dev_attr_vendor_name.attr,
1645 	&dev_attr_unique_id.attr,
1646 	NULL,
1647 };
1648 
1649 static umode_t switch_attr_is_visible(struct kobject *kobj,
1650 				      struct attribute *attr, int n)
1651 {
1652 	struct device *dev = container_of(kobj, struct device, kobj);
1653 	struct tb_switch *sw = tb_to_switch(dev);
1654 
1655 	if (attr == &dev_attr_device.attr) {
1656 		if (!sw->device)
1657 			return 0;
1658 	} else if (attr == &dev_attr_device_name.attr) {
1659 		if (!sw->device_name)
1660 			return 0;
1661 	} else if (attr == &dev_attr_vendor.attr)  {
1662 		if (!sw->vendor)
1663 			return 0;
1664 	} else if (attr == &dev_attr_vendor_name.attr)  {
1665 		if (!sw->vendor_name)
1666 			return 0;
1667 	} else if (attr == &dev_attr_key.attr) {
1668 		if (tb_route(sw) &&
1669 		    sw->tb->security_level == TB_SECURITY_SECURE &&
1670 		    sw->security_level == TB_SECURITY_SECURE)
1671 			return attr->mode;
1672 		return 0;
1673 	} else if (attr == &dev_attr_rx_speed.attr ||
1674 		   attr == &dev_attr_rx_lanes.attr ||
1675 		   attr == &dev_attr_tx_speed.attr ||
1676 		   attr == &dev_attr_tx_lanes.attr) {
1677 		if (tb_route(sw))
1678 			return attr->mode;
1679 		return 0;
1680 	} else if (attr == &dev_attr_nvm_authenticate.attr) {
1681 		if (nvm_upgradeable(sw))
1682 			return attr->mode;
1683 		return 0;
1684 	} else if (attr == &dev_attr_nvm_version.attr) {
1685 		if (nvm_readable(sw))
1686 			return attr->mode;
1687 		return 0;
1688 	} else if (attr == &dev_attr_boot.attr) {
1689 		if (tb_route(sw))
1690 			return attr->mode;
1691 		return 0;
1692 	} else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1693 		if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1694 			return attr->mode;
1695 		return 0;
1696 	}
1697 
1698 	return sw->safe_mode ? 0 : attr->mode;
1699 }
1700 
1701 static struct attribute_group switch_group = {
1702 	.is_visible = switch_attr_is_visible,
1703 	.attrs = switch_attrs,
1704 };
1705 
1706 static const struct attribute_group *switch_groups[] = {
1707 	&switch_group,
1708 	NULL,
1709 };
1710 
1711 static void tb_switch_release(struct device *dev)
1712 {
1713 	struct tb_switch *sw = tb_to_switch(dev);
1714 	struct tb_port *port;
1715 
1716 	dma_port_free(sw->dma_port);
1717 
1718 	tb_switch_for_each_port(sw, port) {
1719 		if (!port->disabled) {
1720 			ida_destroy(&port->in_hopids);
1721 			ida_destroy(&port->out_hopids);
1722 		}
1723 	}
1724 
1725 	kfree(sw->uuid);
1726 	kfree(sw->device_name);
1727 	kfree(sw->vendor_name);
1728 	kfree(sw->ports);
1729 	kfree(sw->drom);
1730 	kfree(sw->key);
1731 	kfree(sw);
1732 }
1733 
1734 /*
1735  * Currently only need to provide the callbacks. Everything else is handled
1736  * in the connection manager.
1737  */
1738 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1739 {
1740 	struct tb_switch *sw = tb_to_switch(dev);
1741 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1742 
1743 	if (cm_ops->runtime_suspend_switch)
1744 		return cm_ops->runtime_suspend_switch(sw);
1745 
1746 	return 0;
1747 }
1748 
1749 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1750 {
1751 	struct tb_switch *sw = tb_to_switch(dev);
1752 	const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1753 
1754 	if (cm_ops->runtime_resume_switch)
1755 		return cm_ops->runtime_resume_switch(sw);
1756 	return 0;
1757 }
1758 
1759 static const struct dev_pm_ops tb_switch_pm_ops = {
1760 	SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1761 			   NULL)
1762 };
1763 
1764 struct device_type tb_switch_type = {
1765 	.name = "thunderbolt_device",
1766 	.release = tb_switch_release,
1767 	.pm = &tb_switch_pm_ops,
1768 };
1769 
1770 static int tb_switch_get_generation(struct tb_switch *sw)
1771 {
1772 	switch (sw->config.device_id) {
1773 	case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1774 	case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1775 	case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1776 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1777 	case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1778 	case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1779 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1780 	case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1781 		return 1;
1782 
1783 	case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1784 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1785 	case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1786 		return 2;
1787 
1788 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1789 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1790 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1791 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1792 	case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1793 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1794 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1795 	case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1796 	case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1797 	case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1798 		return 3;
1799 
1800 	default:
1801 		if (tb_switch_is_usb4(sw))
1802 			return 4;
1803 
1804 		/*
1805 		 * For unknown switches assume generation to be 1 to be
1806 		 * on the safe side.
