xref: /linux/drivers/thunderbolt/nhi.c (revision 1b0975ee3bdd3eb19a47371c26fd7ef8f7f6b599)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/iommu.h>
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/property.h>
22 #include <linux/string_helpers.h>
23 
24 #include "nhi.h"
25 #include "nhi_regs.h"
26 #include "tb.h"
27 
28 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
29 
30 #define RING_FIRST_USABLE_HOPID	1
31 /*
32  * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
33  * transferred.
34  */
35 #define RING_E2E_RESERVED_HOPID	RING_FIRST_USABLE_HOPID
36 /*
37  * Minimal number of vectors when we use MSI-X. Two for control channel
38  * Rx/Tx and the rest four are for cross domain DMA paths.
39  */
40 #define MSIX_MIN_VECS		6
41 #define MSIX_MAX_VECS		16
42 
43 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
44 
45 /* Host interface quirks */
46 #define QUIRK_AUTO_CLEAR_INT	BIT(0)
47 #define QUIRK_E2E		BIT(1)
48 
49 static bool host_reset = true;
50 module_param(host_reset, bool, 0444);
51 MODULE_PARM_DESC(host_reset, "reset USBv2 host router (default: true)");
52 
53 static int ring_interrupt_index(const struct tb_ring *ring)
54 {
55 	int bit = ring->hop;
56 	if (!ring->is_tx)
57 		bit += ring->nhi->hop_count;
58 	return bit;
59 }
60 
61 static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring)
62 {
63 	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
64 		u32 val;
65 
66 		val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
67 		iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
68 	} else {
69 		iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring);
70 	}
71 }
72 
73 static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring)
74 {
75 	if (nhi->quirks & QUIRK_AUTO_CLEAR_INT)
76 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring);
77 	else
78 		iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring);
79 }
80 
81 /*
82  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
83  *
84  * ring->nhi->lock must be held.
85  */
86 static void ring_interrupt_active(struct tb_ring *ring, bool active)
87 {
88 	int index = ring_interrupt_index(ring) / 32 * 4;
89 	int reg = REG_RING_INTERRUPT_BASE + index;
90 	int interrupt_bit = ring_interrupt_index(ring) & 31;
91 	int mask = 1 << interrupt_bit;
92 	u32 old, new;
93 
94 	if (ring->irq > 0) {
95 		u32 step, shift, ivr, misc;
96 		void __iomem *ivr_base;
97 		int auto_clear_bit;
98 		int index;
99 
100 		if (ring->is_tx)
101 			index = ring->hop;
102 		else
103 			index = ring->hop + ring->nhi->hop_count;
104 
105 		/*
106 		 * Intel routers support a bit that isn't part of
107 		 * the USB4 spec to ask the hardware to clear
108 		 * interrupt status bits automatically since
109 		 * we already know which interrupt was triggered.
110 		 *
111 		 * Other routers explicitly disable auto-clear
112 		 * to prevent conditions that may occur where two
113 		 * MSIX interrupts are simultaneously active and
114 		 * reading the register clears both of them.
115 		 */
116 		misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
117 		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
118 			auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
119 		else
120 			auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
121 		if (!(misc & auto_clear_bit))
122 			iowrite32(misc | auto_clear_bit,
123 				  ring->nhi->iobase + REG_DMA_MISC);
124 
125 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
126 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
127 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
128 		ivr = ioread32(ivr_base + step);
129 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
130 		if (active)
131 			ivr |= ring->vector << shift;
132 		iowrite32(ivr, ivr_base + step);
133 	}
134 
135 	old = ioread32(ring->nhi->iobase + reg);
136 	if (active)
137 		new = old | mask;
138 	else
139 		new = old & ~mask;
140 
141 	dev_dbg(&ring->nhi->pdev->dev,
142 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
143 		active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
144 
145 	if (new == old)
146 		dev_WARN(&ring->nhi->pdev->dev,
147 					 "interrupt for %s %d is already %s\n",
148 					 RING_TYPE(ring), ring->hop,
149 					 active ? "enabled" : "disabled");
150 
151 	if (active)
152 		iowrite32(new, ring->nhi->iobase + reg);
153 	else
154 		nhi_mask_interrupt(ring->nhi, mask, index);
155 }
156 
157 /*
158  * nhi_disable_interrupts() - disable interrupts for all rings
159  *
160  * Use only during init and shutdown.
161  */
162 static void nhi_disable_interrupts(struct tb_nhi *nhi)
163 {
164 	int i = 0;
165 	/* disable interrupts */
166 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
167 		nhi_mask_interrupt(nhi, ~0, 4 * i);
168 
169 	/* clear interrupt status bits */
170 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
171 		nhi_clear_interrupt(nhi, 4 * i);
172 }
173 
174 /* ring helper methods */
175 
176 static void __iomem *ring_desc_base(struct tb_ring *ring)
177 {
178 	void __iomem *io = ring->nhi->iobase;
179 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
180 	io += ring->hop * 16;
181 	return io;
182 }
183 
184 static void __iomem *ring_options_base(struct tb_ring *ring)
185 {
186 	void __iomem *io = ring->nhi->iobase;
187 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
188 	io += ring->hop * 32;
189 	return io;
190 }
191 
192 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
193 {
194 	/*
195 	 * The other 16-bits in the register is read-only and writes to it
196 	 * are ignored by the hardware so we can save one ioread32() by
197 	 * filling the read-only bits with zeroes.
198 	 */
199 	iowrite32(cons, ring_desc_base(ring) + 8);
200 }
201 
202 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
203 {
204 	/* See ring_iowrite_cons() above for explanation */
205 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
206 }
207 
208 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
209 {
210 	iowrite32(value, ring_desc_base(ring) + offset);
211 }
212 
213 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
214 {
215 	iowrite32(value, ring_desc_base(ring) + offset);
216 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
217 }
218 
219 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
220 {
221 	iowrite32(value, ring_options_base(ring) + offset);
222 }
223 
224 static bool ring_full(struct tb_ring *ring)
225 {
226 	return ((ring->head + 1) % ring->size) == ring->tail;
227 }
228 
229 static bool ring_empty(struct tb_ring *ring)
230 {
231 	return ring->head == ring->tail;
232 }
233 
234 /*
235  * ring_write_descriptors() - post frames from ring->queue to the controller
236  *
237  * ring->lock is held.
