xref: /linux/drivers/thunderbolt/nhi.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24 
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26 
27 #define RING_FIRST_USABLE_HOPID	1
28 
29 /*
30  * Minimal number of vectors when we use MSI-X. Two for control channel
31  * Rx/Tx and the rest four are for cross domain DMA paths.
32  */
33 #define MSIX_MIN_VECS		6
34 #define MSIX_MAX_VECS		16
35 
36 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
37 
38 static int ring_interrupt_index(struct tb_ring *ring)
39 {
40 	int bit = ring->hop;
41 	if (!ring->is_tx)
42 		bit += ring->nhi->hop_count;
43 	return bit;
44 }
45 
46 /*
47  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
48  *
49  * ring->nhi->lock must be held.
50  */
51 static void ring_interrupt_active(struct tb_ring *ring, bool active)
52 {
53 	int reg = REG_RING_INTERRUPT_BASE +
54 		  ring_interrupt_index(ring) / 32 * 4;
55 	int bit = ring_interrupt_index(ring) & 31;
56 	int mask = 1 << bit;
57 	u32 old, new;
58 
59 	if (ring->irq > 0) {
60 		u32 step, shift, ivr, misc;
61 		void __iomem *ivr_base;
62 		int index;
63 
64 		if (ring->is_tx)
65 			index = ring->hop;
66 		else
67 			index = ring->hop + ring->nhi->hop_count;
68 
69 		/*
70 		 * Ask the hardware to clear interrupt status bits automatically
71 		 * since we already know which interrupt was triggered.
72 		 */
73 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
74 		if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
75 			misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
76 			iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
77 		}
78 
79 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
80 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
81 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82 		ivr = ioread32(ivr_base + step);
83 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
84 		if (active)
85 			ivr |= ring->vector << shift;
86 		iowrite32(ivr, ivr_base + step);
87 	}
88 
89 	old = ioread32(ring->nhi->iobase + reg);
90 	if (active)
91 		new = old | mask;
92 	else
93 		new = old & ~mask;
94 
95 	dev_dbg(&ring->nhi->pdev->dev,
96 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
97 		active ? "enabling" : "disabling", reg, bit, old, new);
98 
99 	if (new == old)
100 		dev_WARN(&ring->nhi->pdev->dev,
101 					 "interrupt for %s %d is already %s\n",
102 					 RING_TYPE(ring), ring->hop,
103 					 active ? "enabled" : "disabled");
104 	iowrite32(new, ring->nhi->iobase + reg);
105 }
106 
107 /*
108  * nhi_disable_interrupts() - disable interrupts for all rings
109  *
110  * Use only during init and shutdown.
111  */
112 static void nhi_disable_interrupts(struct tb_nhi *nhi)
113 {
114 	int i = 0;
115 	/* disable interrupts */
116 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
117 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
118 
119 	/* clear interrupt status bits */
120 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
121 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
122 }
123 
124 /* ring helper methods */
125 
126 static void __iomem *ring_desc_base(struct tb_ring *ring)
127 {
128 	void __iomem *io = ring->nhi->iobase;
129 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
130 	io += ring->hop * 16;
131 	return io;
132 }
133 
134 static void __iomem *ring_options_base(struct tb_ring *ring)
135 {
136 	void __iomem *io = ring->nhi->iobase;
137 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
138 	io += ring->hop * 32;
139 	return io;
140 }
141 
142 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
143 {
144 	/*
145 	 * The other 16-bits in the register is read-only and writes to it
146 	 * are ignored by the hardware so we can save one ioread32() by
147 	 * filling the read-only bits with zeroes.
148 	 */
149 	iowrite32(cons, ring_desc_base(ring) + 8);
150 }
151 
152 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
153 {
154 	/* See ring_iowrite_cons() above for explanation */
155 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
156 }
157 
158 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
159 {
160 	iowrite32(value, ring_desc_base(ring) + offset);
161 }
162 
163 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
164 {
165 	iowrite32(value, ring_desc_base(ring) + offset);
166 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
167 }
168 
169 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
170 {
171 	iowrite32(value, ring_options_base(ring) + offset);
172 }
173 
174 static bool ring_full(struct tb_ring *ring)
175 {
176 	return ((ring->head + 1) % ring->size) == ring->tail;
177 }
178 
179 static bool ring_empty(struct tb_ring *ring)
180 {
181 	return ring->head == ring->tail;
182 }
183 
184 /*
185  * ring_write_descriptors() - post frames from ring->queue to the controller
186  *
187  * ring->lock is held.
