1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM helpers 4 * 5 * Copyright (C) 2020, Intel Corporation 6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com> 7 */ 8 9 #include <linux/idr.h> 10 #include <linux/slab.h> 11 #include <linux/vmalloc.h> 12 13 #include "tb.h" 14 15 #define NVM_MIN_SIZE SZ_32K 16 #define NVM_MAX_SIZE SZ_1M 17 #define NVM_DATA_DWORDS 16 18 19 /* Intel specific NVM offsets */ 20 #define INTEL_NVM_DEVID 0x05 21 #define INTEL_NVM_VERSION 0x08 22 #define INTEL_NVM_CSS 0x10 23 #define INTEL_NVM_FLASH_SIZE 0x45 24 25 /* ASMedia specific NVM offsets */ 26 #define ASMEDIA_NVM_DATE 0x1c 27 #define ASMEDIA_NVM_VERSION 0x28 28 29 static DEFINE_IDA(nvm_ida); 30 31 /** 32 * struct tb_nvm_vendor_ops - Vendor specific NVM operations 33 * @read_version: Reads out NVM version from the flash 34 * @validate: Validates the NVM image before update (optional) 35 * @write_headers: Writes headers before the rest of the image (optional) 36 */ 37 struct tb_nvm_vendor_ops { 38 int (*read_version)(struct tb_nvm *nvm); 39 int (*validate)(struct tb_nvm *nvm); 40 int (*write_headers)(struct tb_nvm *nvm); 41 }; 42 43 /** 44 * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping 45 * @vendor: Vendor ID 46 * @vops: Vendor specific NVM operations 47 * 48 * Maps vendor ID to NVM vendor operations. If there is no mapping then 49 * NVM firmware upgrade is disabled for the device. 50 */ 51 struct tb_nvm_vendor { 52 u16 vendor; 53 const struct tb_nvm_vendor_ops *vops; 54 }; 55 56 static int intel_switch_nvm_version(struct tb_nvm *nvm) 57 { 58 struct tb_switch *sw = tb_to_switch(nvm->dev); 59 u32 val, nvm_size, hdr_size; 60 int ret; 61 62 /* 63 * If the switch is in safe-mode the only accessible portion of 64 * the NVM is the non-active one where userspace is expected to 65 * write new functional NVM. 66 */ 67 if (sw->safe_mode) 68 return 0; 69 70 ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); 71 if (ret) 72 return ret; 73 74 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 75 nvm_size = (SZ_1M << (val & 7)) / 8; 76 nvm_size = (nvm_size - hdr_size) / 2; 77 78 ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val)); 79 if (ret) 80 return ret; 81 82 nvm->major = (val >> 16) & 0xff; 83 nvm->minor = (val >> 8) & 0xff; 84 nvm->active_size = nvm_size; 85 86 return 0; 87 } 88 89 static int intel_switch_nvm_validate(struct tb_nvm *nvm) 90 { 91 struct tb_switch *sw = tb_to_switch(nvm->dev); 92 unsigned int image_size, hdr_size; 93 u16 ds_size, device_id; 94 u8 *buf = nvm->buf; 95 96 image_size = nvm->buf_data_size; 97 98 /* 99 * FARB pointer must point inside the image and must at least 100 * contain parts of the digital section we will be reading here. 101 */ 102 hdr_size = (*(u32 *)buf) & 0xffffff; 103 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) 104 return -EINVAL; 105 106 /* Digital section start should be aligned to 4k page */ 107 if (!IS_ALIGNED(hdr_size, SZ_4K)) 108 return -EINVAL; 109 110 /* 111 * Read digital section size and check that it also fits inside 112 * the image. 113 */ 114 ds_size = *(u16 *)(buf + hdr_size); 115 if (ds_size >= image_size) 116 return -EINVAL; 117 118 if (sw->safe_mode) 119 return 0; 120 121 /* 122 * Make sure the device ID in the image matches the one 123 * we read from the switch config space. 