238  */
239 static void ring_write_descriptors(struct tb_ring *ring)
240 {
241 	struct ring_frame *frame, *n;
242 	struct ring_desc *descriptor;
243 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
244 		if (ring_full(ring))
245 			break;
246 		list_move_tail(&frame->list, &ring->in_flight);
247 		descriptor = &ring->descriptors[ring->head];
248 		descriptor->phys = frame->buffer_phy;
249 		descriptor->time = 0;
250 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
251 		if (ring->is_tx) {
252 			descriptor->length = frame->size;
253 			descriptor->eof = frame->eof;
254 			descriptor->sof = frame->sof;
255 		}
256 		ring->head = (ring->head + 1) % ring->size;
257 		if (ring->is_tx)
258 			ring_iowrite_prod(ring, ring->head);
259 		else
260 			ring_iowrite_cons(ring, ring->head);
261 	}
262 }
263 
264 /*
265  * ring_work() - progress completed frames
266  *
267  * If the ring is shutting down then all frames are marked as canceled and
268  * their callbacks are invoked.
269  *
270  * Otherwise we collect all completed frame from the ring buffer, write new
271  * frame to the ring buffer and invoke the callbacks for the completed frames.
272  */
273 static void ring_work(struct work_struct *work)
274 {
275 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
276 	struct ring_frame *frame;
277 	bool canceled = false;
278 	unsigned long flags;
279 	LIST_HEAD(done);
280 
281 	spin_lock_irqsave(&ring->lock, flags);
282 
283 	if (!ring->running) {
284 		/*  Move all frames to done and mark them as canceled. */
285 		list_splice_tail_init(&ring->in_flight, &done);
286 		list_splice_tail_init(&ring->queue, &done);
287 		canceled = true;
288 		goto invoke_callback;
289 	}
290 
291 	while (!ring_empty(ring)) {
292 		if (!(ring->descriptors[ring->tail].flags
293 				& RING_DESC_COMPLETED))
294 			break;
295 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
296 					 list);
297 		list_move_tail(&frame->list, &done);
298 		if (!ring->is_tx) {
299 			frame->size = ring->descriptors[ring->tail].length;
300 			frame->eof = ring->descriptors[ring->tail].eof;
301 			frame->sof = ring->descriptors[ring->tail].sof;
302 			frame->flags = ring->descriptors[ring->tail].flags;
303 		}
304 		ring->tail = (ring->tail + 1) % ring->size;
305 	}
306 	ring_write_descriptors(ring);
307 
308 invoke_callback:
309 	/* allow callbacks to schedule new work */
310 	spin_unlock_irqrestore(&ring->lock, flags);
311 	while (!list_empty(&done)) {
312 		frame = list_first_entry(&done, typeof(*frame), list);
313 		/*
314 		 * The callback may reenqueue or delete frame.
315 		 * Do not hold on to it.
316 		 */
317 		list_del_init(&frame->list);
318 		if (frame->callback)
319 			frame->callback(ring, frame, canceled);
320 	}
321 }
322 
323 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
324 {
325 	unsigned long flags;
326 	int ret = 0;
327 
328 	spin_lock_irqsave(&ring->lock, flags);
329 	if (ring->running) {
330 		list_add_tail(&frame->list, &ring->queue);
331 		ring_write_descriptors(ring);
332 	} else {
333 		ret = -ESHUTDOWN;
334 	}
335 	spin_unlock_irqrestore(&ring->lock, flags);
336 	return ret;
337 }
338 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
339 
340 /**
341  * tb_ring_poll() - Poll one completed frame from the ring
342  * @ring: Ring to poll
343  *
344  * This function can be called when @start_poll callback of the @ring
345  * has been called. It will read one completed frame from the ring and
346  * return it to the caller. Returns %NULL if there is no more completed
347  * frames.
348  */
349 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
350 {
351 	struct ring_frame *frame = NULL;
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&ring->lock, flags);
355 	if (!ring->running)
356 		goto unlock;
357 	if (ring_empty(ring))
358 		goto unlock;
359 
360 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
361 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
362 					 list);
363 		list_del_init(&frame->list);
364 
365 		if (!ring->is_tx) {
366 			frame->size = ring->descriptors[ring->tail].length;
367 			frame->eof = ring->descriptors[ring->tail].eof;
368 			frame->sof = ring->descriptors[ring->tail].sof;
369 			frame->flags = ring->descriptors[ring->tail].flags;
370 		}
371 
372 		ring->tail = (ring->tail + 1) % ring->size;
373 	}
374 
375 unlock:
376 	spin_unlock_irqrestore(&ring->lock, flags);
377 	return frame;
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll);
380 
381 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
382 {
383 	int idx = ring_interrupt_index(ring);
384 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
385 	int bit = idx % 32;
386 	u32 val;
387 
388 	val = ioread32(ring->nhi->iobase + reg);
389 	if (mask)
390 		val &= ~BIT(bit);
391 	else
392 		val |= BIT(bit);
393 	iowrite32(val, ring->nhi->iobase + reg);
394 }
395 
396 /* Both @nhi->lock and @ring->lock should be held */
397 static void __ring_interrupt(struct tb_ring *ring)
398 {
399 	if (!ring->running)
400 		return;
401 
402 	if (ring->start_poll) {
403 		__ring_interrupt_mask(ring, true);
404 		ring->start_poll(ring->poll_data);
405 	} else {
406 		schedule_work(&ring->work);
407 	}
408 }
409 
410 /**
411  * tb_ring_poll_complete() - Re-start interrupt for the ring
412  * @ring: Ring to re-start the interrupt
413  *
414  * This will re-start (unmask) the ring interrupt once the user is done
415  * with polling.
