1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Thunderbolt driver - NHI driver 4 * 5 * The NHI (native host interface) is the pci device that allows us to send and 6 * receive frames from the thunderbolt bus. 7 * 8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 9 * Copyright (C) 2018, Intel Corporation 10 */ 11 12 #include <linux/pm_runtime.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/pci.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/delay.h> 19 #include <linux/property.h> 20 21 #include "nhi.h" 22 #include "nhi_regs.h" 23 #include "tb.h" 24 25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring") 26 27 #define RING_FIRST_USABLE_HOPID 1 28 29 /* 30 * Minimal number of vectors when we use MSI-X. Two for control channel 31 * Rx/Tx and the rest four are for cross domain DMA paths. 32 */ 33 #define MSIX_MIN_VECS 6 34 #define MSIX_MAX_VECS 16 35 36 #define NHI_MAILBOX_TIMEOUT 500 /* ms */ 37 38 static int ring_interrupt_index(struct tb_ring *ring) 39 { 40 int bit = ring->hop; 41 if (!ring->is_tx) 42 bit += ring->nhi->hop_count; 43 return bit; 44 } 45 46 /* 47 * ring_interrupt_active() - activate/deactivate interrupts for a single ring 48 * 49 * ring->nhi->lock must be held. 50 */ 51 static void ring_interrupt_active(struct tb_ring *ring, bool active) 52 { 53 int reg = REG_RING_INTERRUPT_BASE + 54 ring_interrupt_index(ring) / 32 * 4; 55 int bit = ring_interrupt_index(ring) & 31; 56 int mask = 1 << bit; 57 u32 old, new; 58 59 if (ring->irq > 0) { 60 u32 step, shift, ivr, misc; 61 void __iomem *ivr_base; 62 int index; 63 64 if (ring->is_tx) 65 index = ring->hop; 66 else 67 index = ring->hop + ring->nhi->hop_count; 68 69 /* 70 * Ask the hardware to clear interrupt status bits automatically 71 * since we already know which interrupt was triggered. 72 */ 73 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC); 74 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) { 75 misc |= REG_DMA_MISC_INT_AUTO_CLEAR; 76 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC); 77 } 78 79 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE; 80 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 81 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS; 82 ivr = ioread32(ivr_base + step); 83 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift); 84 if (active) 85 ivr |= ring->vector << shift; 86 iowrite32(ivr, ivr_base + step); 87 } 88 89 old = ioread32(ring->nhi->iobase + reg); 90 if (active) 91 new = old | mask; 92 else 93 new = old & ~mask; 94 95 dev_dbg(&ring->nhi->pdev->dev, 96 "%s interrupt at register %#x bit %d (%#x -> %#x)\n", 97 active ? "enabling" : "disabling", reg, bit, old, new); 98 99 if (new == old) 100 dev_WARN(&ring->nhi->pdev->dev, 101 "interrupt for %s %d is already %s\n", 102 RING_TYPE(ring), ring->hop, 103 active ? "enabled" : "disabled"); 104 iowrite32(new, ring->nhi->iobase + reg); 105 } 106 107 /* 108 * nhi_disable_interrupts() - disable interrupts for all rings 109 * 110 * Use only during init and shutdown. 111 */ 112 static void nhi_disable_interrupts(struct tb_nhi *nhi) 113 { 114 int i = 0; 115 /* disable interrupts */ 116 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++) 117 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i); 118 119 /* clear interrupt status bits */ 120 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++) 121 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i); 122 } 123 124 /* ring helper methods */ 125 126 static void __iomem *ring_desc_base(struct tb_ring *ring) 127 { 128 void __iomem *io = ring->nhi->iobase; 129 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE; 130 io += ring->hop * 16; 131 return io; 132 } 133 134 static void __iomem *ring_options_base(struct tb_ring *ring) 135 { 136 void __iomem *io = ring->nhi->iobase; 137 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE; 138 io += ring->hop * 32; 139 return io; 140 } 141 142 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons) 143 { 144 /* 145 * The other 16-bits in the register is read-only and writes to it 146 * are ignored by the hardware so we can save one ioread32() by 147 * filling the read-only bits with zeroes. 