1807 		 */
1808 		tb_sw_warn(sw, "unsupported switch device id %#x\n",
1809 			   sw->config.device_id);
1810 		return 1;
1811 	}
1812 }
1813 
1814 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1815 {
1816 	int max_depth;
1817 
1818 	if (tb_switch_is_usb4(sw) ||
1819 	    (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1820 		max_depth = USB4_SWITCH_MAX_DEPTH;
1821 	else
1822 		max_depth = TB_SWITCH_MAX_DEPTH;
1823 
1824 	return depth > max_depth;
1825 }
1826 
1827 /**
1828  * tb_switch_alloc() - allocate a switch
1829  * @tb: Pointer to the owning domain
1830  * @parent: Parent device for this switch
1831  * @route: Route string for this switch
1832  *
1833  * Allocates and initializes a switch. Will not upload configuration to
1834  * the switch. For that you need to call tb_switch_configure()
1835  * separately. The returned switch should be released by calling
1836  * tb_switch_put().
1837  *
1838  * Return: Pointer to the allocated switch or ERR_PTR() in case of
1839  * failure.
1840  */
1841 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1842 				  u64 route)
1843 {
1844 	struct tb_switch *sw;
1845 	int upstream_port;
1846 	int i, ret, depth;
1847 
1848 	/* Unlock the downstream port so we can access the switch below */
1849 	if (route) {
1850 		struct tb_switch *parent_sw = tb_to_switch(parent);
1851 		struct tb_port *down;
1852 
1853 		down = tb_port_at(route, parent_sw);
1854 		tb_port_unlock(down);
1855 	}
1856 
1857 	depth = tb_route_length(route);
1858 
1859 	upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1860 	if (upstream_port < 0)
1861 		return ERR_PTR(upstream_port);
1862 
1863 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1864 	if (!sw)
1865 		return ERR_PTR(-ENOMEM);
1866 
1867 	sw->tb = tb;
1868 	ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1869 	if (ret)
1870 		goto err_free_sw_ports;
1871 
1872 	sw->generation = tb_switch_get_generation(sw);
1873 
1874 	tb_dbg(tb, "current switch config:\n");
1875 	tb_dump_switch(tb, sw);
1876 
1877 	/* configure switch */
1878 	sw->config.upstream_port_number = upstream_port;
1879 	sw->config.depth = depth;
1880 	sw->config.route_hi = upper_32_bits(route);
1881 	sw->config.route_lo = lower_32_bits(route);
1882 	sw->config.enabled = 0;
1883 
1884 	/* Make sure we do not exceed maximum topology limit */
1885 	if (tb_switch_exceeds_max_depth(sw, depth)) {
1886 		ret = -EADDRNOTAVAIL;
1887 		goto err_free_sw_ports;
1888 	}
1889 
1890 	/* initialize ports */
1891 	sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1892 				GFP_KERNEL);
1893 	if (!sw->ports) {
1894 		ret = -ENOMEM;
1895 		goto err_free_sw_ports;
1896 	}
1897 
1898 	for (i = 0; i <= sw->config.max_port_number; i++) {
1899 		/* minimum setup for tb_find_cap and tb_drom_read to work */
1900 		sw->ports[i].sw = sw;
1901 		sw->ports[i].port = i;
1902 	}
1903 
1904 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1905 	if (ret > 0)
1906 		sw->cap_plug_events = ret;
1907 
1908 	ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1909 	if (ret > 0)
1910 		sw->cap_lc = ret;
1911 
1912 	/* Root switch is always authorized */
1913 	if (!route)
1914 		sw->authorized = true;
1915 
1916 	device_initialize(&sw->dev);
1917 	sw->dev.parent = parent;
1918 	sw->dev.bus = &tb_bus_type;
1919 	sw->dev.type = &tb_switch_type;
1920 	sw->dev.groups = switch_groups;
1921 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1922 
1923 	return sw;
1924 
1925 err_free_sw_ports:
1926 	kfree(sw->ports);
1927 	kfree(sw);
1928 
1929 	return ERR_PTR(ret);
1930 }
1931 
1932 /**
1933  * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1934  * @tb: Pointer to the owning domain
1935  * @parent: Parent device for this switch
1936  * @route: Route string for this switch
1937  *
1938  * This creates a switch in safe mode. This means the switch pretty much
1939  * lacks all capabilities except DMA configuration port before it is
1940  * flashed with a valid NVM firmware.