416  */
417 void tb_ring_poll_complete(struct tb_ring *ring)
418 {
419 	unsigned long flags;
420 
421 	spin_lock_irqsave(&ring->nhi->lock, flags);
422 	spin_lock(&ring->lock);
423 	if (ring->start_poll)
424 		__ring_interrupt_mask(ring, false);
425 	spin_unlock(&ring->lock);
426 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
427 }
428 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
429 
430 static void ring_clear_msix(const struct tb_ring *ring)
431 {
432 	int bit;
433 
434 	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
435 		return;
436 
437 	bit = ring_interrupt_index(ring) & 31;
438 	if (ring->is_tx)
439 		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
440 	else
441 		iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
442 			  4 * (ring->nhi->hop_count / 32));
443 }
444 
445 static irqreturn_t ring_msix(int irq, void *data)
446 {
447 	struct tb_ring *ring = data;
448 
449 	spin_lock(&ring->nhi->lock);
450 	ring_clear_msix(ring);
451 	spin_lock(&ring->lock);
452 	__ring_interrupt(ring);
453 	spin_unlock(&ring->lock);
454 	spin_unlock(&ring->nhi->lock);
455 
456 	return IRQ_HANDLED;
457 }
458 
459 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
460 {
461 	struct tb_nhi *nhi = ring->nhi;
462 	unsigned long irqflags;
463 	int ret;
464 
465 	if (!nhi->pdev->msix_enabled)
466 		return 0;
467 
468 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
469 	if (ret < 0)
470 		return ret;
471 
472 	ring->vector = ret;
473 
474 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
475 	if (ret < 0)
476 		goto err_ida_remove;
477 
478 	ring->irq = ret;
479 
480 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
481 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
482 	if (ret)
483 		goto err_ida_remove;
484 
485 	return 0;
486 
487 err_ida_remove:
488 	ida_simple_remove(&nhi->msix_ida, ring->vector);
489 
490 	return ret;
491 }
492 
493 static void ring_release_msix(struct tb_ring *ring)
494 {
495 	if (ring->irq <= 0)
496 		return;
497 
498 	free_irq(ring->irq, ring);
499 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
500 	ring->vector = 0;
501 	ring->irq = 0;
502 }
503 
504 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
505 {
506 	unsigned int start_hop = RING_FIRST_USABLE_HOPID;
507 	int ret = 0;
508 
509 	if (nhi->quirks & QUIRK_E2E) {
510 		start_hop = RING_FIRST_USABLE_HOPID + 1;
511 		if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
512 			dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
513 				ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
514 			ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
515 		}
516 	}
517 
518 	spin_lock_irq(&nhi->lock);
519 
520 	if (ring->hop < 0) {
521 		unsigned int i;
522 
523 		/*
524 		 * Automatically allocate HopID from the non-reserved
525 		 * range 1 .. hop_count - 1.
526 		 */
527 		for (i = start_hop; i < nhi->hop_count; i++) {
528 			if (ring->is_tx) {
529 				if (!nhi->tx_rings[i]) {
530 					ring->hop = i;
531 					break;
532 				}
533 			} else {
534 				if (!nhi->rx_rings[i]) {
535 					ring->hop = i;
536 					break;
537 				}
538 			}
539 		}
540 	}
541 
542 	if (ring->hop > 0 && ring->hop < start_hop) {
543 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
544 		ret = -EINVAL;
545 		goto err_unlock;
546 	}
547 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
548 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
549 		ret = -EINVAL;
550 		goto err_unlock;
551 	}
552 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
553 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
554 			 ring->hop);
555 		ret = -EBUSY;
556 		goto err_unlock;
557 	}
558 	if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
559 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
560 			 ring->hop);
561 		ret = -EBUSY;
562 		goto err_unlock;
563 	}
564 
565 	if (ring->is_tx)
566 		nhi->tx_rings[ring->hop] = ring;
567 	else
568 		nhi->rx_rings[ring->hop] = ring;
569 
570 err_unlock:
571 	spin_unlock_irq(&nhi->lock);
572 
573 	return ret;
574 }
575 
576 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
577 				     bool transmit, unsigned int flags,
578 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
579 				     void (*start_poll)(void *),
580 				     void *poll_data)
581 {
582 	struct tb_ring *ring = NULL;
583 
584 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
585 		transmit ? "TX" : "RX", hop, size);
586 
587 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
588 	if (!ring)
589 		return NULL;
590 
591 	spin_lock_init(&ring->lock);
592 	INIT_LIST_HEAD(&ring->queue);
593 	INIT_LIST_HEAD(&ring->in_flight);
594 	INIT_WORK(&ring->work, ring_work);
595 
596 	ring->nhi = nhi;
597 	ring->hop = hop;
598 	ring->is_tx = transmit;
599 	ring->size = size;
600 	ring->flags = flags;
601 	ring->e2e_tx_hop = e2e_tx_hop;
602 	ring->sof_mask = sof_mask;
603 	ring->eof_mask = eof_mask;
604 	ring->head = 0;
605 	ring->tail = 0;
606 	ring->running = false;
607 	ring->start_poll = start_poll;
608 	ring->poll_data = poll_data;
609 
610 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
611 			size * sizeof(*ring->descriptors),
612 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
613 	if (!ring->descriptors)
614 		goto err_free_ring;
615 
616 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
617 		goto err_free_descs;
618 
619 	if (nhi_alloc_hop(nhi, ring))
620 		goto err_release_msix;
621 
622 	return ring;
623 
624 err_release_msix:
625 	ring_release_msix(ring);
626 err_free_descs:
627 	dma_free_coherent(&ring->nhi->pdev->dev,
628 			  ring->size * sizeof(*ring->descriptors),
629 			  ring->descriptors, ring->descriptors_dma);
630 err_free_ring:
631 	kfree(ring);
632 
633 	return NULL;
634 }
635 
636 /**
637  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
638  * @nhi: Pointer to the NHI the ring is to be allocated
639  * @hop: HopID (ring) to allocate
640  * @size: Number of entries in the ring
641  * @flags: Flags for the ring
642  */
643 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
644 				 unsigned int flags)
645 {
646 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
647 }
648 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
649 
650 /**
651  * tb_ring_alloc_rx() - Allocate DMA ring for receive
652  * @nhi: Pointer to the NHI the ring is to be allocated
653  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
654  * @size: Number of entries in the ring
655  * @flags: Flags for the ring
656  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
657  * @sof_mask: Mask of PDF values that start a frame
658  * @eof_mask: Mask of PDF values that end a frame
659  * @start_poll: If not %NULL the ring will call this function when an
660  *		interrupt is triggered and masked, instead of callback
661  *		in each Rx frame.