188  */
189 static void ring_write_descriptors(struct tb_ring *ring)
190 {
191 	struct ring_frame *frame, *n;
192 	struct ring_desc *descriptor;
193 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
194 		if (ring_full(ring))
195 			break;
196 		list_move_tail(&frame->list, &ring->in_flight);
197 		descriptor = &ring->descriptors[ring->head];
198 		descriptor->phys = frame->buffer_phy;
199 		descriptor->time = 0;
200 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
201 		if (ring->is_tx) {
202 			descriptor->length = frame->size;
203 			descriptor->eof = frame->eof;
204 			descriptor->sof = frame->sof;
205 		}
206 		ring->head = (ring->head + 1) % ring->size;
207 		if (ring->is_tx)
208 			ring_iowrite_prod(ring, ring->head);
209 		else
210 			ring_iowrite_cons(ring, ring->head);
211 	}
212 }
213 
214 /*
215  * ring_work() - progress completed frames
216  *
217  * If the ring is shutting down then all frames are marked as canceled and
218  * their callbacks are invoked.
219  *
220  * Otherwise we collect all completed frame from the ring buffer, write new
221  * frame to the ring buffer and invoke the callbacks for the completed frames.
222  */
223 static void ring_work(struct work_struct *work)
224 {
225 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
226 	struct ring_frame *frame;
227 	bool canceled = false;
228 	unsigned long flags;
229 	LIST_HEAD(done);
230 
231 	spin_lock_irqsave(&ring->lock, flags);
232 
233 	if (!ring->running) {
234 		/*  Move all frames to done and mark them as canceled. */
235 		list_splice_tail_init(&ring->in_flight, &done);
236 		list_splice_tail_init(&ring->queue, &done);
237 		canceled = true;
238 		goto invoke_callback;
239 	}
240 
241 	while (!ring_empty(ring)) {
242 		if (!(ring->descriptors[ring->tail].flags
243 				& RING_DESC_COMPLETED))
244 			break;
245 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
246 					 list);
247 		list_move_tail(&frame->list, &done);
248 		if (!ring->is_tx) {
249 			frame->size = ring->descriptors[ring->tail].length;
250 			frame->eof = ring->descriptors[ring->tail].eof;
251 			frame->sof = ring->descriptors[ring->tail].sof;
252 			frame->flags = ring->descriptors[ring->tail].flags;
253 		}
254 		ring->tail = (ring->tail + 1) % ring->size;
255 	}
256 	ring_write_descriptors(ring);
257 
258 invoke_callback:
259 	/* allow callbacks to schedule new work */
260 	spin_unlock_irqrestore(&ring->lock, flags);
261 	while (!list_empty(&done)) {
262 		frame = list_first_entry(&done, typeof(*frame), list);
263 		/*
264 		 * The callback may reenqueue or delete frame.
265 		 * Do not hold on to it.
266 		 */
267 		list_del_init(&frame->list);
268 		if (frame->callback)
269 			frame->callback(ring, frame, canceled);
270 	}
271 }
272 
273 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
274 {
275 	unsigned long flags;
276 	int ret = 0;
277 
278 	spin_lock_irqsave(&ring->lock, flags);
279 	if (ring->running) {
280 		list_add_tail(&frame->list, &ring->queue);
281 		ring_write_descriptors(ring);
282 	} else {
283 		ret = -ESHUTDOWN;
284 	}
285 	spin_unlock_irqrestore(&ring->lock, flags);
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
289 
290 /**
291  * tb_ring_poll() - Poll one completed frame from the ring
292  * @ring: Ring to poll
293  *
294  * This function can be called when @start_poll callback of the @ring
295  * has been called. It will read one completed frame from the ring and
296  * return it to the caller. Returns %NULL if there is no more completed
297  * frames.
298  */
299 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
300 {
301 	struct ring_frame *frame = NULL;
302 	unsigned long flags;
303 
304 	spin_lock_irqsave(&ring->lock, flags);
305 	if (!ring->running)
306 		goto unlock;
307 	if (ring_empty(ring))
308 		goto unlock;
309 
310 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
311 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
312 					 list);
313 		list_del_init(&frame->list);
314 
315 		if (!ring->is_tx) {
316 			frame->size = ring->descriptors[ring->tail].length;
317 			frame->eof = ring->descriptors[ring->tail].eof;
318 			frame->sof = ring->descriptors[ring->tail].sof;
319 			frame->flags = ring->descriptors[ring->tail].flags;
320 		}
321 
322 		ring->tail = (ring->tail + 1) % ring->size;
323 	}
324 
325 unlock:
326 	spin_unlock_irqrestore(&ring->lock, flags);
327 	return frame;
328 }
329 EXPORT_SYMBOL_GPL(tb_ring_poll);
330 
331 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
332 {
333 	int idx = ring_interrupt_index(ring);
334 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
335 	int bit = idx % 32;
336 	u32 val;
337 
338 	val = ioread32(ring->nhi->iobase + reg);
339 	if (mask)
340 		val &= ~BIT(bit);
341 	else
342 		val |= BIT(bit);
343 	iowrite32(val, ring->nhi->iobase + reg);
344 }
345 
346 /* Both @nhi->lock and @ring->lock should be held */
347 static void __ring_interrupt(struct tb_ring *ring)
348 {
349 	if (!ring->running)
350 		return;
351 
352 	if (ring->start_poll) {
353 		__ring_interrupt_mask(ring, true);
354 		ring->start_poll(ring->poll_data);
355 	} else {
356 		schedule_work(&ring->work);
357 	}
358 }
359 
360 /**
361  * tb_ring_poll_complete() - Re-start interrupt for the ring
362  * @ring: Ring to re-start the interrupt
363  *
364  * This will re-start (unmask) the ring interrupt once the user is done
365  * with polling.