148 */ 149 iowrite32(cons, ring_desc_base(ring) + 8); 150 } 151 152 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod) 153 { 154 /* See ring_iowrite_cons() above for explanation */ 155 iowrite32(prod << 16, ring_desc_base(ring) + 8); 156 } 157 158 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset) 159 { 160 iowrite32(value, ring_desc_base(ring) + offset); 161 } 162 163 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset) 164 { 165 iowrite32(value, ring_desc_base(ring) + offset); 166 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4); 167 } 168 169 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset) 170 { 171 iowrite32(value, ring_options_base(ring) + offset); 172 } 173 174 static bool ring_full(struct tb_ring *ring) 175 { 176 return ((ring->head + 1) % ring->size) == ring->tail; 177 } 178 179 static bool ring_empty(struct tb_ring *ring) 180 { 181 return ring->head == ring->tail; 182 } 183 184 /* 185 * ring_write_descriptors() - post frames from ring->queue to the controller 186 * 187 * ring->lock is held. 188 */ 189 static void ring_write_descriptors(struct tb_ring *ring) 190 { 191 struct ring_frame *frame, *n; 192 struct ring_desc *descriptor; 193 list_for_each_entry_safe(frame, n, &ring->queue, list) { 194 if (ring_full(ring)) 195 break; 196 list_move_tail(&frame->list, &ring->in_flight); 197 descriptor = &ring->descriptors[ring->head]; 198 descriptor->phys = frame->buffer_phy; 199 descriptor->time = 0; 200 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT; 201 if (ring->is_tx) { 202 descriptor->length = frame->size; 203 descriptor->eof = frame->eof; 204 descriptor->sof = frame->sof; 205 } 206 ring->head = (ring->head + 1) % ring->size; 207 if (ring->is_tx) 208 ring_iowrite_prod(ring, ring->head); 209 else 210 ring_iowrite_cons(ring, ring->head); 211 } 212 } 213 214 /* 215 * ring_work() - progress completed frames 216 * 217 * If the ring is shutting down then all frames are marked as canceled and 218 * their callbacks are invoked. 219 * 220 * Otherwise we collect all completed frame from the ring buffer, write new 221 * frame to the ring buffer and invoke the callbacks for the completed frames. 222 */ 223 static void ring_work(struct work_struct *work) 224 { 225 struct tb_ring *ring = container_of(work, typeof(*ring), work); 226 struct ring_frame *frame; 227 bool canceled = false; 228 unsigned long flags; 229 LIST_HEAD(done); 230 231 spin_lock_irqsave(&ring->lock, flags); 232 233 if (!ring->running) { 234 /* Move all frames to done and mark them as canceled. */ 235 list_splice_tail_init(&ring->in_flight, &done); 236 list_splice_tail_init(&ring->queue, &done); 237 canceled = true; 238 goto invoke_callback; 239 } 240 241 while (!ring_empty(ring)) { 242 if (!(ring->descriptors[ring->tail].flags 243 & RING_DESC_COMPLETED)) 244 break; 245 frame = list_first_entry(&ring->in_flight, typeof(*frame), 246 list); 247 list_move_tail(&frame->list, &done); 248 if (!ring->is_tx) { 249 frame->size = ring->descriptors[ring->tail].length; 250 frame->eof = ring->descriptors[ring->tail].eof; 251 frame->sof = ring->descriptors[ring->tail].sof; 252 frame->flags = ring->descriptors[ring->tail].flags; 253 } 254 ring->tail = (ring->tail + 1) % ring->size; 255 } 256 ring_write_descriptors(ring); 257 258 invoke_callback: 259 /* allow callbacks to schedule new work */ 260 spin_unlock_irqrestore(&ring->lock, flags); 261 while (!list_empty(&done)) { 262 frame = list_first_entry(&done, typeof(*frame), list); 263 /* 264 * The callback may reenqueue or delete frame. 265 * Do not hold on to it. 266 */ 267 list_del_init(&frame->list); 268 if (frame->callback) 269 frame->callback(ring, frame, canceled); 270 } 271 } 272 273 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame) 274 { 275 unsigned long flags; 276 int ret = 0; 277 278 spin_lock_irqsave(&ring->lock, flags); 279 if (ring->running) { 280 list_add_tail(&frame->list, &ring->queue); 281 ring_write_descriptors(ring); 282 } else { 283 ret = -ESHUTDOWN; 284 } 285 spin_unlock_irqrestore(&ring->lock, flags); 286 return ret; 287 } 288 EXPORT_SYMBOL_GPL(__tb_ring_enqueue); 289 290 /** 291 * tb_ring_poll() - Poll one completed frame from the ring 292 * @ring: Ring to poll 293 * 294 * This function can be called when @start_poll callback of the @ring 295 * has been called. It will read one completed frame from the ring and 296 * return it to the caller. Returns %NULL if there is no more completed 297 * frames. 298 */ 299 struct ring_frame *tb_ring_poll(struct tb_ring *ring) 300 { 301 struct ring_frame *frame = NULL; 302 unsigned long flags; 303 304 spin_lock_irqsave(&ring->lock, flags); 305 if (!ring->running) 306 goto unlock; 307 if (ring_empty(ring)) 308 goto unlock; 309 310 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) { 311 frame = list_first_entry(&ring->in_flight, typeof(*frame), 312 list); 313 list_del_init(&frame->list); 314 315 if (!ring->is_tx) { 316 frame->size = ring->descriptors[ring->tail].length; 317 frame->eof = ring->descriptors[ring->tail].eof; 318 frame->sof = ring->descriptors[ring->tail].sof; 319 frame->flags = ring->descriptors[ring->tail].flags; 320 } 321 322 ring->tail = (ring->tail + 1) % ring->size; 323 } 324 325 unlock: 326 spin_unlock_irqrestore(&ring->lock, flags); 327 return frame; 328 } 329 EXPORT_SYMBOL_GPL(tb_ring_poll); 330 331 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask) 332 { 333 int idx = ring_interrupt_index(ring); 334 