662  * @poll_data: Optional data passed to @start_poll
663  */
664 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
665 				 unsigned int flags, int e2e_tx_hop,
666 				 u16 sof_mask, u16 eof_mask,
667 				 void (*start_poll)(void *), void *poll_data)
668 {
669 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
670 			     start_poll, poll_data);
671 }
672 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
673 
674 /**
675  * tb_ring_start() - enable a ring
676  * @ring: Ring to start
677  *
678  * Must not be invoked in parallel with tb_ring_stop().
679  */
680 void tb_ring_start(struct tb_ring *ring)
681 {
682 	u16 frame_size;
683 	u32 flags;
684 
685 	spin_lock_irq(&ring->nhi->lock);
686 	spin_lock(&ring->lock);
687 	if (ring->nhi->going_away)
688 		goto err;
689 	if (ring->running) {
690 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
691 		goto err;
692 	}
693 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
694 		RING_TYPE(ring), ring->hop);
695 
696 	if (ring->flags & RING_FLAG_FRAME) {
697 		/* Means 4096 */
698 		frame_size = 0;
699 		flags = RING_FLAG_ENABLE;
700 	} else {
701 		frame_size = TB_FRAME_SIZE;
702 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
703 	}
704 
705 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
706 	if (ring->is_tx) {
707 		ring_iowrite32desc(ring, ring->size, 12);
708 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
709 		ring_iowrite32options(ring, flags, 0);
710 	} else {
711 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
712 
713 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
714 		ring_iowrite32options(ring, sof_eof_mask, 4);
715 		ring_iowrite32options(ring, flags, 0);
716 	}
717 
718 	/*
719 	 * Now that the ring valid bit is set we can configure E2E if
720 	 * enabled for the ring.
721 	 */
722 	if (ring->flags & RING_FLAG_E2E) {
723 		if (!ring->is_tx) {
724 			u32 hop;
725 
726 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
727 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
728 			flags |= hop;
729 
730 			dev_dbg(&ring->nhi->pdev->dev,
731 				"enabling E2E for %s %d with TX HopID %d\n",
732 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
733 		} else {
734 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
735 				RING_TYPE(ring), ring->hop);
736 		}
737 
738 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
739 		ring_iowrite32options(ring, flags, 0);
740 	}
741 
742 	ring_interrupt_active(ring, true);
743 	ring->running = true;
744 err:
745 	spin_unlock(&ring->lock);
746 	spin_unlock_irq(&ring->nhi->lock);
747 }
748 EXPORT_SYMBOL_GPL(tb_ring_start);
749 
750 /**
751  * tb_ring_stop() - shutdown a ring
752  * @ring: Ring to stop
753  *
754  * Must not be invoked from a callback.
755  *
756  * This method will disable the ring. Further calls to
757  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
758  * called.
759  *
760  * All enqueued frames will be canceled and their callbacks will be executed
761  * with frame->canceled set to true (on the callback thread). This method
762  * returns only after all callback invocations have finished.
763  */
764 void tb_ring_stop(struct tb_ring *ring)
765 {
766 	spin_lock_irq(&ring->nhi->lock);
767 	spin_lock(&ring->lock);
768 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
769 		RING_TYPE(ring), ring->hop);
770 	if (ring->nhi->going_away)
771 		goto err;
772 	if (!ring->running) {
773 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
774 			 RING_TYPE(ring), ring->hop);
775 		goto err;
776 	}
777 	ring_interrupt_active(ring, false);
778 
779 	ring_iowrite32options(ring, 0, 0);
780 	ring_iowrite64desc(ring, 0, 0);
781 	ring_iowrite32desc(ring, 0, 8);
782 	ring_iowrite32desc(ring, 0, 12);
783 	ring->head = 0;
784 	ring->tail = 0;
785 	ring->running = false;
786 
787 err:
788 	spin_unlock(&ring->lock);
789 	spin_unlock_irq(&ring->nhi->lock);
790 
791 	/*
792 	 * schedule ring->work to invoke callbacks on all remaining frames.
793 	 */
794 	schedule_work(&ring->work);
795 	flush_work(&ring->work);
796 }
797 EXPORT_SYMBOL_GPL(tb_ring_stop);
798 
799 /*
800  * tb_ring_free() - free ring
801  *
802  * When this method returns all invocations of ring->callback will have
803  * finished.
804  *
805  * Ring must be stopped.
806  *
807  * Must NOT be called from ring_frame->callback!
808  */
809 void tb_ring_free(struct tb_ring *ring)
810 {
811 	spin_lock_irq(&ring->nhi->lock);
812 	/*
813 	 * Dissociate the ring from the NHI. This also ensures that
814 	 * nhi_interrupt_work cannot reschedule ring->work.