366  */
367 void tb_ring_poll_complete(struct tb_ring *ring)
368 {
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&ring->nhi->lock, flags);
372 	spin_lock(&ring->lock);
373 	if (ring->start_poll)
374 		__ring_interrupt_mask(ring, false);
375 	spin_unlock(&ring->lock);
376 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
377 }
378 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
379 
380 static irqreturn_t ring_msix(int irq, void *data)
381 {
382 	struct tb_ring *ring = data;
383 
384 	spin_lock(&ring->nhi->lock);
385 	spin_lock(&ring->lock);
386 	__ring_interrupt(ring);
387 	spin_unlock(&ring->lock);
388 	spin_unlock(&ring->nhi->lock);
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
394 {
395 	struct tb_nhi *nhi = ring->nhi;
396 	unsigned long irqflags;
397 	int ret;
398 
399 	if (!nhi->pdev->msix_enabled)
400 		return 0;
401 
402 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
403 	if (ret < 0)
404 		return ret;
405 
406 	ring->vector = ret;
407 
408 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
409 	if (ret < 0)
410 		goto err_ida_remove;
411 
412 	ring->irq = ret;
413 
414 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
415 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
416 	if (ret)
417 		goto err_ida_remove;
418 
419 	return 0;
420 
421 err_ida_remove:
422 	ida_simple_remove(&nhi->msix_ida, ring->vector);
423 
424 	return ret;
425 }
426 
427 static void ring_release_msix(struct tb_ring *ring)
428 {
429 	if (ring->irq <= 0)
430 		return;
431 
432 	free_irq(ring->irq, ring);
433 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
434 	ring->vector = 0;
435 	ring->irq = 0;
436 }
437 
438 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
439 {
440 	int ret = 0;
441 
442 	spin_lock_irq(&nhi->lock);
443 
444 	if (ring->hop < 0) {
445 		unsigned int i;
446 
447 		/*
448 		 * Automatically allocate HopID from the non-reserved
449 		 * range 1 .. hop_count - 1.
450 		 */
451 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
452 			if (ring->is_tx) {
453 				if (!nhi->tx_rings[i]) {
454 					ring->hop = i;
455 					break;
456 				}
457 			} else {
458 				if (!nhi->rx_rings[i]) {
459 					ring->hop = i;
460 					break;
461 				}
462 			}
463 		}
464 	}
465 
466 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
467 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
468 		ret = -EINVAL;
469 		goto err_unlock;
470 	}
471 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
472 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
473 			 ring->hop);
474 		ret = -EBUSY;
475 		goto err_unlock;
476 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
477 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
478 			 ring->hop);
479 		ret = -EBUSY;
480 		goto err_unlock;
481 	}
482 
483 	if (ring->is_tx)
484 		nhi->tx_rings[ring->hop] = ring;
485 	else
486 		nhi->rx_rings[ring->hop] = ring;
487 
488 err_unlock:
489 	spin_unlock_irq(&nhi->lock);
490 
491 	return ret;
492 }
493 
494 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
495 				     bool transmit, unsigned int flags,
496 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
497 				     void (*start_poll)(void *),
498 				     void *poll_data)
499 {
500 	struct tb_ring *ring = NULL;
501 
502 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
503 		transmit ? "TX" : "RX", hop, size);
504 
505 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
506 	if (!ring)
507 		return NULL;
508 
509 	spin_lock_init(&ring->lock);
510 	INIT_LIST_HEAD(&ring->queue);
511 	INIT_LIST_HEAD(&ring->in_flight);
512 	INIT_WORK(&ring->work, ring_work);
513 
514 	ring->nhi = nhi;
515 	ring->hop = hop;
516 	ring->is_tx = transmit;
517 	ring->size = size;
518 	ring->flags = flags;
519 	ring->e2e_tx_hop = e2e_tx_hop;
520 	ring->sof_mask = sof_mask;
521 	ring->eof_mask = eof_mask;
522 	ring->head = 0;
523 	ring->tail = 0;
524 	ring->running = false;
525 	ring->start_poll = start_poll;
526 	ring->poll_data = poll_data;
527 
528 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
529 			size * sizeof(*ring->descriptors),
530 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
531 	if (!ring->descriptors)
532 		goto err_free_ring;
533 
534 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
535 		goto err_free_descs;
536 
537 	if (nhi_alloc_hop(nhi, ring))
538 		goto err_release_msix;
539 
540 	return ring;
541 
542 err_release_msix:
543 	ring_release_msix(ring);
544 err_free_descs:
545 	dma_free_coherent(&ring->nhi->pdev->dev,
546 			  ring->size * sizeof(*ring->descriptors),
547 			  ring->descriptors, ring->descriptors_dma);
548 err_free_ring:
549 	kfree(ring);
550 
551 	return NULL;
552 }
553 
554 /**
555  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
556  * @nhi: Pointer to the NHI the ring is to be allocated
557  * @hop: HopID (ring) to allocate
558  * @size: Number of entries in the ring
559  * @flags: Flags for the ring
560  */
561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
562 				 unsigned int flags)
563 {
564 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
565 }
566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
567 
568 /**
569  * tb_ring_alloc_rx() - Allocate DMA ring for receive
570  * @nhi: Pointer to the NHI the ring is to be allocated
571  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
572  * @size: Number of entries in the ring
573  * @flags: Flags for the ring
574  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
575  * @sof_mask: Mask of PDF values that start a frame
576  * @eof_mask: Mask of PDF values that end a frame
577  * @start_poll: If not %NULL the ring will call this function when an
578  *		interrupt is triggered and masked, instead of callback
579  *		in each Rx frame.