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4; 335 int bit = idx % 32; 336 u32 val; 337 338 val = ioread32(ring->nhi->iobase + reg); 339 if (mask) 340 val &= ~BIT(bit); 341 else 342 val |= BIT(bit); 343 iowrite32(val, ring->nhi->iobase + reg); 344 } 345 346 /* Both @nhi->lock and @ring->lock should be held */ 347 static void __ring_interrupt(struct tb_ring *ring) 348 { 349 if (!ring->running) 350 return; 351 352 if (ring->start_poll) { 353 __ring_interrupt_mask(ring, true); 354 ring->start_poll(ring->poll_data); 355 } else { 356 schedule_work(&ring->work); 357 } 358 } 359 360 /** 361 * tb_ring_poll_complete() - Re-start interrupt for the ring 362 * @ring: Ring to re-start the interrupt 363 * 364 * This will re-start (unmask) the ring interrupt once the user is done 365 * with polling. 366 */ 367 void tb_ring_poll_complete(struct tb_ring *ring) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&ring->nhi->lock, flags); 372 spin_lock(&ring->lock); 373 if (ring->start_poll) 374 __ring_interrupt_mask(ring, false); 375 spin_unlock(&ring->lock); 376 spin_unlock_irqrestore(&ring->nhi->lock, flags); 377 } 378 EXPORT_SYMBOL_GPL(tb_ring_poll_complete); 379 380 static irqreturn_t ring_msix(int irq, void *data) 381 { 382 struct tb_ring *ring = data; 383 384 spin_lock(&ring->nhi->lock); 385 spin_lock(&ring->lock); 386 __ring_interrupt(ring); 387 spin_unlock(&ring->lock); 388 spin_unlock(&ring->nhi->lock); 389 390 return IRQ_HANDLED; 391 } 392 393 static int ring_request_msix(struct tb_ring *ring, bool no_suspend) 394 { 395 struct tb_nhi *nhi = ring->nhi; 396 unsigned long irqflags; 397 int ret; 398 399 if (!nhi->pdev->msix_enabled) 400 return 0; 401 402 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL); 403 if (ret < 0) 404 return ret; 405 406 ring->vector = ret; 407 408 ret = pci_irq_vector(ring->nhi->pdev, ring->vector); 409 if (ret < 0) 410 goto err_ida_remove; 411 412 ring->irq = ret; 413 414 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0; 415 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring); 416 if (ret) 417 goto err_ida_remove; 418 419 return 0; 420 421 err_ida_remove: 422 ida_simple_remove(&nhi->msix_ida, ring->vector); 423 424 return ret; 425 } 426 427 static void ring_release_msix(struct tb_ring *ring) 428 { 429 if (ring->irq <= 0) 430 return; 431 432 free_irq(ring->irq, ring); 433 ida_simple_remove(&ring->nhi->msix_ida, ring->vector); 434 ring->vector = 0; 435 ring->irq = 0; 436 } 437 438 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring) 439 { 440 int ret = 0; 441 442 spin_lock_irq(&nhi->lock); 443 444 if (ring->hop < 0) { 445 unsigned int i; 446 447 /* 448 * Automatically allocate HopID from the non-reserved 449 * range 1 .. hop_count - 1. 450 */ 451 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) { 452 if (ring->is_tx) { 453 if (!nhi->tx_rings[i]) { 454 ring->hop = i; 455 break; 456 } 457 } else { 458 if (!nhi->rx_rings[i]) { 459 ring->hop = i; 460 break; 461 } 462 } 463 } 464 } 465 466 if (ring->hop < 0 || ring->hop >= nhi->hop_count) { 467 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop); 468 ret = -EINVAL; 469 goto err_unlock; 470 } 471 if (ring->is_tx && nhi->tx_rings[ring->hop]) { 472 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n", 473 ring->hop); 474 ret = -EBUSY; 475 goto err_unlock; 476 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) { 477 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n", 478 ring->hop); 479 ret = -EBUSY; 480 goto err_unlock; 481 } 482 483 if (ring->is_tx) 484 nhi->tx_rings[ring->hop] = ring; 485 else 486 nhi->rx_rings[ring->hop] = ring; 487 488 err_unlock: 489 spin_unlock_irq(&nhi->lock); 490 491 return ret; 492 } 493 494 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size, 495 bool transmit, unsigned int flags, 496 int e2e_tx_hop, u16 sof_mask, u16 eof_mask, 497 void (*start_poll)(void *), 498 void *poll_data) 499 { 500 struct tb_ring *ring = NULL; 501 502 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n", 503 transmit ? "TX" : "RX", hop, size); 504 505 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 506 if (!ring) 507 return NULL; 508 509 spin_lock_init(&ring->lock); 510 INIT_LIST_HEAD(&ring->queue); 511 INIT_LIST_HEAD(&ring->in_flight); 512 INIT_WORK(&ring->work, ring_work); 513 514 ring->nhi = nhi; 515 ring->hop = hop; 516 ring->is_tx = transmit; 517 ring->size = size; 518 ring->flags = flags; 519 ring->e2e_tx_hop = e2e_tx_hop; 520 ring->sof_mask = sof_mask; 521 ring->eof_mask = eof_mask; 522 ring->head = 0; 523 ring->tail = 0; 524 ring->running = false; 525 ring->start_poll = start_poll; 526 ring->poll_data = poll_data; 527 528 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev, 529 size * sizeof(*ring->descriptors), 530 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO); 531 if (!ring->descriptors) 532 goto