xref: /linux/drivers/thunderbolt/nhi.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11 
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24 
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26 
27 #define RING_FIRST_USABLE_HOPID	1
28 
29 /*
30  * Minimal number of vectors when we use MSI-X. Two for control channel
31  * Rx/Tx and the rest four are for cross domain DMA paths.
32  */
33 #define MSIX_MIN_VECS		6
34 #define MSIX_MAX_VECS		16
35 
36 #define NHI_MAILBOX_TIMEOUT	500 /* ms */
37 
38 #define QUIRK_AUTO_CLEAR_INT	BIT(0)
39 
40 static int ring_interrupt_index(struct tb_ring *ring)
41 {
42 	int bit = ring->hop;
43 	if (!ring->is_tx)
44 		bit += ring->nhi->hop_count;
45 	return bit;
46 }
47 
48 /*
49  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
50  *
51  * ring->nhi->lock must be held.
52  */
53 static void ring_interrupt_active(struct tb_ring *ring, bool active)
54 {
55 	int reg = REG_RING_INTERRUPT_BASE +
56 		  ring_interrupt_index(ring) / 32 * 4;
57 	int bit = ring_interrupt_index(ring) & 31;
58 	int mask = 1 << bit;
59 	u32 old, new;
60 
61 	if (ring->irq > 0) {
62 		u32 step, shift, ivr, misc;
63 		void __iomem *ivr_base;
64 		int index;
65 
66 		if (ring->is_tx)
67 			index = ring->hop;
68 		else
69 			index = ring->hop + ring->nhi->hop_count;
70 
71 		if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
72 			/*
73 			 * Ask the hardware to clear interrupt status
74 			 * bits automatically since we already know
75 			 * which interrupt was triggered.
76 			 */
77 			misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
78 			if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
79 				misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
80 				iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
81 			}
82 		}
83 
84 		ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
85 		step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86 		shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
87 		ivr = ioread32(ivr_base + step);
88 		ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
89 		if (active)
90 			ivr |= ring->vector << shift;
91 		iowrite32(ivr, ivr_base + step);
92 	}
93 
94 	old = ioread32(ring->nhi->iobase + reg);
95 	if (active)
96 		new = old | mask;
97 	else
98 		new = old & ~mask;
99 
100 	dev_dbg(&ring->nhi->pdev->dev,
101 		"%s interrupt at register %#x bit %d (%#x -> %#x)\n",
102 		active ? "enabling" : "disabling", reg, bit, old, new);
103 
104 	if (new == old)
105 		dev_WARN(&ring->nhi->pdev->dev,
106 					 "interrupt for %s %d is already %s\n",
107 					 RING_TYPE(ring), ring->hop,
108 					 active ? "enabled" : "disabled");
109 	iowrite32(new, ring->nhi->iobase + reg);
110 }
111 
112 /*
113  * nhi_disable_interrupts() - disable interrupts for all rings
114  *
115  * Use only during init and shutdown.
116  */
117 static void nhi_disable_interrupts(struct tb_nhi *nhi)
118 {
119 	int i = 0;
120 	/* disable interrupts */
121 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
122 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
123 
124 	/* clear interrupt status bits */
125 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
126 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
127 }
128 
129 /* ring helper methods */
130 
131 static void __iomem *ring_desc_base(struct tb_ring *ring)
132 {
133 	void __iomem *io = ring->nhi->iobase;
134 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
135 	io += ring->hop * 16;
136 	return io;
137 }
138 
139 static void __iomem *ring_options_base(struct tb_ring *ring)
140 {
141 	void __iomem *io = ring->nhi->iobase;
142 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
143 	io += ring->hop * 32;
144 	return io;
145 }
146 
147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
148 {
149 	/*
150 	 * The other 16-bits in the register is read-only and writes to it
151 	 * are ignored by the hardware so we can save one ioread32() by
152 	 * filling the read-only bits with zeroes.
153 	 */
154 	iowrite32(cons, ring_desc_base(ring) + 8);
155 }
156 
157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
158 {
159 	/* See ring_iowrite_cons() above for explanation */
160 	iowrite32(prod << 16, ring_desc_base(ring) + 8);
161 }
162 
163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
164 {
165 	iowrite32(value, ring_desc_base(ring) + offset);
166 }
167 
168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
169 {
170 	iowrite32(value, ring_desc_base(ring) + offset);
171 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
172 }
173 
174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
175 {
176 	iowrite32(value, ring_options_base(ring) + offset);
177 }
178 
179 static bool ring_full(struct tb_ring *ring)
180 {
181 	return ((ring->head + 1) % ring->size) == ring->tail;
182 }
183 
184 static bool ring_empty(struct tb_ring *ring)
185 {
186 	return ring->head == ring->tail;
187 }
188 
189 /*
190  * ring_write_descriptors() - post frames from ring->queue to the controller
191  *
192  * ring->lock is held.