1941  *
1942  * The returned switch must be released by calling tb_switch_put().
1943  *
1944  * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1945  */
1946 struct tb_switch *
1947 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1948 {
1949 	struct tb_switch *sw;
1950 
1951 	sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1952 	if (!sw)
1953 		return ERR_PTR(-ENOMEM);
1954 
1955 	sw->tb = tb;
1956 	sw->config.depth = tb_route_length(route);
1957 	sw->config.route_hi = upper_32_bits(route);
1958 	sw->config.route_lo = lower_32_bits(route);
1959 	sw->safe_mode = true;
1960 
1961 	device_initialize(&sw->dev);
1962 	sw->dev.parent = parent;
1963 	sw->dev.bus = &tb_bus_type;
1964 	sw->dev.type = &tb_switch_type;
1965 	sw->dev.groups = switch_groups;
1966 	dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1967 
1968 	return sw;
1969 }
1970 
1971 /**
1972  * tb_switch_configure() - Uploads configuration to the switch
1973  * @sw: Switch to configure
1974  *
1975  * Call this function before the switch is added to the system. It will
1976  * upload configuration to the switch and makes it available for the
1977  * connection manager to use. Can be called to the switch again after
1978  * resume from low power states to re-initialize it.
1979  *
1980  * Return: %0 in case of success and negative errno in case of failure
1981  */
1982 int tb_switch_configure(struct tb_switch *sw)
1983 {
1984 	struct tb *tb = sw->tb;
1985 	u64 route;
1986 	int ret;
1987 
1988 	route = tb_route(sw);
1989 
1990 	tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1991 	       sw->config.enabled ? "restoring " : "initializing", route,
1992 	       tb_route_length(route), sw->config.upstream_port_number);
1993 
1994 	sw->config.enabled = 1;
1995 
1996 	if (tb_switch_is_usb4(sw)) {
1997 		/*
1998 		 * For USB4 devices, we need to program the CM version
1999 		 * accordingly so that it knows to expose all the
2000 		 * additional capabilities.
2001 		 */
2002 		sw->config.cmuv = USB4_VERSION_1_0;
2003 
2004 		/* Enumerate the switch */
2005 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2006 				  ROUTER_CS_1, 4);
2007 		if (ret)
2008 			return ret;
2009 
2010 		ret = usb4_switch_setup(sw);
2011 		if (ret)
2012 			return ret;
2013 
2014 		ret = usb4_switch_configure_link(sw);
2015 	} else {
2016 		if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2017 			tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2018 				   sw->config.vendor_id);
2019 
2020 		if (!sw->cap_plug_events) {
2021 			tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2022 			return -ENODEV;
2023 		}
2024 
2025 		/* Enumerate the switch */
2026 		ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2027 				  ROUTER_CS_1, 3);
2028 		if (ret)
2029 			return ret;
2030 
2031 		ret = tb_lc_configure_link(sw);
2032 	}
2033 	if (ret)
2034 		return ret;
2035 
2036 	return tb_plug_events_active(sw, true);
2037 }
2038 
2039 static int tb_switch_set_uuid(struct tb_switch *sw)
2040 {
2041 	bool uid = false;
2042 	u32 uuid[4];
2043 	int ret;
2044 
2045 	if (sw->uuid)
2046 		return 0;
2047 
2048 	if (tb_switch_is_usb4(sw)) {
2049 		ret = usb4_switch_read_uid(sw, &sw->uid);
2050 		if (ret)
2051 			return ret;
2052 		uid = true;
2053 	} else {
2054 		/*
2055 		 * The newer controllers include fused UUID as part of
2056 		 * link controller specific registers
2057 		 */
2058 		ret = tb_lc_read_uuid(sw, uuid);
2059 		if (ret) {
2060 			if (ret != -EINVAL)
2061 				return ret;
2062 			uid = true;
2063 		}
2064 	}
2065 
2066 	if (uid) {
2067 		/*
2068 		 * ICM generates UUID based on UID and fills the upper
2069 		 * two words with ones. This is not strictly following
2070 		 * UUID format but we want to be compatible with it so
2071 		 * we do the same here.