err_free_ring; 533 534 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND)) 535 goto err_free_descs; 536 537 if (nhi_alloc_hop(nhi, ring)) 538 goto err_release_msix; 539 540 return ring; 541 542 err_release_msix: 543 ring_release_msix(ring); 544 err_free_descs: 545 dma_free_coherent(&ring->nhi->pdev->dev, 546 ring->size * sizeof(*ring->descriptors), 547 ring->descriptors, ring->descriptors_dma); 548 err_free_ring: 549 kfree(ring); 550 551 return NULL; 552 } 553 554 /** 555 * tb_ring_alloc_tx() - Allocate DMA ring for transmit 556 * @nhi: Pointer to the NHI the ring is to be allocated 557 * @hop: HopID (ring) to allocate 558 * @size: Number of entries in the ring 559 * @flags: Flags for the ring 560 */ 561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size, 562 unsigned int flags) 563 { 564 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL); 565 } 566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx); 567 568 /** 569 * tb_ring_alloc_rx() - Allocate DMA ring for receive 570 * @nhi: Pointer to the NHI the ring is to be allocated 571 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation. 572 * @size: Number of entries in the ring 573 * @flags: Flags for the ring 574 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags 575 * @sof_mask: Mask of PDF values that start a frame 576 * @eof_mask: Mask of PDF values that end a frame 577 * @start_poll: If not %NULL the ring will call this function when an 578 * interrupt is triggered and masked, instead of callback 579 * in each Rx frame. 580 * @poll_data: Optional data passed to @start_poll 581 */ 582 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size, 583 unsigned int flags, int e2e_tx_hop, 584 u16 sof_mask, u16 eof_mask, 585 void (*start_poll)(void *), void *poll_data) 586 { 587 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask, 588 start_poll, poll_data); 589 } 590 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx); 591 592 /** 593 * tb_ring_start() - enable a ring 594 * @ring: Ring to start 595 * 596 * Must not be invoked in parallel with tb_ring_stop(). 597 */ 598 void tb_ring_start(struct tb_ring *ring) 599 { 600 u16 frame_size; 601 u32 flags; 602 603 spin_lock_irq(&ring->nhi->lock); 604 spin_lock(&ring->lock); 605 if (ring->nhi->going_away) 606 goto err; 607 if (ring->running) { 608 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n"); 609 goto err; 610 } 611 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n", 612 RING_TYPE(ring), ring->hop); 613 614 if (ring->flags & RING_FLAG_FRAME) { 615 /* Means 4096 */ 616 frame_size = 0; 617 flags = RING_FLAG_ENABLE; 618 } else { 619 frame_size = TB_FRAME_SIZE; 620 flags = RING_FLAG_ENABLE | RING_FLAG_RAW; 621 } 622 623 ring_iowrite64desc(ring, ring->descriptors_dma, 0); 624 if (ring->is_tx) { 625 ring_iowrite32desc(ring, ring->size, 12); 626 ring_iowrite32options(ring, 0, 4); /* time releated ? */ 627 ring_iowrite32options(ring, flags, 0); 628 } else { 629 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask; 630 631 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12); 632 ring_iowrite32options(ring, sof_eof_mask, 4); 633 ring_iowrite32options(ring, flags, 0); 634 } 635 636 /* 637 * Now that the ring valid bit is set we can configure E2E if 638 * enabled for the ring. 639 */ 640 if (ring->flags & RING_FLAG_E2E) { 641 if (!ring->is_tx) { 642 u32 hop; 643 644 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT; 645 hop &= REG_RX_OPTIONS_E2E_HOP_MASK; 646 flags |= hop; 647 648 dev_dbg(&ring->nhi->pdev->dev, 649 "enabling E2E for %s %d with TX HopID %d\n", 650 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop); 651 } else { 652 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n", 653 RING_TYPE(ring), ring->hop); 654 } 655 656 flags |= RING_FLAG_E2E_FLOW_CONTROL; 657 ring_iowrite32options(ring, flags, 0); 658 } 659 660 ring_interrupt_active(ring, true); 661 ring->running = true; 662 err: 663 spin_unlock(&ring->lock); 664 spin_unlock_irq(&ring->nhi->lock); 665 } 666 EXPORT_SYMBOL_GPL(tb_ring_start); 667 668 /** 669 * tb_ring_stop() - shutdown a ring 670 * @ring: Ring to stop 671 * 672 * Must not be invoked from a callback. 673 * 674 * This method will disable the ring. Further calls to 675 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been 676 * called. 677 * 678 * All enqueued frames will be canceled and their callbacks will be executed 679 * with frame->canceled set to true (on the callback thread). This method 680 * returns only after all callback invocations have finished. 