1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM helpers 4 * 5 * Copyright (C) 2020, Intel Corporation 6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com> 7 */ 8 9 #include <linux/idr.h> 10 #include <linux/slab.h> 11 #include <linux/vmalloc.h> 12 13 #include "tb.h" 14 15 #define NVM_MIN_SIZE SZ_32K 16 #define NVM_MAX_SIZE SZ_1M 17 #define NVM_DATA_DWORDS 16 18 19 /* Intel specific NVM offsets */ 20 #define INTEL_NVM_DEVID 0x05 21 #define INTEL_NVM_VERSION 0x08 22 #define INTEL_NVM_CSS 0x10 23 #define INTEL_NVM_FLASH_SIZE 0x45 24 25 /* ASMedia specific NVM offsets */ 26 #define ASMEDIA_NVM_DATE 0x1c 27 #define ASMEDIA_NVM_VERSION 0x28 28 29 static DEFINE_IDA(nvm_ida); 30 31 /** 32 * struct tb_nvm_vendor_ops - Vendor specific NVM operations 33 * @read_version: Reads out NVM version from the flash 34 * @validate: Validates the NVM image before update (optional) 35 * @write_headers: Writes headers before the rest of the image (optional) 36 */ 37 struct tb_nvm_vendor_ops { 38 int (*read_version)(struct tb_nvm *nvm); 39 int (*validate)(struct tb_nvm *nvm); 40 int (*write_headers)(struct tb_nvm *nvm); 41 }; 42 43 /** 44 * struct tb_nvm_vendor - Vendor to &struct tb_nvm_vendor_ops mapping 45 * @vendor: Vendor ID 46 * @vops: Vendor specific NVM operations 47 * 48 * Maps vendor ID to NVM vendor operations. If there is no mapping then 49 * NVM firmware upgrade is disabled for the device. 50 */ 51 struct tb_nvm_vendor { 52 u16 vendor; 53 const struct tb_nvm_vendor_ops *vops; 54 }; 55 56 static int intel_switch_nvm_version(struct tb_nvm *nvm) 57 { 58 struct tb_switch *sw = tb_to_switch(nvm->dev); 59 u32 val, nvm_size, hdr_size; 60 int ret; 61 62 /* 63 * If the switch is in safe-mode the only accessible portion of 64 * the NVM is the non-active one where userspace is expected to 65 * write new functional NVM. 66 */ 67 if (sw->safe_mode) 68 return 0; 69 70 ret = tb_switch_nvm_read(sw, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); 71 if (ret) 72 return ret; 73 74 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; 75 nvm_size = (SZ_1M << (val & 7)) / 8; 76 nvm_size = (nvm_size - hdr_size) / 2; 77 78 ret = tb_switch_nvm_read(sw, INTEL_NVM_VERSION, &val, sizeof(val)); 79 if (ret) 80 return ret; 81 82 nvm->major = (val >> 16) & 0xff; 83 nvm->minor = (val >> 8) & 0xff; 84 nvm->active_size = nvm_size; 85 86 return 0; 87 } 88 89 static int intel_switch_nvm_validate(struct tb_nvm *nvm) 90 { 91 struct tb_switch *sw = tb_to_switch(nvm->dev); 92 unsigned int image_size, hdr_size; 93 u16 ds_size, device_id; 94 u8 *buf = nvm->buf; 95 96 image_size = nvm->buf_data_size; 97 98 /* 99 * FARB pointer must point inside the image and must at least 100 * contain parts of the digital section we will be reading here. 101 */ 102 hdr_size = (*(u32 *)buf) & 0xffffff; 103 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) 104 return -EINVAL; 105 106 /* Digital section start should be aligned to 4k page */ 107 if (!IS_ALIGNED(hdr_size, SZ_4K)) 108 return -EINVAL; 109 110 /* 111 * Read digital section size and check that it also fits inside 112 * the image. 113 */ 114 ds_size = *(u16 *)(buf + hdr_size); 115 if (ds_size >= image_size) 116 return -EINVAL; 117 118 if (sw->safe_mode) 119 return 0; 120 121 /* 122 * Make sure the device ID in the image matches the one 123 * we read from the switch config space. 