193  */
194 static void ring_write_descriptors(struct tb_ring *ring)
195 {
196 	struct ring_frame *frame, *n;
197 	struct ring_desc *descriptor;
198 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
199 		if (ring_full(ring))
200 			break;
201 		list_move_tail(&frame->list, &ring->in_flight);
202 		descriptor = &ring->descriptors[ring->head];
203 		descriptor->phys = frame->buffer_phy;
204 		descriptor->time = 0;
205 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
206 		if (ring->is_tx) {
207 			descriptor->length = frame->size;
208 			descriptor->eof = frame->eof;
209 			descriptor->sof = frame->sof;
210 		}
211 		ring->head = (ring->head + 1) % ring->size;
212 		if (ring->is_tx)
213 			ring_iowrite_prod(ring, ring->head);
214 		else
215 			ring_iowrite_cons(ring, ring->head);
216 	}
217 }
218 
219 /*
220  * ring_work() - progress completed frames
221  *
222  * If the ring is shutting down then all frames are marked as canceled and
223  * their callbacks are invoked.
224  *
225  * Otherwise we collect all completed frame from the ring buffer, write new
226  * frame to the ring buffer and invoke the callbacks for the completed frames.
227  */
228 static void ring_work(struct work_struct *work)
229 {
230 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
231 	struct ring_frame *frame;
232 	bool canceled = false;
233 	unsigned long flags;
234 	LIST_HEAD(done);
235 
236 	spin_lock_irqsave(&ring->lock, flags);
237 
238 	if (!ring->running) {
239 		/*  Move all frames to done and mark them as canceled. */
240 		list_splice_tail_init(&ring->in_flight, &done);
241 		list_splice_tail_init(&ring->queue, &done);
242 		canceled = true;
243 		goto invoke_callback;
244 	}
245 
246 	while (!ring_empty(ring)) {
247 		if (!(ring->descriptors[ring->tail].flags
248 				& RING_DESC_COMPLETED))
249 			break;
250 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
251 					 list);
252 		list_move_tail(&frame->list, &done);
253 		if (!ring->is_tx) {
254 			frame->size = ring->descriptors[ring->tail].length;
255 			frame->eof = ring->descriptors[ring->tail].eof;
256 			frame->sof = ring->descriptors[ring->tail].sof;
257 			frame->flags = ring->descriptors[ring->tail].flags;
258 		}
259 		ring->tail = (ring->tail + 1) % ring->size;
260 	}
261 	ring_write_descriptors(ring);
262 
263 invoke_callback:
264 	/* allow callbacks to schedule new work */
265 	spin_unlock_irqrestore(&ring->lock, flags);
266 	while (!list_empty(&done)) {
267 		frame = list_first_entry(&done, typeof(*frame), list);
268 		/*
269 		 * The callback may reenqueue or delete frame.
270 		 * Do not hold on to it.
271 		 */
272 		list_del_init(&frame->list);
273 		if (frame->callback)
274 			frame->callback(ring, frame, canceled);
275 	}
276 }
277 
278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
279 {
280 	unsigned long flags;
281 	int ret = 0;
282 
283 	spin_lock_irqsave(&ring->lock, flags);
284 	if (ring->running) {
285 		list_add_tail(&frame->list, &ring->queue);
286 		ring_write_descriptors(ring);
287 	} else {
288 		ret = -ESHUTDOWN;
289 	}
290 	spin_unlock_irqrestore(&ring->lock, flags);
291 	return ret;
292 }
293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
294 
295 /**
296  * tb_ring_poll() - Poll one completed frame from the ring
297  * @ring: Ring to poll
298  *
299  * This function can be called when @start_poll callback of the @ring
300  * has been called. It will read one completed frame from the ring and
301  * return it to the caller. Returns %NULL if there is no more completed
302  * frames.