681 */ 682 void tb_ring_stop(struct tb_ring *ring) 683 { 684 spin_lock_irq(&ring->nhi->lock); 685 spin_lock(&ring->lock); 686 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n", 687 RING_TYPE(ring), ring->hop); 688 if (ring->nhi->going_away) 689 goto err; 690 if (!ring->running) { 691 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n", 692 RING_TYPE(ring), ring->hop); 693 goto err; 694 } 695 ring_interrupt_active(ring, false); 696 697 ring_iowrite32options(ring, 0, 0); 698 ring_iowrite64desc(ring, 0, 0); 699 ring_iowrite32desc(ring, 0, 8); 700 ring_iowrite32desc(ring, 0, 12); 701 ring->head = 0; 702 ring->tail = 0; 703 ring->running = false; 704 705 err: 706 spin_unlock(&ring->lock); 707 spin_unlock_irq(&ring->nhi->lock); 708 709 /* 710 * schedule ring->work to invoke callbacks on all remaining frames. 711 */ 712 schedule_work(&ring->work); 713 flush_work(&ring->work); 714 } 715 EXPORT_SYMBOL_GPL(tb_ring_stop); 716 717 /* 718 * tb_ring_free() - free ring 719 * 720 * When this method returns all invocations of ring->callback will have 721 * finished. 722 * 723 * Ring must be stopped. 724 * 725 * Must NOT be called from ring_frame->callback! 726 */ 727 void tb_ring_free(struct tb_ring *ring) 728 { 729 spin_lock_irq(&ring->nhi->lock); 730 /* 731 * Dissociate the ring from the NHI. This also ensures that 732 * nhi_interrupt_work cannot reschedule ring->work. 733 */ 734 if (ring->is_tx) 735 ring->nhi->tx_rings[ring->hop] = NULL; 736 else 737 ring->nhi->rx_rings[ring->hop] = NULL; 738 739 if (ring->running) { 740 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n", 741 RING_TYPE(ring), ring->hop); 742 } 743 spin_unlock_irq(&ring->nhi->lock); 744 745 ring_release_msix(ring); 746 747 dma_free_coherent(&ring->nhi->pdev->dev, 748 ring->size * sizeof(*ring->descriptors), 749 ring->descriptors, ring->descriptors_dma); 750 751 ring->descriptors = NULL; 752 ring->descriptors_dma = 0; 753 754 755 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring), 756 ring->hop); 757 758 /* 759 * ring->work can no longer be scheduled (it is scheduled only 760 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it 761 * to finish before freeing the ring. 762 */ 763 flush_work(&ring->work); 764 kfree(ring); 765 } 766 EXPORT_SYMBOL_GPL(tb_ring_free); 767 768 /** 769 * nhi_mailbox_cmd() - Send a command through NHI mailbox 770 * @nhi: Pointer to the NHI structure 771 * @cmd: Command to send 772 * @data: Data to be send with the command 773 * 774 * Sends mailbox command to the firmware running on NHI. Returns %0 in 775 * case of success and negative errno in case of failure. 776 */ 777 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data) 778 { 779 ktime_t timeout; 780 u32 val; 781 782 iowrite32(data, nhi->iobase + REG_INMAIL_DATA); 783 784 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 785 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR); 786 val |= REG_INMAIL_OP_REQUEST | cmd; 787 iowrite32(val, nhi->iobase + REG_INMAIL_CMD); 788 789 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT); 790 do { 791 val = ioread32(nhi->iobase + REG_INMAIL_CMD); 792 if (!(val & REG_INMAIL_OP_REQUEST)) 793 break; 794 usleep_range(10, 20); 795 } while (ktime_before(ktime_get(), timeout)); 796 797 if (val & REG_INMAIL_OP_REQUEST) 798 return -ETIMEDOUT; 799 if (val & REG_INMAIL_ERROR) 800 return -EIO; 801 802 return 0; 803 } 804 805 /** 806 * nhi_mailbox_mode() - Return current firmware operation mode 807 * @nhi: Pointer to the NHI structure 808 * 809 * The function reads current firmware operation mode using NHI mailbox 810 * registers and returns it to the caller. 811 */ 812 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi) 813 { 814 u32 val; 815 816 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD); 817 val &= REG_OUTMAIL_CMD_OPMODE_MASK; 818 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT; 819 820 return (enum nhi_fw_mode)val; 821 } 822 823 static void nhi_interrupt_work(struct work_struct *work) 824 { 825 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work); 826 int value = 0; /* Suppress uninitialized usage warning. */ 827 int bit; 828 int hop = -1; 829 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */ 830 struct tb_ring *ring; 831 832 spin_lock_irq(&nhi->lock); 833 834 /* 835 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields 836 * (TX, RX, RX overflow). We iterate over the bits and read a new 837 * dwords as required. The registers are cleared on read. 838 */ 839 for (bit = 0; bit < 3 * nhi->hop_count; bit++) { 840 if (bit % 32 == 0) 841 value = ioread32(nhi->iobase 842 + REG_RING_NOTIFY_BASE 843 + 4 * (bit / 32)); 844 if (++hop == nhi->hop_count) { 845 hop = 0; 846 type++; 847 } 848 if ((value & (1 << (bit % 32))) == 0) 849 continue; 850 if (type == 2) { 851 dev_warn(&nhi->pdev->dev, 852 "RX overflow for ring %d\n", 853 hop); 854 continue; 855 } 856 if (type == 0) 857 ring = nhi->tx_rings[hop]; 858 else 859 ring = nhi->rx_rings[hop]; 860 if (ring == NULL) { 861 dev_warn(&nhi->pdev->dev, 862 "got interrupt for inactive %s ring %d\n", 863 type ? "RX" : "TX", 864 