124 */ 125 device_id = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); 126 if (device_id != sw->config.device_id) 127 return -EINVAL; 128 129 /* Skip headers in the image */ 130 nvm->buf_data_start = buf + hdr_size; 131 nvm->buf_data_size = image_size - hdr_size; 132 133 return 0; 134 } 135 136 static int intel_switch_nvm_write_headers(struct tb_nvm *nvm) 137 { 138 struct tb_switch *sw = tb_to_switch(nvm->dev); 139 140 if (sw->generation < 3) { 141 int ret; 142 143 /* Write CSS headers first */ 144 ret = dma_port_flash_write(sw->dma_port, 145 DMA_PORT_CSS_ADDRESS, nvm->buf + INTEL_NVM_CSS, 146 DMA_PORT_CSS_MAX_SIZE); 147 if (ret) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 static const struct tb_nvm_vendor_ops intel_switch_nvm_ops = { 155 .read_version = intel_switch_nvm_version, 156 .validate = intel_switch_nvm_validate, 157 .write_headers = intel_switch_nvm_write_headers, 158 }; 159 160 static int asmedia_switch_nvm_version(struct tb_nvm *nvm) 161 { 162 struct tb_switch *sw = tb_to_switch(nvm->dev); 163 u32 val; 164 int ret; 165 166 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_VERSION, &val, sizeof(val)); 167 if (ret) 168 return ret; 169 170 nvm->major = (val << 16) & 0xff0000; 171 nvm->major |= val & 0x00ff00; 172 nvm->major |= (val >> 16) & 0x0000ff; 173 174 ret = tb_switch_nvm_read(sw, ASMEDIA_NVM_DATE, &val, sizeof(val)); 175 if (ret) 176 return ret; 177 178 nvm->minor = (val << 16) & 0xff0000; 179 nvm->minor |= val & 0x00ff00; 180 nvm->minor |= (val >> 16) & 0x0000ff; 181 182 /* ASMedia NVM size is fixed to 512k */ 183 nvm->active_size = SZ_512K; 184 185 return 0; 186 } 187 188 static const struct tb_nvm_vendor_ops asmedia_switch_nvm_ops = { 189 .read_version = asmedia_switch_nvm_version, 190 }; 191 192 /* Router vendor NVM support table */ 193 static const struct tb_nvm_vendor switch_nvm_vendors[] = { 194 { 0x174c, &asmedia_switch_nvm_ops }, 195 { PCI_VENDOR_ID_INTEL, &intel_switch_nvm_ops }, 196 { 0x8087, &intel_switch_nvm_ops }, 197 }; 198 199 static int intel_retimer_nvm_version(struct tb_nvm *nvm) 200 { 201 struct tb_retimer *rt = tb_to_retimer(nvm->dev); 202 u32 val, nvm_size; 203 int ret; 204 205 ret = tb_retimer_nvm_read(rt, INTEL_NVM_VERSION, &val, sizeof(val)); 206 if (ret) 207 return ret; 208 209 nvm->major = (val >> 16) & 0xff; 210 nvm->minor = (val >> 8) & 0xff; 211 212 ret = tb_retimer_nvm_read(rt, INTEL_NVM_FLASH_SIZE, &val, sizeof(val)); 213 if (ret) 214 return ret; 215 216 nvm_size = (SZ_1M << (val & 7)) / 8; 217 nvm_size = (nvm_size - SZ_16K) / 2; 218 nvm->active_size = nvm_size; 219 220 return 0; 221 } 222 223 static int intel_retimer_nvm_validate(struct tb_nvm *nvm) 224 { 225 struct tb_retimer *rt = tb_to_retimer(nvm->dev); 226 unsigned int image_size, hdr_size; 227 u8 *buf = nvm->buf; 228 u16 ds_size, device; 229 230 image_size = nvm->buf_data_size; 231 232 /* 233 * FARB pointer must point inside the image and must at least 234 * contain parts of the digital section we will be reading here. 235 */ 236 hdr_size = (*(u32 *)buf) & 0xffffff; 237 if (hdr_size + INTEL_NVM_DEVID + 2 >= image_size) 238 return -EINVAL; 239 240 /* Digital section start should be aligned to 4k page */ 241 if (!IS_ALIGNED(hdr_size, SZ_4K)) 242 return -EINVAL; 243 244 /* 245 * Read digital section size and check that it also fits inside 246 * the image. 247 */ 248 ds_size = *(u16 *)(buf + hdr_size); 249 if (ds_size >= image_size) 250 return -EINVAL; 251 252 /* 253 * Make sure the device ID in the image matches the retimer 254 * hardware. 