580  * @poll_data: Optional data passed to @start_poll
581  */
582 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
583 				 unsigned int flags, int e2e_tx_hop,
584 				 u16 sof_mask, u16 eof_mask,
585 				 void (*start_poll)(void *), void *poll_data)
586 {
587 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
588 			     start_poll, poll_data);
589 }
590 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
591 
592 /**
593  * tb_ring_start() - enable a ring
594  * @ring: Ring to start
595  *
596  * Must not be invoked in parallel with tb_ring_stop().
597  */
598 void tb_ring_start(struct tb_ring *ring)
599 {
600 	u16 frame_size;
601 	u32 flags;
602 
603 	spin_lock_irq(&ring->nhi->lock);
604 	spin_lock(&ring->lock);
605 	if (ring->nhi->going_away)
606 		goto err;
607 	if (ring->running) {
608 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
609 		goto err;
610 	}
611 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
612 		RING_TYPE(ring), ring->hop);
613 
614 	if (ring->flags & RING_FLAG_FRAME) {
615 		/* Means 4096 */
616 		frame_size = 0;
617 		flags = RING_FLAG_ENABLE;
618 	} else {
619 		frame_size = TB_FRAME_SIZE;
620 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
621 	}
622 
623 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
624 	if (ring->is_tx) {
625 		ring_iowrite32desc(ring, ring->size, 12);
626 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
627 		ring_iowrite32options(ring, flags, 0);
628 	} else {
629 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
630 
631 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
632 		ring_iowrite32options(ring, sof_eof_mask, 4);
633 		ring_iowrite32options(ring, flags, 0);
634 	}
635 
636 	/*
637 	 * Now that the ring valid bit is set we can configure E2E if
638 	 * enabled for the ring.
639 	 */
640 	if (ring->flags & RING_FLAG_E2E) {
641 		if (!ring->is_tx) {
642 			u32 hop;
643 
644 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
645 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
646 			flags |= hop;
647 
648 			dev_dbg(&ring->nhi->pdev->dev,
649 				"enabling E2E for %s %d with TX HopID %d\n",
650 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
651 		} else {
652 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
653 				RING_TYPE(ring), ring->hop);
654 		}
655 
656 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
657 		ring_iowrite32options(ring, flags, 0);
658 	}
659 
660 	ring_interrupt_active(ring, true);
661 	ring->running = true;
662 err:
663 	spin_unlock(&ring->lock);
664 	spin_unlock_irq(&ring->nhi->lock);
665 }
666 EXPORT_SYMBOL_GPL(tb_ring_start);
667 
668 /**
669  * tb_ring_stop() - shutdown a ring
670  * @ring: Ring to stop
671  *
672  * Must not be invoked from a callback.
673  *
674  * This method will disable the ring. Further calls to
675  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
676  * called.
677  *
678  * All enqueued frames will be canceled and their callbacks will be executed
679  * with frame->canceled set to true (on the callback thread). This method
680  * returns only after all callback invocations have finished.
681  */
682 void tb_ring_stop(struct tb_ring *ring)
683 {
684 	spin_lock_irq(&ring->nhi->lock);
685 	spin_lock(&ring->lock);
686 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
687 		RING_TYPE(ring), ring->hop);
688 	if (ring->nhi->going_away)
689 		goto err;
690 	if (!ring->running) {
691 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
692 			 RING_TYPE(ring), ring->hop);
693 		goto err;
694 	}
695 	ring_interrupt_active(ring, false);
696 
697 	ring_iowrite32options(ring, 0, 0);
698 	ring_iowrite64desc(ring, 0, 0);
699 	ring_iowrite32desc(ring, 0, 8);
700 	ring_iowrite32desc(ring, 0, 12);
701 	ring->head = 0;
702 	ring->tail = 0;
703 	ring->running = false;
704 
705 err:
706 	spin_unlock(&ring->lock);
707 	spin_unlock_irq(&ring->nhi->lock);
708 
709 	/*
710 	 * schedule ring->work to invoke callbacks on all remaining frames.