hop); 865 continue; 866 } 867 868 spin_lock(&ring->lock); 869 __ring_interrupt(ring); 870 spin_unlock(&ring->lock); 871 } 872 spin_unlock_irq(&nhi->lock); 873 } 874 875 static irqreturn_t nhi_msi(int irq, void *data) 876 { 877 struct tb_nhi *nhi = data; 878 schedule_work(&nhi->interrupt_work); 879 return IRQ_HANDLED; 880 } 881 882 static int __nhi_suspend_noirq(struct device *dev, bool wakeup) 883 { 884 struct pci_dev *pdev = to_pci_dev(dev); 885 struct tb *tb = pci_get_drvdata(pdev); 886 struct tb_nhi *nhi = tb->nhi; 887 int ret; 888 889 ret = tb_domain_suspend_noirq(tb); 890 if (ret) 891 return ret; 892 893 if (nhi->ops && nhi->ops->suspend_noirq) { 894 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup); 895 if (ret) 896 return ret; 897 } 898 899 return 0; 900 } 901 902 static int nhi_suspend_noirq(struct device *dev) 903 { 904 return __nhi_suspend_noirq(dev, device_may_wakeup(dev)); 905 } 906 907 static int nhi_freeze_noirq(struct device *dev) 908 { 909 struct pci_dev *pdev = to_pci_dev(dev); 910 struct tb *tb = pci_get_drvdata(pdev); 911 912 return tb_domain_freeze_noirq(tb); 913 } 914 915 static int nhi_thaw_noirq(struct device *dev) 916 { 917 struct pci_dev *pdev = to_pci_dev(dev); 918 struct tb *tb = pci_get_drvdata(pdev); 919 920 return tb_domain_thaw_noirq(tb); 921 } 922 923 static bool nhi_wake_supported(struct pci_dev *pdev) 924 { 925 u8 val; 926 927 /* 928 * If power rails are sustainable for wakeup from S4 this 929 * property is set by the BIOS. 930 */ 931 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val)) 932 return !!val; 933 934 return true; 935 } 936 937 static int nhi_poweroff_noirq(struct device *dev) 938 { 939 struct pci_dev *pdev = to_pci_dev(dev); 940 bool wakeup; 941 942 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev); 943 return __nhi_suspend_noirq(dev, wakeup); 944 } 945 946 static void nhi_enable_int_throttling(struct tb_nhi *nhi) 947 { 948 /* Throttling is specified in 256ns increments */ 949 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256); 950 unsigned int i; 951 952 /* 953 * Configure interrupt throttling for all vectors even if we 954 * only use few. 955 */ 956 for (i = 0; i < MSIX_MAX_VECS; i++) { 957 u32 reg = REG_INT_THROTTLING_RATE + i * 4; 958 iowrite32(throttle, nhi->iobase + reg); 959 } 960 } 961 962 static int nhi_resume_noirq(struct device *dev) 963 { 964 struct pci_dev *pdev = to_pci_dev(dev); 965 struct tb *tb = pci_get_drvdata(pdev); 966 struct tb_nhi *nhi = tb->nhi; 967 int ret; 968 969 /* 970 * Check that the device is still there. It may be that the user 971 * unplugged last device which causes the host controller to go 972 * away on PCs. 973 */ 974 if (!pci_device_is_present(pdev)) { 975 nhi->going_away = true; 976 } else { 977 if (nhi->ops && nhi->ops->resume_noirq) { 978 ret = nhi->ops->resume_noirq(nhi); 979 if (ret) 980 return ret; 981 } 982 nhi_enable_int_throttling(tb->nhi); 983 } 984 985 return tb_domain_resume_noirq(tb); 986 } 987 988 static int nhi_suspend(struct device *dev) 989 { 990 struct pci_dev *pdev = to_pci_dev(dev); 991 struct tb *tb = pci_get_drvdata(pdev); 992 993 return tb_domain_suspend(tb); 994 } 995 996 static void nhi_complete(struct device *dev) 997 { 998 struct pci_dev *pdev = to_pci_dev(dev); 999 struct tb *tb = pci_get_drvdata(pdev); 1000 1001 /* 1002 * If we were runtime suspended when system suspend started, 1003 * schedule runtime resume now. It should bring the domain back 1004 * to functional state. 1005 */ 1006 if (pm_runtime_suspended(&pdev->dev)) 1007 pm_runtime_resume(&pdev->dev); 1008 else 1009 tb_domain_complete(tb); 1010 } 1011 1012 static int nhi_runtime_suspend(struct device *dev) 1013 { 1014 struct pci_dev *pdev = to_pci_dev(dev); 1015 struct tb *tb = pci_get_drvdata(pdev); 1016 struct tb_nhi *nhi = tb->nhi; 1017 int ret; 1018 1019 ret = tb_domain_runtime_suspend(tb); 1020 if (ret) 1021 return ret; 1022 1023 if (nhi->ops && nhi->ops->runtime_suspend) { 1024 ret = nhi->ops->runtime_suspend(tb->nhi); 1025 if (ret) 1026 return ret; 1027 } 1028 return 0; 1029 } 1030 1031 static int nhi_runtime_resume(struct device *dev) 1032 { 1033 struct pci_dev *pdev = to_pci_dev(dev); 1034 struct tb *tb = pci_get_drvdata(pdev); 1035 struct tb_nhi *nhi = tb->nhi; 1036 int ret; 1037 1038 if (nhi->ops && nhi->ops->runtime_resume) { 1039 ret = nhi->ops->runtime_resume(nhi); 1040 if (ret) 1041 return ret; 1042 } 1043 1044 nhi_enable_int_throttling(nhi); 1045 return tb_domain_runtime_resume(tb); 1046 } 1047 1048 static void nhi_shutdown(struct tb_nhi *nhi) 1049 { 1050 int i; 1051 1052 dev_dbg(&nhi->pdev->dev, "shutdown\n"); 1053 1054 for (i = 0; i < nhi->hop_count; i++) { 1055 if (nhi->tx_rings[i]) 1056 dev_WARN(&nhi->pdev->dev, 1057 "TX ring %d is still active\n", i); 1058 if (nhi->rx_rings[i]) 1059 dev_WARN(&nhi->pdev->dev, 1060 "RX ring %d is still active\n", i); 1061 } 1062 nhi_disable_interrupts(nhi); 1063 /* 1064 * We have to release the irq before calling flush_work. Otherwise an 1065 * already executing IRQ handler could call schedule_work again. 