815 	 */
816 	if (ring->is_tx)
817 		ring->nhi->tx_rings[ring->hop] = NULL;
818 	else
819 		ring->nhi->rx_rings[ring->hop] = NULL;
820 
821 	if (ring->running) {
822 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
823 			 RING_TYPE(ring), ring->hop);
824 	}
825 	spin_unlock_irq(&ring->nhi->lock);
826 
827 	ring_release_msix(ring);
828 
829 	dma_free_coherent(&ring->nhi->pdev->dev,
830 			  ring->size * sizeof(*ring->descriptors),
831 			  ring->descriptors, ring->descriptors_dma);
832 
833 	ring->descriptors = NULL;
834 	ring->descriptors_dma = 0;
835 
836 
837 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
838 		ring->hop);
839 
840 	/*
841 	 * ring->work can no longer be scheduled (it is scheduled only
842 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
843 	 * to finish before freeing the ring.
844 	 */
845 	flush_work(&ring->work);
846 	kfree(ring);
847 }
848 EXPORT_SYMBOL_GPL(tb_ring_free);
849 
850 /**
851  * nhi_mailbox_cmd() - Send a command through NHI mailbox
852  * @nhi: Pointer to the NHI structure
853  * @cmd: Command to send
854  * @data: Data to be send with the command
855  *
856  * Sends mailbox command to the firmware running on NHI. Returns %0 in
857  * case of success and negative errno in case of failure.
858  */
859 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
860 {
861 	ktime_t timeout;
862 	u32 val;
863 
864 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
865 
866 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
867 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
868 	val |= REG_INMAIL_OP_REQUEST | cmd;
869 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
870 
871 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
872 	do {
873 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
874 		if (!(val & REG_INMAIL_OP_REQUEST))
875 			break;
876 		usleep_range(10, 20);
877 	} while (ktime_before(ktime_get(), timeout));
878 
879 	if (val & REG_INMAIL_OP_REQUEST)
880 		return -ETIMEDOUT;
881 	if (val & REG_INMAIL_ERROR)
882 		return -EIO;
883 
884 	return 0;
885 }
886 
887 /**
888  * nhi_mailbox_mode() - Return current firmware operation mode
889  * @nhi: Pointer to the NHI structure
890  *
891  * The function reads current firmware operation mode using NHI mailbox
892  * registers and returns it to the caller.
893  */
894 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
895 {
896 	u32 val;
897 
898 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
899 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
900 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
901 
902 	return (enum nhi_fw_mode)val;
903 }
904 
905 static void nhi_interrupt_work(struct work_struct *work)
906 {
907 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
908 	int value = 0; /* Suppress uninitialized usage warning. */
909 	int bit;
910 	int hop = -1;
911 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
912 	struct tb_ring *ring;
913 
914 	spin_lock_irq(&nhi->lock);
915 
916 	/*
917 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
918 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
919 	 * dwords as required. The registers are cleared on read.
920 	 */
921 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
922 		if (bit % 32 == 0)
923 			value = ioread32(nhi->iobase
924 					 + REG_RING_NOTIFY_BASE
925 					 + 4 * (bit / 32));
926 		if (++hop == nhi->hop_count) {
927 			hop = 0;
928 			type++;
929 		}
930 		if ((value & (1 << (bit % 32))) == 0)
931 			continue;
932 		if (type == 2) {
933 			dev_warn(&nhi->pdev->dev,
934 				 "RX overflow for ring %d\n",
935 				 hop);
936 			continue;
937 		}
938 		if (type == 0)
939 			ring = nhi->tx_rings[hop];
940 		else
941 			ring = nhi->rx_rings[hop];
942 		if (ring == NULL) {
943 			dev_warn(&nhi->pdev->dev,
944 				 "got interrupt for inactive %s ring %d\n",
945 				 type ? "RX" : "TX",
946 				 hop);
947 			continue;
948 		}
949 
950 		spin_lock(&ring->lock);
951 		__ring_interrupt(ring);
952 		spin_unlock(&ring->lock);
953 	}
954 	spin_unlock_irq(&nhi->lock);
955 }
956 
957 static irqreturn_t nhi_msi(int irq, void *data)
958 {
959 	struct tb_nhi *nhi = data;
960 	schedule_work(&nhi->interrupt_work);
961 	return IRQ_HANDLED;
962 }
963 
964 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
965 {
966 	struct pci_dev *pdev = to_pci_dev(dev);
967 	struct tb *tb = pci_get_drvdata(pdev);
968 	struct tb_nhi *nhi = tb->nhi;
969 	int ret;
970 
971 	ret = tb_domain_suspend_noirq(tb);
972 	if (ret)
973 		return ret;
974 
975 	if (nhi->ops && nhi->ops->suspend_noirq) {
976 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
977 		if (ret)
978 			return ret;
979 	}
980 
981 	return 0;
982 }
983 
984 static int nhi_suspend_noirq(struct device *dev)
985 {
986 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
987 }
988 
989 static int nhi_freeze_noirq(struct device *dev)
990 {
991 	struct pci_dev *pdev = to_pci_dev(dev);
992 	struct tb *tb = pci_get_drvdata(pdev);
993 
994 	return tb_domain_freeze_noirq(tb);
995 }
996 
997 static int nhi_thaw_noirq(struct device *dev)
998 {
999 	struct pci_dev *pdev = to_pci_dev(dev);
1000 	struct tb *tb = pci_get_drvdata(pdev);
1001 
1002 	return tb_domain_thaw_noirq(tb);
1003 }
1004 
1005 static bool nhi_wake_supported(struct pci_dev *pdev)
1006 {
1007 	u8 val;
1008 
1009 	/*
1010 	 * If power rails are sustainable for wakeup from S4 this
1011 	 * property is set by the BIOS.
1012 	 */
1013 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
1014 		return !!val;
1015 
1016 	return true;
1017 }
1018 
1019 static int nhi_poweroff_noirq(struct device *dev)
1020 {
1021 	struct pci_dev *pdev = to_pci_dev(dev);
1022 	bool wakeup;
1023 
1024 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
1025 	return __nhi_suspend_noirq(dev, wakeup);
1026 }
1027 
1028 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
1029 {
1030 	/* Throttling is specified in 256ns increments */
1031 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
1032 	unsigned int i;
1033 
1034 	/*
1035 	 * Configure interrupt throttling for all vectors even if we
1036 	 * only use few.