2072 		 */
2073 		uuid[0] = sw->uid & 0xffffffff;
2074 		uuid[1] = (sw->uid >> 32) & 0xffffffff;
2075 		uuid[2] = 0xffffffff;
2076 		uuid[3] = 0xffffffff;
2077 	}
2078 
2079 	sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2080 	if (!sw->uuid)
2081 		return -ENOMEM;
2082 	return 0;
2083 }
2084 
2085 static int tb_switch_add_dma_port(struct tb_switch *sw)
2086 {
2087 	u32 status;
2088 	int ret;
2089 
2090 	switch (sw->generation) {
2091 	case 2:
2092 		/* Only root switch can be upgraded */
2093 		if (tb_route(sw))
2094 			return 0;
2095 
2096 		fallthrough;
2097 	case 3:
2098 		ret = tb_switch_set_uuid(sw);
2099 		if (ret)
2100 			return ret;
2101 		break;
2102 
2103 	default:
2104 		/*
2105 		 * DMA port is the only thing available when the switch
2106 		 * is in safe mode.
2107 		 */
2108 		if (!sw->safe_mode)
2109 			return 0;
2110 		break;
2111 	}
2112 
2113 	/* Root switch DMA port requires running firmware */
2114 	if (!tb_route(sw) && !tb_switch_is_icm(sw))
2115 		return 0;
2116 
2117 	sw->dma_port = dma_port_alloc(sw);
2118 	if (!sw->dma_port)
2119 		return 0;
2120 
2121 	if (sw->no_nvm_upgrade)
2122 		return 0;
2123 
2124 	/*
2125 	 * If there is status already set then authentication failed
2126 	 * when the dma_port_flash_update_auth() returned. Power cycling
2127 	 * is not needed (it was done already) so only thing we do here
2128 	 * is to unblock runtime PM of the root port.
2129 	 */
2130 	nvm_get_auth_status(sw, &status);
2131 	if (status) {
2132 		if (!tb_route(sw))
2133 			nvm_authenticate_complete_dma_port(sw);
2134 		return 0;
2135 	}
2136 
2137 	/*
2138 	 * Check status of the previous flash authentication. If there
2139 	 * is one we need to power cycle the switch in any case to make
2140 	 * it functional again.
2141 	 */
2142 	ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2143 	if (ret <= 0)
2144 		return ret;
2145 
2146 	/* Now we can allow root port to suspend again */
2147 	if (!tb_route(sw))
2148 		nvm_authenticate_complete_dma_port(sw);
2149 
2150 	if (status) {
2151 		tb_sw_info(sw, "switch flash authentication failed\n");
2152 		nvm_set_auth_status(sw, status);
2153 	}
2154 
2155 	tb_sw_info(sw, "power cycling the switch now\n");
2156 	dma_port_power_cycle(sw->dma_port);
2157 
2158 	/*
2159 	 * We return error here which causes the switch adding failure.
2160 	 * It should appear back after power cycle is complete.
2161 	 */
2162 	return -ESHUTDOWN;
2163 }
2164 
2165 static void tb_switch_default_link_ports(struct tb_switch *sw)
2166 {
2167 	int i;
2168 
2169 	for (i = 1; i <= sw->config.max_port_number; i += 2) {
2170 		struct tb_port *port = &sw->ports[i];
2171 		struct tb_port *subordinate;
2172 
2173 		if (!tb_port_is_null(port))
2174 			continue;
2175 
2176 		/* Check for the subordinate port */
2177 		if (i == sw->config.max_port_number ||
2178 		    !tb_port_is_null(&sw->ports[i + 1]))
2179 			continue;
2180 
2181 		/* Link them if not already done so (by DROM) */
2182 		subordinate = &sw->ports[i + 1];
2183 		if (!port->dual_link_port && !subordinate->dual_link_port) {
2184 			port->link_nr = 0;
2185 			port->dual_link_port = subordinate;
2186 			subordinate->link_nr = 1;
2187 			subordinate->dual_link_port = port;
2188 
2189 			tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2190 				  port->port, subordinate->port);
2191 		}
2192 	}
2193 }
2194 
2195 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2196 {
2197 	const struct tb_port *up = tb_upstream_port(sw);
2198 
2199 	if (!up->dual_link_port || !up->dual_link_port->remote)
2200 		return false;
2201 
2202 	if (tb_switch_is_usb4(sw))
2203 		return usb4_switch_lane_bonding_possible(sw);
2204 	return tb_lc_lane_bonding_possible(sw);
2205 }
2206 
2207 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2208 {
2209 	struct tb_port *up;