255 */ 256 device = *(u16 *)(buf + hdr_size + INTEL_NVM_DEVID); 257 if (device != rt->device) 258 return -EINVAL; 259 260 /* Skip headers in the image */ 261 nvm->buf_data_start = buf + hdr_size; 262 nvm->buf_data_size = image_size - hdr_size; 263 264 return 0; 265 } 266 267 static const struct tb_nvm_vendor_ops intel_retimer_nvm_ops = { 268 .read_version = intel_retimer_nvm_version, 269 .validate = intel_retimer_nvm_validate, 270 }; 271 272 /* Retimer vendor NVM support table */ 273 static const struct tb_nvm_vendor retimer_nvm_vendors[] = { 274 { 0x8087, &intel_retimer_nvm_ops }, 275 }; 276 277 /** 278 * tb_nvm_alloc() - Allocate new NVM structure 279 * @dev: Device owning the NVM 280 * 281 * Allocates new NVM structure with unique @id and returns it. 282 * 283 * Return: 284 * * Pointer to &struct tb_nvm - On success. 285 * * %-EOPNOTSUPP - If the NVM format of the @dev is not known by the 286 * kernel. 287 * * %ERR_PTR - In case of failure. 288 */ 289 struct tb_nvm *tb_nvm_alloc(struct device *dev) 290 { 291 const struct tb_nvm_vendor_ops *vops = NULL; 292 struct tb_nvm *nvm; 293 int ret, i; 294 295 if (tb_is_switch(dev)) { 296 const struct tb_switch *sw = tb_to_switch(dev); 297 298 for (i = 0; i < ARRAY_SIZE(switch_nvm_vendors); i++) { 299 const struct tb_nvm_vendor *v = &switch_nvm_vendors[i]; 300 301 if (v->vendor == sw->config.vendor_id) { 302 vops = v->vops; 303 break; 304 } 305 } 306 307 if (!vops) { 308 tb_sw_dbg(sw, "router NVM format of vendor %#x unknown\n", 309 sw->config.vendor_id); 310 return ERR_PTR(-EOPNOTSUPP); 311 } 312 } else if (tb_is_retimer(dev)) { 313 const struct tb_retimer *rt = tb_to_retimer(dev); 314 315 for (i = 0; i < ARRAY_SIZE(retimer_nvm_vendors); i++) { 316 const struct tb_nvm_vendor *v = &retimer_nvm_vendors[i]; 317 318 if (v->vendor == rt->vendor) { 319 vops = v->vops; 320 break; 321 } 322 } 323 324 if (!vops) { 325 dev_dbg(dev, "retimer NVM format of vendor %#x unknown\n", 326 rt->vendor); 327 return ERR_PTR(-EOPNOTSUPP); 328 } 329 } else { 330 return ERR_PTR(-EOPNOTSUPP); 331 } 332 333 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 334 if (!nvm) 335 return ERR_PTR(-ENOMEM); 336 337 ret = ida_alloc(&nvm_ida, GFP_KERNEL); 338 if (ret < 0) { 339 kfree(nvm); 340 return ERR_PTR(ret); 341 } 342 343 nvm->id = ret; 344 nvm->dev = dev; 345 nvm->vops = vops; 346 347 return nvm; 348 } 349 350 /** 351 * tb_nvm_read_version() - Read and populate NVM version 352 * @nvm: NVM structure 353 * 354 * Uses vendor specific means to read and fill out the existing 355 * active NVM version. 356 * 357 * Return: %0 on success, negative errno otherwise. 358 */ 359 int tb_nvm_read_version(struct tb_nvm *nvm) 360 { 361 const struct tb_nvm_vendor_ops *vops = nvm->vops; 362 363 if (vops && vops->read_version) 364 return vops->read_version(nvm); 365 366 return -EOPNOTSUPP; 367 } 368 369 /** 370 * tb_nvm_validate() - Validate new NVM image 371 * @nvm: NVM structure 372 * 373 * Runs vendor specific validation over the new NVM image. As a 374 * side effect, updates @nvm->buf_data_start and @nvm->buf_data_size 375 * fields to match the actual data to be written to the NVM. 376 * 377 * Return: %0 on successful validation, negative errno otherwise. 378 */ 379 int tb_nvm_validate(struct tb_nvm *nvm) 380 { 381 const struct tb_nvm_vendor_ops *vops = nvm->vops; 382 unsigned int image_size; 383 u8 *buf = nvm->buf; 384 385 if (!buf) 386 return -EINVAL; 387 if (!vops) 388 return -EOPNOTSUPP; 389 390 /* Just do basic image size checks */ 391 image_size = nvm->buf_data_size; 392 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) 393 return -EINVAL; 394 395 /* 396 * Set the default data start in the buffer. The validate method 397 * below can change this if needed. 