124 */ 125 device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); 126 if (device_id != sw->config.device_id) 127 return -EINVAL; 128 129 /* Skip headers in the image */ 130 nvm->buf_data_start = buf + hdr_size; 131 nvm->buf_data_size = image_size - hdr_size; 132 133 return 0; 134 } 135 136 static int intel_switch_nvm_write_headers(struct tb_nvm *nvm) 137 { 138 struct tb_switch *sw = tb_to_switch(nvm->dev); 139 140 if (sw->generation < 3) { 141 int ret; 142 143 /* Write CSS headers first */ 144 ret = dma_port_flash_write(sw->dma_port, 145 DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS, 146 DMA_PORT_CSS_MAX_SIZE); 147 if (ret) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = { 155 .read_version = intel_switch_nvm_version, 156 .validate = intel_switch_nvm_validate, 157 .write_headers = intel_switch_nvm_write_headers, 158 }; 159 160 static int asmedia_switch_nvm_version(struct tb_nvm *nvm) 161 { 162 struct tb_switch *sw = tb_to_switch(nvm->dev); 163 u32 val; 164 int ret; 165 166 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val)); 167 if (ret) 168 return ret; 169 170 nvm->major = (val << 16) & 0xff0000; 171 nvm->major |= val & 0x00ff00; 172 nvm->major |= (val >> 16) & 0x0000ff; 173 174 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val)); 175 if (ret) 176 return ret; 177 178 nvm->minor = (val << 16) & 0xff0000; 179 nvm->minor |= val & 0x00ff00; 180 nvm->minor |= (val >> 16) & 0x0000ff; 181 182 /* ASMedia NVM size is fixed to 512k */ 183 nvm->active_size = SZ_512K; 184 185 return 0; 186 } 187 188 static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = { 189 .read_version = asmedia_switch_nvm_version, 190 }; 191 192 /* Router vendor NVM support table */ 193 static const struct tb_nvm_vendor switch_nvm_vendors[] = { 194 { 0x174c, &asmedia_switch_nvm_ops }, 195 { PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops }, 196 { 0x8087, &intel_switch_nvm_ops }, 197 }; 198 199 static int intel_retimer_nvm_version(struct tb_nvm *nvm) 200 { 201 struct tb_retimer *rt = tb_to_retimer(nvm->dev); 202 u32 val, nvm_size; 203 int ret; 204 205 ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val)); 206 if (ret) 207 return ret; 208 209 nvm->major = (val >> 16) & 0xff; 210 nvm->minor = (val >> 8) & 0xff; 211 212 ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); 213 if (ret) 214 return ret; 215 216 nvm_size = (SZ_1M << (val & 7)) / 8; 217 nvm_size = (nvm_size - SZ_16K) / 2; 218 nvm->active_size = nvm_size; 219 220 return 0; 221 } 222 223 static int intel_retimer_nvm_validate(struct tb_nvm *nvm) 224 { 225 struct tb_retimer *rt = tb_to_retimer(nvm->dev); 226 unsigned int image_size, hdr_size; 227 u8 *buf = nvm->buf; 228 u16 ds_size, device; 229 230 image_size = nvm->buf_data_size; 231 232 /* 233 * FARB pointer must point inside the image and must at least 234 * contain parts of the digital section we will be reading here. 235 */ 236 hdr_size = (*(u32 *)buf) & 0xffffff; 237 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) 238 return -EINVAL; 239 240 /* Digital section start should be aligned to 4k page */ 241 if (!IS_ALIGNED(hdr_size, SZ_4K)) 242 return -EINVAL; 243 244 /* 245 * Read digital section size and check that it also fits inside 246 * the image. 247 */ 248 ds_size = *(u16 *)(buf + hdr_size); 249 if (ds_size >= image_size) 250 return -EINVAL; 251 252 /* 253 * Make sure the device ID in the image matches the retimer 254 * hardware. 