1066 */ 1067 if (!nhi->pdev->msix_enabled) { 1068 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi); 1069 flush_work(&nhi->interrupt_work); 1070 } 1071 ida_destroy(&nhi->msix_ida); 1072 1073 if (nhi->ops && nhi->ops->shutdown) 1074 nhi->ops->shutdown(nhi); 1075 } 1076 1077 static int nhi_init_msi(struct tb_nhi *nhi) 1078 { 1079 struct pci_dev *pdev = nhi->pdev; 1080 int res, irq, nvec; 1081 1082 /* In case someone left them on. */ 1083 nhi_disable_interrupts(nhi); 1084 1085 nhi_enable_int_throttling(nhi); 1086 1087 ida_init(&nhi->msix_ida); 1088 1089 /* 1090 * The NHI has 16 MSI-X vectors or a single MSI. We first try to 1091 * get all MSI-X vectors and if we succeed, each ring will have 1092 * one MSI-X. If for some reason that does not work out, we 1093 * fallback to a single MSI. 1094 */ 1095 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS, 1096 PCI_IRQ_MSIX); 1097 if (nvec < 0) { 1098 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI); 1099 if (nvec < 0) 1100 return nvec; 1101 1102 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work); 1103 1104 irq = pci_irq_vector(nhi->pdev, 0); 1105 if (irq < 0) 1106 return irq; 1107 1108 res = devm_request_irq(&pdev->dev, irq, nhi_msi, 1109 IRQF_NO_SUSPEND, "thunderbolt", nhi); 1110 if (res) { 1111 dev_err(&pdev->dev, "request_irq failed, aborting\n"); 1112 return res; 1113 } 1114 } 1115 1116 return 0; 1117 } 1118 1119 static bool nhi_imr_valid(struct pci_dev *pdev) 1120 { 1121 u8 val; 1122 1123 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val)) 1124 return !!val; 1125 1126 return true; 1127 } 1128 1129 static struct tb *nhi_select_cm(struct tb_nhi *nhi) 1130 { 1131 struct tb *tb; 1132 1133 /* 1134 * USB4 case is simple. If we got control of any of the 1135 * capabilities, we use software CM. 1136 */ 1137 if (tb_acpi_is_native()) 1138 return tb_probe(nhi); 1139 1140 /* 1141 * Either firmware based CM is running (we did not get control 1142 * from the firmware) or this is pre-USB4 PC so try first 1143 * firmware CM and then fallback to software CM. 1144 */ 1145 tb = icm_probe(nhi); 1146 if (!tb) 1147 tb = tb_probe(nhi); 1148 1149 return tb; 1150 } 1151 1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1153 { 1154 struct tb_nhi *nhi; 1155 struct tb *tb; 1156 int res; 1157 1158 if (!nhi_imr_valid(pdev)) { 1159 dev_warn(&pdev->dev, "firmware image not valid, aborting\n"); 1160 return -ENODEV; 1161 } 1162 1163 res = pcim_enable_device(pdev); 1164 if (res) { 1165 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n"); 1166 return res; 1167 } 1168 1169 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt"); 1170 if (res) { 1171 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); 1172 return res; 1173 } 1174 1175 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL); 1176 if (!nhi) 1177 return -ENOMEM; 1178 1179 nhi->pdev = pdev; 1180 nhi->ops = (const struct tb_nhi_ops *)id->driver_data; 1181 /* cannot fail - table is allocated bin pcim_iomap_regions */ 1182 nhi->iobase = pcim_iomap_table(pdev)[0]; 1183 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff; 1184 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count); 1185 1186 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1187 sizeof(*nhi->tx_rings), GFP_KERNEL); 1188 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count, 1189 sizeof(*nhi->rx_rings), GFP_KERNEL); 1190 if (!nhi->tx_rings || !nhi->rx_rings) 1191 return -ENOMEM; 1192 1193 res = nhi_init_msi(nhi); 1194 if (res) { 1195 dev_err(&pdev->dev, "cannot enable MSI, aborting\n"); 1196 return res; 1197 } 1198 1199 spin_lock_init(&nhi->lock); 1200 1201 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1202 if (res) 1203 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1204 if (res) { 1205 dev_err(&pdev->dev, "failed to set DMA mask\n"); 1206 return res; 1207 } 1208 1209 pci_set_master(pdev); 1210 1211 if (nhi->ops && nhi->ops->init) { 1212 res = nhi->ops->init(nhi); 1213 if (res) 1214 return res; 1215 } 1216 1217 tb = nhi_select_cm(nhi); 1218 if (!tb) { 1219 dev_err(&nhi->pdev->dev, 1220 "failed to determine connection manager, aborting\n"); 1221 return -ENODEV; 1222 } 1223 1224 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n"); 1225 1226 res = tb_domain_add(tb); 1227 if (res) { 1228 /* 1229 * At this point the RX/TX rings might already have been 1230 * activated. Do a proper shutdown. 