398 */ 399 nvm->buf_data_start = buf; 400 401 return vops->validate ? vops->validate(nvm) : 0; 402 } 403 404 /** 405 * tb_nvm_write_headers() - Write headers before the rest of the image 406 * @nvm: NVM structure 407 * 408 * If the vendor NVM format requires writing headers before the rest of 409 * the image, this function does that. Can be called even if the device 410 * does not need this. 411 * 412 * Return: %0 on success, negative errno otherwise. 413 */ 414 int tb_nvm_write_headers(struct tb_nvm *nvm) 415 { 416 const struct tb_nvm_vendor_ops *vops = nvm->vops; 417 418 return vops->write_headers ? vops->write_headers(nvm) : 0; 419 } 420 421 /** 422 * tb_nvm_add_active() - Adds active NVMem device to NVM 423 * @nvm: NVM structure 424 * @reg_read: Pointer to the function to read the NVM (passed directly to the 425 * NVMem device) 426 * 427 * Registers new active NVmem device for @nvm. The @reg_read is called 428 * directly from NVMem so it must handle possible concurrent access if 429 * needed. The first parameter passed to @reg_read is @nvm structure. 430 * 431 * Return: %0 on success, negative errno otherwise. 432 */ 433 int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read) 434 { 435 struct nvmem_config config; 436 struct nvmem_device *nvmem; 437 438 memset(&config, 0, sizeof(config)); 439 440 config.name = "nvm_active"; 441 config.reg_read = reg_read; 442 config.read_only = true; 443 config.id = nvm->id; 444 config.stride = 4; 445 config.word_size = 4; 446 config.size = nvm->active_size; 447 config.dev = nvm->dev; 448 config.owner = THIS_MODULE; 449 config.priv = nvm; 450 451 nvmem = nvmem_register(&config); 452 if (IS_ERR(nvmem)) 453 return PTR_ERR(nvmem); 454 455 nvm->active = nvmem; 456 return 0; 457 } 458 459 /** 460 * tb_nvm_write_buf() - Write data to @nvm buffer 461 * @nvm: NVM structure 462 * @offset: Offset where to write the data 463 * @val: Data buffer to write 464 * @bytes: Number of bytes to write 465 * 466 * Helper function to cache the new NVM image before it is actually 467 * written to the flash. Copies @bytes from @val to @nvm->buf starting 468 * from @offset. 469 * 470 * Return: 471 * * %0 - On success. 472 * * %-ENOMEM - If buffer allocation failed. 473 * * Negative errno - Another error occurred. 474 */ 475 int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val, 476 size_t bytes) 477 { 478 if (!nvm->buf) { 479 nvm->buf = vmalloc(NVM_MAX_SIZE); 480 if (!nvm->buf) 481 return -ENOMEM; 482 } 483 484 nvm->flushed = false; 485 nvm->buf_data_size = offset + bytes; 486 memcpy(nvm->buf + offset, val, bytes); 487 return 0; 488 } 489 490 /** 491 * tb_nvm_add_non_active() - Adds non-active NVMem device to NVM 492 * @nvm: NVM structure 493 * @reg_write: Pointer to the function to write the NVM (passed directly 494 * to the NVMem device) 495 * 496 * Registers new non-active NVmem device for @nvm. The @reg_write is called 497 * directly from NVMem so it must handle possible concurrent access if 498 * needed. The first parameter passed to @reg_write is @nvm structure. 499 * The size of the NVMem device is set to %NVM_MAX_SIZE. 500 * 501 * Return: %0 on success, negative errno otherwise. 