255 */ 256 device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); 257 if (device != rt->device) 258 return -EINVAL; 259 260 /* Skip headers in the image */ 261 nvm->buf_data_start = buf + hdr_size; 262 nvm->buf_data_size = image_size - hdr_size; 263 264 return 0; 265 } 266 267 static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = { 268 .read_version = intel_retimer_nvm_version, 269 .validate = intel_retimer_nvm_validate, 270 }; 271 272 /* Retimer vendor NVM support table */ 273 static const struct tb_nvm_vendor retimer_nvm_vendors[] = { 274 { 0x8087, &intel_retimer_nvm_ops }, 275 }; 276 277 /** 278 * tb_nvm_alloc() - Allocate new NVM structure 279 * @dev: Device owning the NVM 280 * 281 * Allocates new NVM structure with unique @id and returns it. In case 282 * of error returns ERR_PTR(). Specifically returns %-EOPNOTSUPP if the 283 * NVM format of the @dev is not known by the kernel. 284 */ 285 struct tb_nvm *tb_nvm_alloc(struct device *dev) 286 { 287 const struct tb_nvm_vendor_ops *vops = NULL; 288 struct tb_nvm *nvm; 289 int ret, i; 290 291 if (tb_is_switch(dev)) { 292 const struct tb_switch *sw = tb_to_switch(dev); 293 294 for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) { 295 const struct tb_nvm_vendor *v = &switch_nvm_vendors[i]; 296 297 if (v->vendor == sw->config.vendor_id) { 298 vops = v->vops; 299 break; 300 } 301 } 302 303 if (!vops) { 304 tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n", 305 sw->config.vendor_id); 306 return ERR_PTR(-EOPNOTSUPP); 307 } 308 } else if (tb_is_retimer(dev)) { 309 const struct tb_retimer *rt = tb_to_retimer(dev); 310 311 for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) { 312 const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i]; 313 314 if (v->vendor == rt->vendor) { 315 vops = v->vops; 316 break; 317 } 318 } 319 320 if (!vops) { 321 dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n", 322 rt->vendor); 323 return ERR_PTR(-EOPNOTSUPP); 324 } 325 } else { 326 return ERR_PTR(-EOPNOTSUPP); 327 } 328 329 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 330 if (!nvm) 331 return ERR_PTR(-ENOMEM); 332 333 ret = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); 334 if (ret < 0) { 335 kfree(nvm); 336 return ERR_PTR(ret); 337 } 338 339 nvm->id = ret; 340 nvm->dev = dev; 341 nvm->vops = vops; 342 343 return nvm; 344 } 345 346 /** 347 * tb_nvm_read_version() - Read and populate NVM version 348 * @nvm: NVM structure 349 * 350 * Uses vendor specific means to read out and fill in the existing 351 * active NVM version. Returns %0 in case of success and negative errno 352 * otherwise. 353 */ 354 int tb_nvm_read_version(struct tb_nvm *nvm) 355 { 356 const struct tb_nvm_vendor_ops *vops = nvm->vops; 357 358 if (vops && vops->read_version) 359 return vops->read_version(nvm); 360 361 return -EOPNOTSUPP; 362 } 363 364 /** 365 * tb_nvm_validate() - Validate new NVM image 366 * @nvm: NVM structure 367 * 368 * Runs vendor specific validation over the new NVM image and if all 369 * checks pass returns %0. As side effect updates @nvm->buf_data_start 370 * and @nvm->buf_data_size fields to match the actual data to be written 371 * to the NVM. 372 * 373 * If the validation does not pass then returns negative errno. 374 */ 375 int tb_nvm_validate(struct tb_nvm *nvm) 376 { 377 const struct tb_nvm_vendor_ops *vops = nvm->vops; 378 unsigned int image_size; 379 u8 *buf = nvm->buf; 380 381 if (!buf) 382 return -EINVAL; 383 if (!vops) 384 return -EOPNOTSUPP; 385 386 /* Just do basic image size checks */ 387 image_size = nvm->buf_data_size; 388 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 389 return -EINVAL; 390 391 /* 392 * Set the default data start in the buffer. The validate method 393 * below can change this if needed. 