2210 	bool change = false;
2211 	int ret;
2212 
2213 	if (!tb_route(sw) || tb_switch_is_icm(sw))
2214 		return 0;
2215 
2216 	up = tb_upstream_port(sw);
2217 
2218 	ret = tb_port_get_link_speed(up);
2219 	if (ret < 0)
2220 		return ret;
2221 	if (sw->link_speed != ret)
2222 		change = true;
2223 	sw->link_speed = ret;
2224 
2225 	ret = tb_port_get_link_width(up);
2226 	if (ret < 0)
2227 		return ret;
2228 	if (sw->link_width != ret)
2229 		change = true;
2230 	sw->link_width = ret;
2231 
2232 	/* Notify userspace that there is possible link attribute change */
2233 	if (device_is_registered(&sw->dev) && change)
2234 		kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2235 
2236 	return 0;
2237 }
2238 
2239 /**
2240  * tb_switch_lane_bonding_enable() - Enable lane bonding
2241  * @sw: Switch to enable lane bonding
2242  *
2243  * Connection manager can call this function to enable lane bonding of a
2244  * switch. If conditions are correct and both switches support the feature,
2245  * lanes are bonded. It is safe to call this to any switch.
2246  */
2247 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2248 {
2249 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2250 	struct tb_port *up, *down;
2251 	u64 route = tb_route(sw);
2252 	int ret;
2253 
2254 	if (!route)
2255 		return 0;
2256 
2257 	if (!tb_switch_lane_bonding_possible(sw))
2258 		return 0;
2259 
2260 	up = tb_upstream_port(sw);
2261 	down = tb_port_at(route, parent);
2262 
2263 	if (!tb_port_is_width_supported(up, 2) ||
2264 	    !tb_port_is_width_supported(down, 2))
2265 		return 0;
2266 
2267 	ret = tb_port_lane_bonding_enable(up);
2268 	if (ret) {
2269 		tb_port_warn(up, "failed to enable lane bonding\n");
2270 		return ret;
2271 	}
2272 
2273 	ret = tb_port_lane_bonding_enable(down);
2274 	if (ret) {
2275 		tb_port_warn(down, "failed to enable lane bonding\n");
2276 		tb_port_lane_bonding_disable(up);
2277 		return ret;
2278 	}
2279 
2280 	tb_switch_update_link_attributes(sw);
2281 
2282 	tb_sw_dbg(sw, "lane bonding enabled\n");
2283 	return ret;
2284 }
2285 
2286 /**
2287  * tb_switch_lane_bonding_disable() - Disable lane bonding
2288  * @sw: Switch whose lane bonding to disable
2289  *
2290  * Disables lane bonding between @sw and parent. This can be called even
2291  * if lanes were not bonded originally.
2292  */
2293 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2294 {
2295 	struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2296 	struct tb_port *up, *down;
2297 
2298 	if (!tb_route(sw))
2299 		return;
2300 
2301 	up = tb_upstream_port(sw);
2302 	if (!up->bonded)
2303 		return;
2304 
2305 	down = tb_port_at(tb_route(sw), parent);
2306 
2307 	tb_port_lane_bonding_disable(up);
2308 	tb_port_lane_bonding_disable(down);
2309 
2310 	tb_switch_update_link_attributes(sw);
2311 	tb_sw_dbg(sw, "lane bonding disabled\n");
2312 }
2313 
2314 /**
2315  * tb_switch_add() - Add a switch to the domain
2316  * @sw: Switch to add
2317  *
2318  * This is the last step in adding switch to the domain. It will read
2319  * identification information from DROM and initializes ports so that
2320  * they can be used to connect other switches. The switch will be
2321  * exposed to the userspace when this function successfully returns. To
2322  * remove and release the switch, call tb_switch_remove().
2323  *
2324  * Return: %0 in case of success and negative errno in case of failure
2325  */
2326 int tb_switch_add(struct tb_switch *sw)
2327 {
2328 	int i, ret;
2329 
2330 	/*
2331 	 * Initialize DMA control port now before we read DROM. Recent
2332 	 * host controllers have more complete DROM on NVM that includes
2333 	 * vendor and model identification strings which we then expose
2334 	 * to the userspace. NVM can be accessed through DMA
2335 	 * configuration based mailbox.