711 	 */
712 	schedule_work(&ring->work);
713 	flush_work(&ring->work);
714 }
715 EXPORT_SYMBOL_GPL(tb_ring_stop);
716 
717 /*
718  * tb_ring_free() - free ring
719  *
720  * When this method returns all invocations of ring->callback will have
721  * finished.
722  *
723  * Ring must be stopped.
724  *
725  * Must NOT be called from ring_frame->callback!
726  */
727 void tb_ring_free(struct tb_ring *ring)
728 {
729 	spin_lock_irq(&ring->nhi->lock);
730 	/*
731 	 * Dissociate the ring from the NHI. This also ensures that
732 	 * nhi_interrupt_work cannot reschedule ring->work.
733 	 */
734 	if (ring->is_tx)
735 		ring->nhi->tx_rings[ring->hop] = NULL;
736 	else
737 		ring->nhi->rx_rings[ring->hop] = NULL;
738 
739 	if (ring->running) {
740 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
741 			 RING_TYPE(ring), ring->hop);
742 	}
743 	spin_unlock_irq(&ring->nhi->lock);
744 
745 	ring_release_msix(ring);
746 
747 	dma_free_coherent(&ring->nhi->pdev->dev,
748 			  ring->size * sizeof(*ring->descriptors),
749 			  ring->descriptors, ring->descriptors_dma);
750 
751 	ring->descriptors = NULL;
752 	ring->descriptors_dma = 0;
753 
754 
755 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
756 		ring->hop);
757 
758 	/*
759 	 * ring->work can no longer be scheduled (it is scheduled only
760 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
761 	 * to finish before freeing the ring.
762 	 */
763 	flush_work(&ring->work);
764 	kfree(ring);
765 }
766 EXPORT_SYMBOL_GPL(tb_ring_free);
767 
768 /**
769  * nhi_mailbox_cmd() - Send a command through NHI mailbox
770  * @nhi: Pointer to the NHI structure
771  * @cmd: Command to send
772  * @data: Data to be send with the command
773  *
774  * Sends mailbox command to the firmware running on NHI. Returns %0 in
775  * case of success and negative errno in case of failure.
776  */
777 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
778 {
779 	ktime_t timeout;
780 	u32 val;
781 
782 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
783 
784 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
785 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
786 	val |= REG_INMAIL_OP_REQUEST | cmd;
787 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
788 
789 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
790 	do {
791 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
792 		if (!(val & REG_INMAIL_OP_REQUEST))
793 			break;
794 		usleep_range(10, 20);
795 	} while (ktime_before(ktime_get(), timeout));
796 
797 	if (val & REG_INMAIL_OP_REQUEST)
798 		return -ETIMEDOUT;
799 	if (val & REG_INMAIL_ERROR)
800 		return -EIO;
801 
802 	return 0;
803 }
804 
805 /**
806  * nhi_mailbox_mode() - Return current firmware operation mode
807  * @nhi: Pointer to the NHI structure
808  *
809  * The function reads current firmware operation mode using NHI mailbox
810  * registers and returns it to the caller.
811  */
812 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
813 {
814 	u32 val;
815 
816 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
817 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
818 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
819 
820 	return (enum nhi_fw_mode)val;
821 }
822 
823 static void nhi_interrupt_work(struct work_struct *work)
824 {
825 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
826 	int value = 0; /* Suppress uninitialized usage warning. */
827 	int bit;
828 	int hop = -1;
829 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
830 	struct tb_ring *ring;
831 
832 	spin_lock_irq(&nhi->lock);
833 
834 	/*
835 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
836 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
837 	 * dwords as required. The registers are cleared on read.