1037 	 */
1038 	for (i = 0; i < MSIX_MAX_VECS; i++) {
1039 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
1040 		iowrite32(throttle, nhi->iobase + reg);
1041 	}
1042 }
1043 
1044 static int nhi_resume_noirq(struct device *dev)
1045 {
1046 	struct pci_dev *pdev = to_pci_dev(dev);
1047 	struct tb *tb = pci_get_drvdata(pdev);
1048 	struct tb_nhi *nhi = tb->nhi;
1049 	int ret;
1050 
1051 	/*
1052 	 * Check that the device is still there. It may be that the user
1053 	 * unplugged last device which causes the host controller to go
1054 	 * away on PCs.
1055 	 */
1056 	if (!pci_device_is_present(pdev)) {
1057 		nhi->going_away = true;
1058 	} else {
1059 		if (nhi->ops && nhi->ops->resume_noirq) {
1060 			ret = nhi->ops->resume_noirq(nhi);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 		nhi_enable_int_throttling(tb->nhi);
1065 	}
1066 
1067 	return tb_domain_resume_noirq(tb);
1068 }
1069 
1070 static int nhi_suspend(struct device *dev)
1071 {
1072 	struct pci_dev *pdev = to_pci_dev(dev);
1073 	struct tb *tb = pci_get_drvdata(pdev);
1074 
1075 	return tb_domain_suspend(tb);
1076 }
1077 
1078 static void nhi_complete(struct device *dev)
1079 {
1080 	struct pci_dev *pdev = to_pci_dev(dev);
1081 	struct tb *tb = pci_get_drvdata(pdev);
1082 
1083 	/*
1084 	 * If we were runtime suspended when system suspend started,
1085 	 * schedule runtime resume now. It should bring the domain back
1086 	 * to functional state.
1087 	 */
1088 	if (pm_runtime_suspended(&pdev->dev))
1089 		pm_runtime_resume(&pdev->dev);
1090 	else
1091 		tb_domain_complete(tb);
1092 }
1093 
1094 static int nhi_runtime_suspend(struct device *dev)
1095 {
1096 	struct pci_dev *pdev = to_pci_dev(dev);
1097 	struct tb *tb = pci_get_drvdata(pdev);
1098 	struct tb_nhi *nhi = tb->nhi;
1099 	int ret;
1100 
1101 	ret = tb_domain_runtime_suspend(tb);
1102 	if (ret)
1103 		return ret;
1104 
1105 	if (nhi->ops && nhi->ops->runtime_suspend) {
1106 		ret = nhi->ops->runtime_suspend(tb->nhi);
1107 		if (ret)
1108 			return ret;
1109 	}
1110 	return 0;
1111 }
1112 
1113 static int nhi_runtime_resume(struct device *dev)
1114 {
1115 	struct pci_dev *pdev = to_pci_dev(dev);
1116 	struct tb *tb = pci_get_drvdata(pdev);
1117 	struct tb_nhi *nhi = tb->nhi;
1118 	int ret;
1119 
1120 	if (nhi->ops && nhi->ops->runtime_resume) {
1121 		ret = nhi->ops->runtime_resume(nhi);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 
1126 	nhi_enable_int_throttling(nhi);
1127 	return tb_domain_runtime_resume(tb);
1128 }
1129 
1130 static void nhi_shutdown(struct tb_nhi *nhi)
1131 {
1132 	int i;
1133 
1134 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1135 
1136 	for (i = 0; i < nhi->hop_count; i++) {
1137 		if (nhi->tx_rings[i])
1138 			dev_WARN(&nhi->pdev->dev,
1139 				 "TX ring %d is still active\n", i);
1140 		if (nhi->rx_rings[i])
1141 			dev_WARN(&nhi->pdev->dev,
1142 				 "RX ring %d is still active\n", i);
1143 	}
1144 	nhi_disable_interrupts(nhi);
1145 	/*
1146 	 * We have to release the irq before calling flush_work. Otherwise an
1147 	 * already executing IRQ handler could call schedule_work again.
1148 	 */
1149 	if (!nhi->pdev->msix_enabled) {
1150 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1151 		flush_work(&nhi->interrupt_work);
1152 	}
1153 	ida_destroy(&nhi->msix_ida);
1154 
1155 	if (nhi->ops && nhi->ops->shutdown)
1156 		nhi->ops->shutdown(nhi);
1157 }
1158 
1159 static void nhi_check_quirks(struct tb_nhi *nhi)
1160 {
1161 	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
1162 		/*
1163 		 * Intel hardware supports auto clear of the interrupt
1164 		 * status register right after interrupt is being
1165 		 * issued.
1166 		 */
1167 		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1168 
1169 		switch (nhi->pdev->device) {
1170 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1171 		case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1172 			/*
1173 			 * Falcon Ridge controller needs the end-to-end
1174 			 * flow control workaround to avoid losing Rx
1175 			 * packets when RING_FLAG_E2E is set.
1176 			 */
1177 			nhi->quirks |= QUIRK_E2E;
1178 			break;
1179 		}
1180 	}
1181 }
1182 
1183 static int nhi_check_iommu_pdev(struct pci_dev *pdev, void *data)
1184 {
1185 	if (!pdev->external_facing ||
1186 	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_PRE_BOOT_PROTECTION))
1187 		return 0;
1188 	*(bool *)data = true;
1189 	return 1; /* Stop walking */
1190 }
1191 
1192 static void nhi_check_iommu(struct tb_nhi *nhi)
1193 {
1194 	struct pci_bus *bus = nhi->pdev->bus;
1195 	bool port_ok = false;
1196 
1197 	/*
1198 	 * Ideally what we'd do here is grab every PCI device that
1199 	 * represents a tunnelling adapter for this NHI and check their
1200 	 * status directly, but unfortunately USB4 seems to make it
1201 	 * obnoxiously difficult to reliably make any correlation.