2336 	 */
2337 	ret = tb_switch_add_dma_port(sw);
2338 	if (ret) {
2339 		dev_err(&sw->dev, "failed to add DMA port\n");
2340 		return ret;
2341 	}
2342 
2343 	if (!sw->safe_mode) {
2344 		/* read drom */
2345 		ret = tb_drom_read(sw);
2346 		if (ret) {
2347 			dev_err(&sw->dev, "reading DROM failed\n");
2348 			return ret;
2349 		}
2350 		tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2351 
2352 		ret = tb_switch_set_uuid(sw);
2353 		if (ret) {
2354 			dev_err(&sw->dev, "failed to set UUID\n");
2355 			return ret;
2356 		}
2357 
2358 		for (i = 0; i <= sw->config.max_port_number; i++) {
2359 			if (sw->ports[i].disabled) {
2360 				tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2361 				continue;
2362 			}
2363 			ret = tb_init_port(&sw->ports[i]);
2364 			if (ret) {
2365 				dev_err(&sw->dev, "failed to initialize port %d\n", i);
2366 				return ret;
2367 			}
2368 		}
2369 
2370 		tb_switch_default_link_ports(sw);
2371 
2372 		ret = tb_switch_update_link_attributes(sw);
2373 		if (ret)
2374 			return ret;
2375 
2376 		ret = tb_switch_tmu_init(sw);
2377 		if (ret)
2378 			return ret;
2379 	}
2380 
2381 	ret = device_add(&sw->dev);
2382 	if (ret) {
2383 		dev_err(&sw->dev, "failed to add device: %d\n", ret);
2384 		return ret;
2385 	}
2386 
2387 	if (tb_route(sw)) {
2388 		dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2389 			 sw->vendor, sw->device);
2390 		if (sw->vendor_name && sw->device_name)
2391 			dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2392 				 sw->device_name);
2393 	}
2394 
2395 	ret = tb_switch_nvm_add(sw);
2396 	if (ret) {
2397 		dev_err(&sw->dev, "failed to add NVM devices\n");
2398 		device_del(&sw->dev);
2399 		return ret;
2400 	}
2401 
2402 	pm_runtime_set_active(&sw->dev);
2403 	if (sw->rpm) {
2404 		pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2405 		pm_runtime_use_autosuspend(&sw->dev);
2406 		pm_runtime_mark_last_busy(&sw->dev);
2407 		pm_runtime_enable(&sw->dev);
2408 		pm_request_autosuspend(&sw->dev);
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * tb_switch_remove() - Remove and release a switch
2416  * @sw: Switch to remove
2417  *
2418  * This will remove the switch from the domain and release it after last
2419  * reference count drops to zero. If there are switches connected below
2420  * this switch, they will be removed as well.
2421  */
2422 void tb_switch_remove(struct tb_switch *sw)
2423 {
2424 	struct tb_port *port;
2425 
2426 	if (sw->rpm) {
2427 		pm_runtime_get_sync(&sw->dev);
2428 		pm_runtime_disable(&sw->dev);
2429 	}
2430 
2431 	/* port 0 is the switch itself and never has a remote */
2432 	tb_switch_for_each_port(sw, port) {
2433 		if (tb_port_has_remote(port)) {
2434 			tb_switch_remove(port->remote->sw);
2435 			port->remote = NULL;
2436 		} else if (port->xdomain) {
2437 			tb_xdomain_remove(port->xdomain);
2438 			port->xdomain = NULL;
2439 		}
2440 
2441 		/* Remove any downstream retimers */
2442 		tb_retimer_remove_all(port);
2443 	}
2444 
2445 	if (!sw->is_unplugged)
2446 		tb_plug_events_active(sw, false);
2447 
2448 	if (tb_switch_is_usb4(sw))
2449 		usb4_switch_unconfigure_link(sw);
2450 	else
2451 		tb_lc_unconfigure_link(sw);
2452 
2453 	tb_switch_nvm_remove(sw);
2454 
2455 	if (tb_route(sw))
2456 		dev_info(&sw->dev, "device disconnected\n");
2457 	device_unregister(&sw->dev);
2458 }
2459 
2460 /**
2461  * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2462  */
2463 void tb_sw_set_unplugged(struct tb_switch *sw)
2464 {
2465 	struct tb_port *port;
2466 
2467 	if (sw == sw->tb->root_switch) {
2468 		tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 		return;
2470 	}
2471 	if (sw->is_unplugged) {
2472 		tb_sw_WARN(sw, "is_unplugged already set\n");
2473 		return;
2474 	}
2475 	sw->is_unplugged = true;
2476 	tb_switch_for_each_port(sw, port) {
2477 		if (tb_port_has_remote(port))
2478 			tb_sw_set_unplugged(port->remote->sw);
2479 		else if (port->xdomain)
2480 			port->xdomain->is_unplugged = true;
2481 	}
2482 }
2483 
2484 int tb_switch_resume(struct tb_switch *sw)
2485 {
2486 	struct tb_port *port;
2487 	int err;
2488 
2489 	tb_sw_dbg(sw, "resuming switch\n");
2490 
2491 	/*
2492 	 * Check for UID of the connected switches except for root
2493 	 * switch which we assume cannot be removed.