394 */ 395 nvm->buf_data_start = buf; 396 397 return vops->validate ? vops->validate(nvm) : 0; 398 } 399 400 /** 401 * tb_nvm_write_headers() - Write headers before the rest of the image 402 * @nvm: NVM structure 403 * 404 * If the vendor NVM format requires writing headers before the rest of 405 * the image, this function does that. Can be called even if the device 406 * does not need this. 407 * 408 * Returns %0 in case of success and negative errno otherwise. 409 */ 410 int tb_nvm_write_headers(struct tb_nvm *nvm) 411 { 412 const struct tb_nvm_vendor_ops *vops = nvm->vops; 413 414 return vops->write_headers ? vops->write_headers(nvm) : 0; 415 } 416 417 /** 418 * tb_nvm_add_active() - Adds active NVMem device to NVM 419 * @nvm: NVM structure 420 * @reg_read: Pointer to the function to read the NVM (passed directly to the 421 * NVMem device) 422 * 423 * Registers new active NVmem device for @nvm. The @reg_read is called 424 * directly from NVMem so it must handle possible concurrent access if 425 * needed. The first parameter passed to @reg_read is @nvm structure. 426 * Returns %0 in success and negative errno otherwise. 427 */ 428 int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read) 429 { 430 struct nvmem_config config; 431 struct nvmem_device *nvmem; 432 433 memset(&config, 0, sizeof(config)); 434 435 config.name = "nvm_active"; 436 config.reg_read = reg_read; 437 config.read_only = true; 438 config.id = nvm->id; 439 config.stride = 4; 440 config.word_size = 4; 441 config.size = nvm->active_size; 442 config.dev = nvm->dev; 443 config.owner = THIS_MODULE; 444 config.priv = nvm; 445 446 nvmem = nvmem_register(&config); 447 if (IS_ERR(nvmem)) 448 return PTR_ERR(nvmem); 449 450 nvm->active = nvmem; 451 return 0; 452 } 453 454 /** 455 * tb_nvm_write_buf() - Write data to @nvm buffer 456 * @nvm: NVM structure 457 * @offset: Offset where to write the data 458 * @val: Data buffer to write 459 * @bytes: Number of bytes to write 460 * 461 * Helper function to cache the new NVM image before it is actually 462 * written to the flash. Copies @bytes from @val to @nvm->buf starting 463 * from @offset. 464 */ 465 int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val, 466 size_t bytes) 467 { 468 if (!nvm->buf) { 469 nvm->buf = vmalloc(NVM_MAX_SIZE); 470 if (!nvm->buf) 471 return -ENOMEM; 472 } 473 474 nvm->flushed = false; 475 nvm->buf_data_size = offset + bytes; 476 memcpy(nvm->buf + offset, val, bytes); 477 return 0; 478 } 479 480 /** 481 * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM 482 * @nvm: NVM structure 483 * @reg_write: Pointer to the function to write the NVM (passed directly 484 * to the NVMem device) 485 * 486 * Registers new non-active NVmem device for @nvm. The @reg_write is called 487 * directly from NVMem so it must handle possible concurrent access if 488 * needed. The first parameter passed to @reg_write is @nvm structure. 489 * The size of the NVMem device is set to %NVM_MAX_SIZE. 490 * 491 * Returns %0 in success and negative errno otherwise. 