1202 	 *
1203 	 * So for now we'll have to bodge it... Hoping that the system
1204 	 * is at least sane enough that an adapter is in the same PCI
1205 	 * segment as its NHI, if we can find *something* on that segment
1206 	 * which meets the requirements for Kernel DMA Protection, we'll
1207 	 * take that to imply that firmware is aware and has (hopefully)
1208 	 * done the right thing in general. We need to know that the PCI
1209 	 * layer has seen the ExternalFacingPort property which will then
1210 	 * inform the IOMMU layer to enforce the complete "untrusted DMA"
1211 	 * flow, but also that the IOMMU driver itself can be trusted not
1212 	 * to have been subverted by a pre-boot DMA attack.
1213 	 */
1214 	while (bus->parent)
1215 		bus = bus->parent;
1216 
1217 	pci_walk_bus(bus, nhi_check_iommu_pdev, &port_ok);
1218 
1219 	nhi->iommu_dma_protection = port_ok;
1220 	dev_dbg(&nhi->pdev->dev, "IOMMU DMA protection is %s\n",
1221 		str_enabled_disabled(port_ok));
1222 }
1223 
1224 static void nhi_reset(struct tb_nhi *nhi)
1225 {
1226 	ktime_t timeout;
1227 	u32 val;
1228 
1229 	val = ioread32(nhi->iobase + REG_CAPS);
1230 	/* Reset only v2 and later routers */
1231 	if (FIELD_GET(REG_CAPS_VERSION_MASK, val) < REG_CAPS_VERSION_2)
1232 		return;
1233 
1234 	if (!host_reset) {
1235 		dev_dbg(&nhi->pdev->dev, "skipping host router reset\n");
1236 		return;
1237 	}
1238 
1239 	iowrite32(REG_RESET_HRR, nhi->iobase + REG_RESET);
1240 	msleep(100);
1241 
1242 	timeout = ktime_add_ms(ktime_get(), 500);
1243 	do {
1244 		val = ioread32(nhi->iobase + REG_RESET);
1245 		if (!(val & REG_RESET_HRR)) {
1246 			dev_warn(&nhi->pdev->dev, "host router reset successful\n");
1247 			return;
1248 		}
1249 		usleep_range(10, 20);
1250 	} while (ktime_before(ktime_get(), timeout));
1251 
1252 	dev_warn(&nhi->pdev->dev, "timeout resetting host router\n");
1253 }
1254 
1255 static int nhi_init_msi(struct tb_nhi *nhi)
1256 {
1257 	struct pci_dev *pdev = nhi->pdev;
1258 	struct device *dev = &pdev->dev;
1259 	int res, irq, nvec;
1260 
1261 	/* In case someone left them on. */
1262 	nhi_disable_interrupts(nhi);
1263 
1264 	nhi_enable_int_throttling(nhi);
1265 
1266 	ida_init(&nhi->msix_ida);
1267 
1268 	/*
1269 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1270 	 * get all MSI-X vectors and if we succeed, each ring will have
1271 	 * one MSI-X. If for some reason that does not work out, we
1272 	 * fallback to a single MSI.
1273 	 */
1274 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1275 				     PCI_IRQ_MSIX);
1276 	if (nvec < 0) {
1277 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1278 		if (nvec < 0)
1279 			return nvec;
1280 
1281 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1282 
1283 		irq = pci_irq_vector(nhi->pdev, 0);
1284 		if (irq < 0)
1285 			return irq;
1286 
1287 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1288 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1289 		if (res)
1290 			return dev_err_probe(dev, res, "request_irq failed, aborting\n");
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 static bool nhi_imr_valid(struct pci_dev *pdev)
1297 {
1298 	u8 val;
1299 
1300 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1301 		return !!val;
1302 
1303 	return true;
1304 }
1305 
1306 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1307 {
1308 	struct tb *tb;
1309 
1310 	/*
1311 	 * USB4 case is simple. If we got control of any of the
1312 	 * capabilities, we use software CM.
1313 	 */
1314 	if (tb_acpi_is_native())
1315 		return tb_probe(nhi);
1316 
1317 	/*
1318 	 * Either firmware based CM is running (we did not get control
1319 	 * from the firmware) or this is pre-USB4 PC so try first
1320 	 * firmware CM and then fallback to software CM.
1321 	 */
1322 	tb = icm_probe(nhi);
1323 	if (!tb)
1324 		tb = tb_probe(nhi);
1325 
1326 	return tb;
1327 }
1328 
1329 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1330 {
1331 	struct device *dev = &pdev->dev;
1332 	struct tb_nhi *nhi;
1333 	struct tb *tb;
1334 	int res;
1335 
1336 	if (!nhi_imr_valid(pdev))
1337 		return dev_err_probe(dev, -ENODEV, "firmware image not valid, aborting\n");
1338 
1339 	res = pcim_enable_device(pdev);
1340 	if (res)
1341 		return dev_err_probe(dev, res, "cannot enable PCI device, aborting\n");
1342 
1343 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1344 	if (res)
1345 		return dev_err_probe(dev, res, "cannot obtain PCI resources, aborting\n");
1346 
1347 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1348 	if (!nhi)
1349 		return -ENOMEM;
1350 
1351 	nhi->pdev = pdev;
1352 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1353 	/* cannot fail - table is allocated in pcim_iomap_regions */
1354 	nhi->iobase = pcim_iomap_table(pdev)[0];
1355 	nhi->hop_count = ioread32(nhi->iobase + REG_CAPS) & 0x3ff;
1356 	dev_dbg(dev, "total paths: %d\n", nhi->hop_count);
1357 
1358 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1359 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1360 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1361 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1362 	if (!nhi->tx_rings || !nhi->rx_rings)
1363 		return -ENOMEM;
1364 
1365 	nhi_check_quirks(nhi);
1366 	nhi_check_iommu(nhi);
1367 
1368 	nhi_reset(nhi);
1369 
1370 	res = nhi_init_msi(nhi);
1371 	if (res)
1372 		return dev_err_probe(dev, res, "cannot enable MSI, aborting\n");
1373 
1374 	spin_lock_init(&nhi->lock);
1375 
1376 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1377 	if (res)
1378 		return dev_err_probe(dev, res, "failed to set DMA mask\n");
1379 
1380 	pci_set_master(pdev);
1381 
1382 	if (nhi->ops && nhi->ops->init) {
1383 		res = nhi->ops->init(nhi);
1384 		if (res)
1385 			return res;
1386 	}
1387 
1388 	tb = nhi_select_cm(nhi);
1389 	if (!tb)
1390 		return dev_err_probe(dev, -ENODEV,
1391 			"failed to determine connection manager, aborting\n");
1392 
1393 	dev_dbg(dev, "NHI initialized, starting thunderbolt\n");
1394 
1395 	res = tb_domain_add(tb);
1396 	if (res) {
1397 		/*
1398 		 * At this point the RX/TX rings might already have been
1399 		 * activated. Do a proper shutdown.