838 	 */
839 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
840 		if (bit % 32 == 0)
841 			value = ioread32(nhi->iobase
842 					 + REG_RING_NOTIFY_BASE
843 					 + 4 * (bit / 32));
844 		if (++hop == nhi->hop_count) {
845 			hop = 0;
846 			type++;
847 		}
848 		if ((value & (1 << (bit % 32))) == 0)
849 			continue;
850 		if (type == 2) {
851 			dev_warn(&nhi->pdev->dev,
852 				 "RX overflow for ring %d\n",
853 				 hop);
854 			continue;
855 		}
856 		if (type == 0)
857 			ring = nhi->tx_rings[hop];
858 		else
859 			ring = nhi->rx_rings[hop];
860 		if (ring == NULL) {
861 			dev_warn(&nhi->pdev->dev,
862 				 "got interrupt for inactive %s ring %d\n",
863 				 type ? "RX" : "TX",
864 				 hop);
865 			continue;
866 		}
867 
868 		spin_lock(&ring->lock);
869 		__ring_interrupt(ring);
870 		spin_unlock(&ring->lock);
871 	}
872 	spin_unlock_irq(&nhi->lock);
873 }
874 
875 static irqreturn_t nhi_msi(int irq, void *data)
876 {
877 	struct tb_nhi *nhi = data;
878 	schedule_work(&nhi->interrupt_work);
879 	return IRQ_HANDLED;
880 }
881 
882 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
883 {
884 	struct pci_dev *pdev = to_pci_dev(dev);
885 	struct tb *tb = pci_get_drvdata(pdev);
886 	struct tb_nhi *nhi = tb->nhi;
887 	int ret;
888 
889 	ret = tb_domain_suspend_noirq(tb);
890 	if (ret)
891 		return ret;
892 
893 	if (nhi->ops && nhi->ops->suspend_noirq) {
894 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
895 		if (ret)
896 			return ret;
897 	}
898 
899 	return 0;
900 }
901 
902 static int nhi_suspend_noirq(struct device *dev)
903 {
904 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
905 }
906 
907 static int nhi_freeze_noirq(struct device *dev)
908 {
909 	struct pci_dev *pdev = to_pci_dev(dev);
910 	struct tb *tb = pci_get_drvdata(pdev);
911 
912 	return tb_domain_freeze_noirq(tb);
913 }
914 
915 static int nhi_thaw_noirq(struct device *dev)
916 {
917 	struct pci_dev *pdev = to_pci_dev(dev);
918 	struct tb *tb = pci_get_drvdata(pdev);
919 
920 	return tb_domain_thaw_noirq(tb);
921 }
922 
923 static bool nhi_wake_supported(struct pci_dev *pdev)
924 {
925 	u8 val;
926 
927 	/*
928 	 * If power rails are sustainable for wakeup from S4 this
929 	 * property is set by the BIOS.
930 	 */
931 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
932 		return !!val;
933 
934 	return true;
935 }
936 
937 static int nhi_poweroff_noirq(struct device *dev)
938 {
939 	struct pci_dev *pdev = to_pci_dev(dev);
940 	bool wakeup;
941 
942 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
943 	return __nhi_suspend_noirq(dev, wakeup);
944 }
945 
946 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
947 {
948 	/* Throttling is specified in 256ns increments */
949 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
950 	unsigned int i;
951 
952 	/*
953 	 * Configure interrupt throttling for all vectors even if we
954 	 * only use few.
955 	 */
956 	for (i = 0; i < MSIX_MAX_VECS; i++) {
957 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
958 		iowrite32(throttle, nhi->iobase + reg);
959 	}
960 }
961 
962 static int nhi_resume_noirq(struct device *dev)
963 {
964 	struct pci_dev *pdev = to_pci_dev(dev);
965 	struct tb *tb = pci_get_drvdata(pdev);
966 	struct tb_nhi *nhi = tb->nhi;
967 	int ret;
968 
969 	/*
970 	 * Check that the device is still there. It may be that the user
971 	 * unplugged last device which causes the host controller to go
972 	 * away on PCs.
973 	 */
974 	if (!pci_device_is_present(pdev)) {
975 		nhi->going_away = true;
976 	} else {
977 		if (nhi->ops && nhi->ops->resume_noirq) {
978 			ret = nhi->ops->resume_noirq(nhi);
979 			if (ret)
980 				return ret;
981 		}
982 		nhi_enable_int_throttling(tb->nhi);
983 	}
984 
985 	return tb_domain_resume_noirq(tb);
986 }
987 
988 static int nhi_suspend(struct device *dev)
989 {
990 	struct pci_dev *pdev = to_pci_dev(dev);
991 	struct tb *tb = pci_get_drvdata(pdev);
992 
993 	return tb_domain_suspend(tb);
994 }
995 
996 static void nhi_complete(struct device *dev)
997 {
998 	struct pci_dev *pdev = to_pci_dev(dev);
999 	struct tb *tb = pci_get_drvdata(pdev);
1000 
1001 	/*
1002 	 * If we were runtime suspended when system suspend started,
1003 	 * schedule runtime resume now. It should bring the domain back
1004 	 * to functional state.