2494 	 */
2495 	if (tb_route(sw)) {
2496 		u64 uid;
2497 
2498 		/*
2499 		 * Check first that we can still read the switch config
2500 		 * space. It may be that there is now another domain
2501 		 * connected.
2502 		 */
2503 		err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 		if (err < 0) {
2505 			tb_sw_info(sw, "switch not present anymore\n");
2506 			return err;
2507 		}
2508 
2509 		if (tb_switch_is_usb4(sw))
2510 			err = usb4_switch_read_uid(sw, &uid);
2511 		else
2512 			err = tb_drom_read_uid_only(sw, &uid);
2513 		if (err) {
2514 			tb_sw_warn(sw, "uid read failed\n");
2515 			return err;
2516 		}
2517 		if (sw->uid != uid) {
2518 			tb_sw_info(sw,
2519 				"changed while suspended (uid %#llx -> %#llx)\n",
2520 				sw->uid, uid);
2521 			return -ENODEV;
2522 		}
2523 	}
2524 
2525 	err = tb_switch_configure(sw);
2526 	if (err)
2527 		return err;
2528 
2529 	/* check for surviving downstream switches */
2530 	tb_switch_for_each_port(sw, port) {
2531 		if (!tb_port_has_remote(port) && !port->xdomain)
2532 			continue;
2533 
2534 		if (tb_wait_for_port(port, true) <= 0) {
2535 			tb_port_warn(port,
2536 				     "lost during suspend, disconnecting\n");
2537 			if (tb_port_has_remote(port))
2538 				tb_sw_set_unplugged(port->remote->sw);
2539 			else if (port->xdomain)
2540 				port->xdomain->is_unplugged = true;
2541 		} else if (tb_port_has_remote(port) || port->xdomain) {
2542 			/*
2543 			 * Always unlock the port so the downstream
2544 			 * switch/domain is accessible.
2545 			 */
2546 			if (tb_port_unlock(port))
2547 				tb_port_warn(port, "failed to unlock port\n");
2548 			if (port->remote && tb_switch_resume(port->remote->sw)) {
2549 				tb_port_warn(port,
2550 					     "lost during suspend, disconnecting\n");
2551 				tb_sw_set_unplugged(port->remote->sw);
2552 			}
2553 		}
2554 	}
2555 	return 0;
2556 }
2557 
2558 void tb_switch_suspend(struct tb_switch *sw)
2559 {
2560 	struct tb_port *port;
2561 	int err;
2562 
2563 	err = tb_plug_events_active(sw, false);
2564 	if (err)
2565 		return;
2566 
2567 	tb_switch_for_each_port(sw, port) {
2568 		if (tb_port_has_remote(port))
2569 			tb_switch_suspend(port->remote->sw);
2570 	}
2571 
2572 	if (tb_switch_is_usb4(sw))
2573 		usb4_switch_set_sleep(sw);
2574 	else
2575 		tb_lc_set_sleep(sw);
2576 }
2577 
2578 /**
2579  * tb_switch_query_dp_resource() - Query availability of DP resource
2580  * @sw: Switch whose DP resource is queried
2581  * @in: DP IN port
2582  *
2583  * Queries availability of DP resource for DP tunneling using switch
2584  * specific means. Returns %true if resource is available.
2585  */
2586 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587 {
2588 	if (tb_switch_is_usb4(sw))
2589 		return usb4_switch_query_dp_resource(sw, in);
2590 	return tb_lc_dp_sink_query(sw, in);
2591 }
2592 
2593 /**
2594  * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595  * @sw: Switch whose DP resource is allocated
2596  * @in: DP IN port
2597  *
2598  * Allocates DP resource for DP tunneling. The resource must be
2599  * available for this to succeed (see tb_switch_query_dp_resource()).