1400 		 */
1401 		tb_domain_put(tb);
1402 		nhi_shutdown(nhi);
1403 		return res;
1404 	}
1405 	pci_set_drvdata(pdev, tb);
1406 
1407 	device_wakeup_enable(&pdev->dev);
1408 
1409 	pm_runtime_allow(&pdev->dev);
1410 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1411 	pm_runtime_use_autosuspend(&pdev->dev);
1412 	pm_runtime_put_autosuspend(&pdev->dev);
1413 
1414 	return 0;
1415 }
1416 
1417 static void nhi_remove(struct pci_dev *pdev)
1418 {
1419 	struct tb *tb = pci_get_drvdata(pdev);
1420 	struct tb_nhi *nhi = tb->nhi;
1421 
1422 	pm_runtime_get_sync(&pdev->dev);
1423 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1424 	pm_runtime_forbid(&pdev->dev);
1425 
1426 	tb_domain_remove(tb);
1427 	nhi_shutdown(nhi);
1428 }
1429 
1430 /*
1431  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1432  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1433  * resume_noirq until we are done.
1434  */
1435 static const struct dev_pm_ops nhi_pm_ops = {
1436 	.suspend_noirq = nhi_suspend_noirq,
1437 	.resume_noirq = nhi_resume_noirq,
1438 	.freeze_noirq = nhi_freeze_noirq,  /*
1439 					    * we just disable hotplug, the
1440 					    * pci-tunnels stay alive.
1441 					    */
1442 	.thaw_noirq = nhi_thaw_noirq,
1443 	.restore_noirq = nhi_resume_noirq,
1444 	.suspend = nhi_suspend,
1445 	.poweroff_noirq = nhi_poweroff_noirq,
1446 	.poweroff = nhi_suspend,
1447 	.complete = nhi_complete,
1448 	.runtime_suspend = nhi_runtime_suspend,
1449 	.runtime_resume = nhi_runtime_resume,
1450 };
1451 
1452 static struct pci_device_id nhi_ids[] = {
1453 	/*
1454 	 * We have to specify class, the TB bridges use the same device and
1455 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1456 	 */
1457 	{
1458 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1459 		.vendor = PCI_VENDOR_ID_INTEL,
1460 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1461 		.subvendor = 0x2222, .subdevice = 0x1111,
1462 	},
1463 	{
1464 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1465 		.vendor = PCI_VENDOR_ID_INTEL,
1466 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1467 		.subvendor = 0x2222, .subdevice = 0x1111,
1468 	},
1469 	{
1470 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1471 		.vendor = PCI_VENDOR_ID_INTEL,
1472 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1473 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1474 	},
1475 	{
1476 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1477 		.vendor = PCI_VENDOR_ID_INTEL,
1478 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1479 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1480 	},
1481 
1482 	/* Thunderbolt 3 */
1483 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1484 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1485 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1486 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1487 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1488 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1489 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1490 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1491 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1492 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1493 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1494 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1495 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1496 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1497 	/* Thunderbolt 4 */
1498 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1499 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1500 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1501 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1502 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1503 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1504 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1505 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1506 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1507 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1508 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1509 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1510 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI0),
1511 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1512 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_RPL_NHI1),
1513 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1514 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_M_NHI0),
1515 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1516 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI0),
1517 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1518 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_MTL_P_NHI1),
1519 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1520 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_80G_NHI) },
1521 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_BARLOW_RIDGE_HOST_40G_NHI) },
1522 
1523 	/* Any USB4 compliant host */
1524 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1525 
1526 	{ 0,}
1527 };
1528 
1529 MODULE_DEVICE_TABLE(pci, nhi_ids);
1530 MODULE_DESCRIPTION("Thunderbolt/USB4 core driver");
1531 MODULE_LICENSE("GPL");
1532 
1533 static struct pci_driver nhi_driver = {
1534 	.name = "thunderbolt",
1535 	.id_table = nhi_ids,
1536 	.probe = nhi_probe,
1537 	.remove = nhi_remove,
1538 	.shutdown = nhi_remove,
1539 	.driver.pm = &nhi_pm_ops,
1540 };
1541 
1542 static int __init nhi_init(void)
1543 {
1544 	int ret;
1545 
1546 	ret = tb_domain_init();
1547 	if (ret)
1548 		return ret;
1549 	ret = pci_register_driver(&nhi_driver);
1550 	if (ret)
1551 		tb_domain_exit();
1552 	return ret;
1553 }
1554 
1555 static void __exit nhi_unload(void)
1556 {
1557 	pci_unregister_driver(&nhi_driver);
1558 	tb_domain_exit();
1559 }
1560 
1561 rootfs_initcall(nhi_init);
1562 module_exit(nhi_unload);
1563