1005 	 */
1006 	if (pm_runtime_suspended(&pdev->dev))
1007 		pm_runtime_resume(&pdev->dev);
1008 	else
1009 		tb_domain_complete(tb);
1010 }
1011 
1012 static int nhi_runtime_suspend(struct device *dev)
1013 {
1014 	struct pci_dev *pdev = to_pci_dev(dev);
1015 	struct tb *tb = pci_get_drvdata(pdev);
1016 	struct tb_nhi *nhi = tb->nhi;
1017 	int ret;
1018 
1019 	ret = tb_domain_runtime_suspend(tb);
1020 	if (ret)
1021 		return ret;
1022 
1023 	if (nhi->ops && nhi->ops->runtime_suspend) {
1024 		ret = nhi->ops->runtime_suspend(tb->nhi);
1025 		if (ret)
1026 			return ret;
1027 	}
1028 	return 0;
1029 }
1030 
1031 static int nhi_runtime_resume(struct device *dev)
1032 {
1033 	struct pci_dev *pdev = to_pci_dev(dev);
1034 	struct tb *tb = pci_get_drvdata(pdev);
1035 	struct tb_nhi *nhi = tb->nhi;
1036 	int ret;
1037 
1038 	if (nhi->ops && nhi->ops->runtime_resume) {
1039 		ret = nhi->ops->runtime_resume(nhi);
1040 		if (ret)
1041 			return ret;
1042 	}
1043 
1044 	nhi_enable_int_throttling(nhi);
1045 	return tb_domain_runtime_resume(tb);
1046 }
1047 
1048 static void nhi_shutdown(struct tb_nhi *nhi)
1049 {
1050 	int i;
1051 
1052 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1053 
1054 	for (i = 0; i < nhi->hop_count; i++) {
1055 		if (nhi->tx_rings[i])
1056 			dev_WARN(&nhi->pdev->dev,
1057 				 "TX ring %d is still active\n", i);
1058 		if (nhi->rx_rings[i])
1059 			dev_WARN(&nhi->pdev->dev,
1060 				 "RX ring %d is still active\n", i);
1061 	}
1062 	nhi_disable_interrupts(nhi);
1063 	/*
1064 	 * We have to release the irq before calling flush_work. Otherwise an
1065 	 * already executing IRQ handler could call schedule_work again.
1066 	 */
1067 	if (!nhi->pdev->msix_enabled) {
1068 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1069 		flush_work(&nhi->interrupt_work);
1070 	}
1071 	ida_destroy(&nhi->msix_ida);
1072 
1073 	if (nhi->ops && nhi->ops->shutdown)
1074 		nhi->ops->shutdown(nhi);
1075 }
1076 
1077 static int nhi_init_msi(struct tb_nhi *nhi)
1078 {
1079 	struct pci_dev *pdev = nhi->pdev;
1080 	int res, irq, nvec;
1081 
1082 	/* In case someone left them on. */
1083 	nhi_disable_interrupts(nhi);
1084 
1085 	nhi_enable_int_throttling(nhi);
1086 
1087 	ida_init(&nhi->msix_ida);
1088 
1089 	/*
1090 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1091 	 * get all MSI-X vectors and if we succeed, each ring will have
1092 	 * one MSI-X. If for some reason that does not work out, we
1093 	 * fallback to a single MSI.
1094 	 */
1095 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1096 				     PCI_IRQ_MSIX);
1097 	if (nvec < 0) {
1098 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1099 		if (nvec < 0)
1100 			return nvec;
1101 
1102 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1103 
1104 		irq = pci_irq_vector(nhi->pdev, 0);
1105 		if (irq < 0)
1106 			return irq;
1107 
1108 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1109 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1110 		if (res) {
1111 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1112 			return res;
1113 		}
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static bool nhi_imr_valid(struct pci_dev *pdev)
1120 {
1121 	u8 val;
1122 
1123 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1124 		return !!val;
1125 
1126 	return true;
1127 }
1128 
1129 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1130 {
1131 	struct tb *tb;
1132 
1133 	/*
1134 	 * USB4 case is simple. If we got control of any of the
1135 	 * capabilities, we use software CM.
1136 	 */
1137 	if (tb_acpi_is_native())
1138 		return tb_probe(nhi);
1139 
1140 	/*
1141 	 * Either firmware based CM is running (we did not get control
1142 	 * from the firmware) or this is pre-USB4 PC so try first
1143 	 * firmware CM and then fallback to software CM.
1144 	 */
1145 	tb = icm_probe(nhi);
1146 	if (!tb)
1147 		tb = tb_probe(nhi);
1148 
1149 	return tb;
1150 }
1151 
1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1153 {
1154 	struct tb_nhi *nhi;
1155 	struct tb *tb;
1156 	int res;
1157 
1158 	if (!nhi_imr_valid(pdev)) {
1159 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1160 		return -ENODEV;
1161 	}
1162 
1163 	res = pcim_enable_device(pdev);
1164 	if (res) {
1165 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1166 		return res;
1167 	}
1168 
1169 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1170 	if (res) {
1171 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1172 		return res;
1173 	}
1174 
1175 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1176 	if (!nhi)
1177 		return -ENOMEM;
1178 
1179 	nhi->pdev = pdev;
1180 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1181 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1182 	nhi->iobase = pcim_iomap_table(pdev)[0];
1183 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1184 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1185 
1186 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1187 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1188 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1189 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1190 	if (!nhi->tx_rings || !nhi->rx_rings)
1191 		return -ENOMEM;
1192 
1193 	res = nhi_init_msi(nhi);
1194 	if (res) {
1195 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1196 		return res;
1197 	}
1198 
1199 	spin_lock_init(&nhi->lock);
1200 
1201 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1202 	if (res)
1203 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1204 	if (res) {
1205 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1206 		return res;
1207 	}
1208 
1209 	pci_set_master(pdev);
1210 
1211 	if (nhi->ops && nhi->ops->init) {
1212 		res = nhi->ops->init(nhi);
1213 		if (res)
1214 			return res;
1215 	}
1216 
1217 	tb = nhi_select_cm(nhi);
1218 	if (!tb) {
1219 		dev_err(&nhi->pdev->dev,
1220 			"failed to determine connection manager, aborting\n");
1221 		return -ENODEV;
1222 	}
1223 
1224 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1225 
1226 	res = tb_domain_add(tb);
1227 	if (res) {
1228 		/*
1229 		 * At this point the RX/TX rings might already have been
1230 		 * activated. Do a proper shutdown.