2600  * Returns %0 in success and negative errno otherwise.
2601  */
2602 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603 {
2604 	if (tb_switch_is_usb4(sw))
2605 		return usb4_switch_alloc_dp_resource(sw, in);
2606 	return tb_lc_dp_sink_alloc(sw, in);
2607 }
2608 
2609 /**
2610  * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611  * @sw: Switch whose DP resource is de-allocated
2612  * @in: DP IN port
2613  *
2614  * De-allocates DP resource that was previously allocated for DP
2615  * tunneling.
2616  */
2617 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618 {
2619 	int ret;
2620 
2621 	if (tb_switch_is_usb4(sw))
2622 		ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 	else
2624 		ret = tb_lc_dp_sink_dealloc(sw, in);
2625 
2626 	if (ret)
2627 		tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 			   in->port);
2629 }
2630 
2631 struct tb_sw_lookup {
2632 	struct tb *tb;
2633 	u8 link;
2634 	u8 depth;
2635 	const uuid_t *uuid;
2636 	u64 route;
2637 };
2638 
2639 static int tb_switch_match(struct device *dev, const void *data)
2640 {
2641 	struct tb_switch *sw = tb_to_switch(dev);
2642 	const struct tb_sw_lookup *lookup = data;
2643 
2644 	if (!sw)
2645 		return 0;
2646 	if (sw->tb != lookup->tb)
2647 		return 0;
2648 
2649 	if (lookup->uuid)
2650 		return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651 
2652 	if (lookup->route) {
2653 		return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 		       sw->config.route_hi == upper_32_bits(lookup->route);
2655 	}
2656 
2657 	/* Root switch is matched only by depth */
2658 	if (!lookup->depth)
2659 		return !sw->depth;
2660 
2661 	return sw->link == lookup->link && sw->depth == lookup->depth;
2662 }
2663 
2664 /**
2665  * tb_switch_find_by_link_depth() - Find switch by link and depth
2666  * @tb: Domain the switch belongs
2667  * @link: Link number the switch is connected
2668  * @depth: Depth of the switch in link
2669  *
2670  * Returned switch has reference count increased so the caller needs to
2671  * call tb_switch_put() when done with the switch.
2672  */
2673 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674 {
2675 	struct tb_sw_lookup lookup;
2676 	struct device *dev;
2677 
2678 	memset(&lookup, 0, sizeof(lookup));
2679 	lookup.tb = tb;
2680 	lookup.link = link;
2681 	lookup.depth = depth;
2682 
2683 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 	if (dev)
2685 		return tb_to_switch(dev);
2686 
2687 	return NULL;
2688 }
2689 
2690 /**
2691  * tb_switch_find_by_uuid() - Find switch by UUID
2692  * @tb: Domain the switch belongs
2693  * @uuid: UUID to look for
2694  *
2695  * Returned switch has reference count increased so the caller needs to
2696  * call tb_switch_put() when done with the switch.
2697  */
2698 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2699 {
2700 	struct tb_sw_lookup lookup;
2701 	struct device *dev;
2702 
2703 	memset(&lookup, 0, sizeof(lookup));
2704 	lookup.tb = tb;
2705 	lookup.uuid = uuid;
2706 
2707 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 	if (dev)
2709 		return tb_to_switch(dev);
2710 
2711 	return NULL;
2712 }
2713 
2714 /**
2715  * tb_switch_find_by_route() - Find switch by route string
2716  * @tb: Domain the switch belongs
2717  * @route: Route string to look for
2718  *
2719  * Returned switch has reference count increased so the caller needs to
2720  * call tb_switch_put() when done with the switch.
2721  */
2722 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723 {
2724 	struct tb_sw_lookup lookup;
2725 	struct device *dev;
2726 
2727 	if (!route)
2728 		return tb_switch_get(tb->root_switch);
2729 
2730 	memset(&lookup, 0, sizeof(lookup));
2731 	lookup.tb = tb;
2732 	lookup.route = route;
2733 
2734 	dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 	if (dev)
2736 		return tb_to_switch(dev);
2737 
2738 	return NULL;
2739 }
2740 
2741 /**
2742  * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743  * @sw: Switch to find the port from
2744  * @type: Port type to look for
2745  */
2746 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 				    enum tb_port_type type)
2748 {
2749 	struct tb_port *port;
2750 
2751 	tb_switch_for_each_port(sw, port) {
2752 		if (port->config.type == type)
2753 			return port;
2754 	}
2755 
2756 	return NULL;
2757 }
2758