1231 */ 1232 tb_domain_put(tb); 1233 nhi_shutdown(nhi); 1234 return res; 1235 } 1236 pci_set_drvdata(pdev, tb); 1237 1238 device_wakeup_enable(&pdev->dev); 1239 1240 pm_runtime_allow(&pdev->dev); 1241 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY); 1242 pm_runtime_use_autosuspend(&pdev->dev); 1243 pm_runtime_put_autosuspend(&pdev->dev); 1244 1245 return 0; 1246 } 1247 1248 static void nhi_remove(struct pci_dev *pdev) 1249 { 1250 struct tb *tb = pci_get_drvdata(pdev); 1251 struct tb_nhi *nhi = tb->nhi; 1252 1253 pm_runtime_get_sync(&pdev->dev); 1254 pm_runtime_dont_use_autosuspend(&pdev->dev); 1255 pm_runtime_forbid(&pdev->dev); 1256 1257 tb_domain_remove(tb); 1258 nhi_shutdown(nhi); 1259 } 1260 1261 /* 1262 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable 1263 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges 1264 * resume_noirq until we are done. 1265 */ 1266 static const struct dev_pm_ops nhi_pm_ops = { 1267 .suspend_noirq = nhi_suspend_noirq, 1268 .resume_noirq = nhi_resume_noirq, 1269 .freeze_noirq = nhi_freeze_noirq, /* 1270 * we just disable hotplug, the 1271 * pci-tunnels stay alive. 1272 */ 1273 .thaw_noirq = nhi_thaw_noirq, 1274 .restore_noirq = nhi_resume_noirq, 1275 .suspend = nhi_suspend, 1276 .poweroff_noirq = nhi_poweroff_noirq, 1277 .poweroff = nhi_suspend, 1278 .complete = nhi_complete, 1279 .runtime_suspend = nhi_runtime_suspend, 1280 .runtime_resume = nhi_runtime_resume, 1281 }; 1282 1283 static struct pci_device_id nhi_ids[] = { 1284 /* 1285 * We have to specify class, the TB bridges use the same device and 1286 * vendor (sub)id on gen 1 and gen 2 controllers. 1287 */ 1288 { 1289 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1290 .vendor = PCI_VENDOR_ID_INTEL, 1291 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE, 1292 .subvendor = 0x2222, .subdevice = 0x1111, 1293 }, 1294 { 1295 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1296 .vendor = PCI_VENDOR_ID_INTEL, 1297 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C, 1298 .subvendor = 0x2222, .subdevice = 0x1111, 1299 }, 1300 { 1301 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1302 .vendor = PCI_VENDOR_ID_INTEL, 1303 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI, 1304 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1305 }, 1306 { 1307 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0, 1308 .vendor = PCI_VENDOR_ID_INTEL, 1309 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI, 1310 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 1311 }, 1312 1313 /* Thunderbolt 3 */ 1314 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) }, 1315 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) }, 1316 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) }, 1317 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) }, 1318 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) }, 1319 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) }, 1320 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) }, 1321 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) }, 1322 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) }, 1323 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) }, 1324 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0), 1325 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1326 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1), 1327 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1328 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0), 1329 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1330 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1), 1331 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1332 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0), 1333 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1334 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1), 1335 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1336 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0), 1337 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1338 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1), 1339 .driver_data = (kernel_ulong_t)&icl_nhi_ops }, 1340 1341 /* Any USB4 compliant host */ 1342 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) }, 1343 1344 { 0,} 1345 }; 1346 1347 MODULE_DEVICE_TABLE(pci, nhi_ids); 1348 MODULE_LICENSE("GPL"); 1349 1350 static struct pci_driver nhi_driver = { 1351 .name = "thunderbolt", 1352 .id_table = nhi_ids, 1353 .probe = nhi_probe, 1354 .remove = nhi_remove, 1355 .shutdown = nhi_remove, 1356 .driver.pm = &nhi_pm_ops, 1357 }; 1358 1359 static int __init nhi_init(void) 1360 { 1361 int ret; 1362 1363 ret = tb_domain_init(); 1364 if (ret) 1365 return ret; 1366 ret = pci_register_driver(&nhi_driver); 1367 if (ret) 1368 tb_domain_exit(); 1369 return ret; 1370 } 1371 1372 static void __exit nhi_unload(void) 1373 { 1374 pci_unregister_driver(&nhi_driver); 1375 tb_domain_exit(); 1376 } 1377 1378 rootfs_initcall(nhi_init); 1379 module_exit(nhi_unload); 1380