502 */ 503 int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write) 504 { 505 struct nvmem_config config; 506 struct nvmem_device *nvmem; 507 508 memset(&config, 0, sizeof(config)); 509 510 config.name = "nvm_non_active"; 511 config.reg_write = reg_write; 512 config.root_only = true; 513 config.id = nvm->id; 514 config.stride = 4; 515 config.word_size = 4; 516 config.size = NVM_MAX_SIZE; 517 config.dev = nvm->dev; 518 config.owner = THIS_MODULE; 519 config.priv = nvm; 520 521 nvmem = nvmem_register(&config); 522 if (IS_ERR(nvmem)) 523 return PTR_ERR(nvmem); 524 525 nvm->non_active = nvmem; 526 return 0; 527 } 528 529 /** 530 * tb_nvm_free() - Release NVM and its resources 531 * @nvm: NVM structure to release 532 * 533 * Releases NVM and the NVMem devices if they were registered. 534 */ 535 void tb_nvm_free(struct tb_nvm *nvm) 536 { 537 if (nvm) { 538 nvmem_unregister(nvm->non_active); 539 nvmem_unregister(nvm->active); 540 vfree(nvm->buf); 541 ida_free(&nvm_ida, nvm->id); 542 } 543 kfree(nvm); 544 } 545 546 /** 547 * tb_nvm_read_data() - Read data from NVM 548 * @address: Start address on the flash 549 * @buf: Buffer where the read data is copied 550 * @size: Size of the buffer in bytes 551 * @retries: Number of retries if block read fails 552 * @read_block: Function that reads block from the flash 553 * @read_block_data: Data passsed to @read_block 554 * 555 * This is a generic function that reads data from NVM or NVM like 556 * device. 557 * 558 * Return: %0 on success, negative errno otherwise. 559 */ 560 int tb_nvm_read_data(unsigned int address, void *buf, size_t size, 561 unsigned int retries, read_block_fn read_block, 562 void *read_block_data) 563 { 564 do { 565 unsigned int dwaddress, dwords, offset; 566 u8 data[NVM_DATA_DWORDS * 4]; 567 size_t nbytes; 568 int ret; 569 570 offset = address & 3; 571 nbytes = min_t(size_t, size + offset, NVM_DATA_DWORDS * 4); 572 573 dwaddress = address / 4; 574 dwords = ALIGN(nbytes, 4) / 4; 575 576 ret = read_block(read_block_data, dwaddress, data, dwords); 577 if (ret) { 578 if (ret != -ENODEV && retries--) 579 continue; 580 return ret; 581 } 582 583 nbytes -= offset; 584 memcpy(buf, data + offset, nbytes); 585 586 size -= nbytes; 587 address += nbytes; 588 buf += nbytes; 589 } while (size > 0); 590 591 return 0; 592 } 593 594 /** 595 * tb_nvm_write_data() - Write data to NVM 596 * @address: Start address on the flash 597 * @buf: Buffer where the data is copied from 598 * @size: Size of the buffer in bytes 599 * @retries: Number of retries if the block write fails 600 * @write_block: Function that writes block to the flash 601 * @write_block_data: Data passed to @write_block 602 * 603 * This is generic function that writes data to NVM or NVM like device. 604 * 605 * Return: %0 on success, negative errno otherwise. 606 */ 607 int tb_nvm_write_data(unsigned int address, const void *buf, size_t size, 608 unsigned int retries, write_block_fn write_block, 609 void *write_block_data) 610 { 611 do { 612 unsigned int offset, dwaddress; 613 u8 data[NVM_DATA_DWORDS * 4]; 614 size_t nbytes; 615 int ret; 616 617 offset = address & 3; 618 nbytes = min_t(u32, size + offset, NVM_DATA_DWORDS * 4); 619 620 memcpy(data + offset, buf, nbytes); 621 622 dwaddress = address / 4; 623 ret = write_block(write_block_data, dwaddress, data, nbytes / 4); 624 if (ret) { 625 if (ret == -ETIMEDOUT) { 626 if (retries--) 627 continue; 628 ret = -EIO; 629 } 630 return ret; 631 } 632 633 size -= nbytes; 634 address += nbytes; 635 buf += nbytes; 636 } while (size > 0); 637 638 return 0; 639 } 640 641 void tb_nvm_exit(void) 642 { 643 ida_destroy(&nvm_ida); 644 } 645