1231 		 */
1232 		tb_domain_put(tb);
1233 		nhi_shutdown(nhi);
1234 		return res;
1235 	}
1236 	pci_set_drvdata(pdev, tb);
1237 
1238 	device_wakeup_enable(&pdev->dev);
1239 
1240 	pm_runtime_allow(&pdev->dev);
1241 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1242 	pm_runtime_use_autosuspend(&pdev->dev);
1243 	pm_runtime_put_autosuspend(&pdev->dev);
1244 
1245 	return 0;
1246 }
1247 
1248 static void nhi_remove(struct pci_dev *pdev)
1249 {
1250 	struct tb *tb = pci_get_drvdata(pdev);
1251 	struct tb_nhi *nhi = tb->nhi;
1252 
1253 	pm_runtime_get_sync(&pdev->dev);
1254 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1255 	pm_runtime_forbid(&pdev->dev);
1256 
1257 	tb_domain_remove(tb);
1258 	nhi_shutdown(nhi);
1259 }
1260 
1261 /*
1262  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1263  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1264  * resume_noirq until we are done.
1265  */
1266 static const struct dev_pm_ops nhi_pm_ops = {
1267 	.suspend_noirq = nhi_suspend_noirq,
1268 	.resume_noirq = nhi_resume_noirq,
1269 	.freeze_noirq = nhi_freeze_noirq,  /*
1270 					    * we just disable hotplug, the
1271 					    * pci-tunnels stay alive.
1272 					    */
1273 	.thaw_noirq = nhi_thaw_noirq,
1274 	.restore_noirq = nhi_resume_noirq,
1275 	.suspend = nhi_suspend,
1276 	.poweroff_noirq = nhi_poweroff_noirq,
1277 	.poweroff = nhi_suspend,
1278 	.complete = nhi_complete,
1279 	.runtime_suspend = nhi_runtime_suspend,
1280 	.runtime_resume = nhi_runtime_resume,
1281 };
1282 
1283 static struct pci_device_id nhi_ids[] = {
1284 	/*
1285 	 * We have to specify class, the TB bridges use the same device and
1286 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1287 	 */
1288 	{
1289 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1290 		.vendor = PCI_VENDOR_ID_INTEL,
1291 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1292 		.subvendor = 0x2222, .subdevice = 0x1111,
1293 	},
1294 	{
1295 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1296 		.vendor = PCI_VENDOR_ID_INTEL,
1297 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1298 		.subvendor = 0x2222, .subdevice = 0x1111,
1299 	},
1300 	{
1301 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1302 		.vendor = PCI_VENDOR_ID_INTEL,
1303 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1304 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1305 	},
1306 	{
1307 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1308 		.vendor = PCI_VENDOR_ID_INTEL,
1309 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1310 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1311 	},
1312 
1313 	/* Thunderbolt 3 */
1314 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1315 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1316 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1317 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1318 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1319 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1320 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1321 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1322 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1323 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1324 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1325 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1326 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1327 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1328 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1329 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1330 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1331 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1332 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1333 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1334 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1335 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1336 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1337 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1338 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1339 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1340 
1341 	/* Any USB4 compliant host */
1342 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1343 
1344 	{ 0,}
1345 };
1346 
1347 MODULE_DEVICE_TABLE(pci, nhi_ids);
1348 MODULE_LICENSE("GPL");
1349 
1350 static struct pci_driver nhi_driver = {
1351 	.name = "thunderbolt",
1352 	.id_table = nhi_ids,
1353 	.probe = nhi_probe,
1354 	.remove = nhi_remove,
1355 	.shutdown = nhi_remove,
1356 	.driver.pm = &nhi_pm_ops,
1357 };
1358 
1359 static int __init nhi_init(void)
1360 {
1361 	int ret;
1362 
1363 	ret = tb_domain_init();
1364 	if (ret)
1365 		return ret;
1366 	ret = pci_register_driver(&nhi_driver);
1367 	if (ret)
1368 		tb_domain_exit();
1369 	return ret;
1370 }
1371 
1372 static void __exit nhi_unload(void)
1373 {
1374 	pci_unregister_driver(&nhi_driver);
1375 	tb_domain_exit();
1376 }
1377 
1378 rootfs_initcall(nhi_init);
1379 module_exit(nhi_unload);
1380