492 */ 493 int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write) 494 { 495 struct nvmem_config config; 496 struct nvmem_device *nvmem; 497 498 memset(&config, 0, sizeof(config)); 499 500 config.name = "nvm_non_active"; 501 config.reg_write = reg_write; 502 config.root_only = true; 503 config.id = nvm->id; 504 config.stride = 4; 505 config.word_size = 4; 506 config.size = NVM_MAX_SIZE; 507 config.dev = nvm->dev; 508 config.owner = THIS_MODULE; 509 config.priv = nvm; 510 511 nvmem = nvmem_register(&config); 512 if (IS_ERR(nvmem)) 513 return PTR_ERR(nvmem); 514 515 nvm->non_active = nvmem; 516 return 0; 517 } 518 519 /** 520 * tb_nvm_free() - Release NVM and its resources 521 * @nvm: NVM structure to release 522 * 523 * Releases NVM and the NVMem devices if they were registered. 524 */ 525 void tb_nvm_free(struct tb_nvm *nvm) 526 { 527 if (nvm) { 528 nvmem_unregister(nvm->non_active); 529 nvmem_unregister(nvm->active); 530 vfree(nvm->buf); 531 ida_simple_remove(&nvm_ida, nvm->id); 532 } 533 kfree(nvm); 534 } 535 536 /** 537 * tb_nvm_read_data() - Read data from NVM 538 * @address: Start address on the flash 539 * @buf: Buffer where the read data is copied 540 * @size: Size of the buffer in bytes 541 * @retries: Number of retries if block read fails 542 * @read_block: Function that reads block from the flash 543 * @read_block_data: Data passsed to @read_block 544 * 545 * This is a generic function that reads data from NVM or NVM like 546 * device. 547 * 548 * Returns %0 on success and negative errno otherwise. 549 */ 550 int tb_nvm_read_data(unsigned int address, void *buf, size_t size, 551 unsigned int retries, read_block_fn read_block, 552 void *read_block_data) 553 { 554 do { 555 unsigned int dwaddress, dwords, offset; 556 u8 data[NVM_DATA_DWORDS * 4]; 557 size_t nbytes; 558 int ret; 559 560 offset = address & 3; 561 nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4); 562 563 dwaddress = address / 4; 564 dwords = ALIGN(nbytes, 4) / 4; 565 566 ret = read_block(read_block_data, dwaddress, data, dwords); 567 if (ret) { 568 if (ret != -ENODEV && retries--) 569 continue; 570 return ret; 571 } 572 573 nbytes -= offset; 574 memcpy(buf, data + offset, nbytes); 575 576 size -= nbytes; 577 address += nbytes; 578 buf += nbytes; 579 } while (size > 0); 580 581 return 0; 582 } 583 584 /** 585 * tb_nvm_write_data() - Write data to NVM 586 * @address: Start address on the flash 587 * @buf: Buffer where the data is copied from 588 * @size: Size of the buffer in bytes 589 * @retries: Number of retries if the block write fails 590 * @write_block: Function that writes block to the flash 591 * @write_block_data: Data passwd to @write_block 592 * 593 * This is generic function that writes data to NVM or NVM like device. 594 * 595 * Returns %0 on success and negative errno otherwise. 596 */ 597 int tb_nvm_write_data(unsigned int address, const void *buf, size_t size, 598 unsigned int retries, write_block_fn write_block, 599 void *write_block_data) 600 { 601 do { 602 unsigned int offset, dwaddress; 603 u8 data[NVM_DATA_DWORDS * 4]; 604 size_t nbytes; 605 int ret; 606 607 offset = address & 3; 608 nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4); 609 610 memcpy(data + offset, buf, nbytes); 611 612 dwaddress = address / 4; 613 ret = write_block(write_block_data, dwaddress, data, nbytes / 4); 614 if (ret) { 615 if (ret == -ETIMEDOUT) { 616 if (retries--) 617 continue; 618 ret = -EIO; 619 } 620 return ret; 621 } 622 623 size -= nbytes; 624 address += nbytes; 625 buf += nbytes; 626 } while (size > 0); 627 628 return 0; 629 } 630 631 void tb_nvm_exit(void) 632 { 633 ida_destroy(&nvm_ida); 634 } 635