303  */
304 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
305 {
306 	struct ring_frame *frame = NULL;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&ring->lock, flags);
310 	if (!ring->running)
311 		goto unlock;
312 	if (ring_empty(ring))
313 		goto unlock;
314 
315 	if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
316 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
317 					 list);
318 		list_del_init(&frame->list);
319 
320 		if (!ring->is_tx) {
321 			frame->size = ring->descriptors[ring->tail].length;
322 			frame->eof = ring->descriptors[ring->tail].eof;
323 			frame->sof = ring->descriptors[ring->tail].sof;
324 			frame->flags = ring->descriptors[ring->tail].flags;
325 		}
326 
327 		ring->tail = (ring->tail + 1) % ring->size;
328 	}
329 
330 unlock:
331 	spin_unlock_irqrestore(&ring->lock, flags);
332 	return frame;
333 }
334 EXPORT_SYMBOL_GPL(tb_ring_poll);
335 
336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
337 {
338 	int idx = ring_interrupt_index(ring);
339 	int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
340 	int bit = idx % 32;
341 	u32 val;
342 
343 	val = ioread32(ring->nhi->iobase + reg);
344 	if (mask)
345 		val &= ~BIT(bit);
346 	else
347 		val |= BIT(bit);
348 	iowrite32(val, ring->nhi->iobase + reg);
349 }
350 
351 /* Both @nhi->lock and @ring->lock should be held */
352 static void __ring_interrupt(struct tb_ring *ring)
353 {
354 	if (!ring->running)
355 		return;
356 
357 	if (ring->start_poll) {
358 		__ring_interrupt_mask(ring, true);
359 		ring->start_poll(ring->poll_data);
360 	} else {
361 		schedule_work(&ring->work);
362 	}
363 }
364 
365 /**
366  * tb_ring_poll_complete() - Re-start interrupt for the ring
367  * @ring: Ring to re-start the interrupt
368  *
369  * This will re-start (unmask) the ring interrupt once the user is done
370  * with polling.
371  */
372 void tb_ring_poll_complete(struct tb_ring *ring)
373 {
374 	unsigned long flags;
375 
376 	spin_lock_irqsave(&ring->nhi->lock, flags);
377 	spin_lock(&ring->lock);
378 	if (ring->start_poll)
379 		__ring_interrupt_mask(ring, false);
380 	spin_unlock(&ring->lock);
381 	spin_unlock_irqrestore(&ring->nhi->lock, flags);
382 }
383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
384 
385 static void ring_clear_msix(const struct tb_ring *ring)
386 {
387 	if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
388 		return;
389 
390 	if (ring->is_tx)
391 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE);
392 	else
393 		ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE +
394 			 4 * (ring->nhi->hop_count / 32));
395 }
396 
397 static irqreturn_t ring_msix(int irq, void *data)
398 {
399 	struct tb_ring *ring = data;
400 
401 	spin_lock(&ring->nhi->lock);
402 	ring_clear_msix(ring);
403 	spin_lock(&ring->lock);
404 	__ring_interrupt(ring);
405 	spin_unlock(&ring->lock);
406 	spin_unlock(&ring->nhi->lock);
407 
408 	return IRQ_HANDLED;
409 }
410 
411 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
412 {
413 	struct tb_nhi *nhi = ring->nhi;
414 	unsigned long irqflags;
415 	int ret;
416 
417 	if (!nhi->pdev->msix_enabled)
418 		return 0;
419 
420 	ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
421 	if (ret < 0)
422 		return ret;
423 
424 	ring->vector = ret;
425 
426 	ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
427 	if (ret < 0)
428 		goto err_ida_remove;
429 
430 	ring->irq = ret;
431 
432 	irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
433 	ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
434 	if (ret)
435 		goto err_ida_remove;
436 
437 	return 0;
438 
439 err_ida_remove:
440 	ida_simple_remove(&nhi->msix_ida, ring->vector);
441 
442 	return ret;
443 }
444 
445 static void ring_release_msix(struct tb_ring *ring)
446 {
447 	if (ring->irq <= 0)
448 		return;
449 
450 	free_irq(ring->irq, ring);
451 	ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
452 	ring->vector = 0;
453 	ring->irq = 0;
454 }
455 
456 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
457 {
458 	int ret = 0;
459 
460 	spin_lock_irq(&nhi->lock);
461 
462 	if (ring->hop < 0) {
463 		unsigned int i;
464 
465 		/*
466 		 * Automatically allocate HopID from the non-reserved
467 		 * range 1 .. hop_count - 1.
468 		 */
469 		for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
470 			if (ring->is_tx) {
471 				if (!nhi->tx_rings[i]) {
472 					ring->hop = i;
473 					break;
474 				}
475 			} else {
476 				if (!nhi->rx_rings[i]) {
477 					ring->hop = i;
478 					break;
479 				}
480 			}
481 		}
482 	}
483 
484 	if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
485 		dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
486 		ret = -EINVAL;
487 		goto err_unlock;
488 	}
489 	if (ring->is_tx && nhi->tx_rings[ring->hop]) {
490 		dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
491 			 ring->hop);
492 		ret = -EBUSY;
493 		goto err_unlock;
494 	} else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
495 		dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
496 			 ring->hop);
497 		ret = -EBUSY;
498 		goto err_unlock;
499 	}
500 
501 	if (ring->is_tx)
502 		nhi->tx_rings[ring->hop] = ring;
503 	else
504 		nhi->rx_rings[ring->hop] = ring;
505 
506 err_unlock:
507 	spin_unlock_irq(&nhi->lock);
508 
509 	return ret;
510 }
511 
512 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
513 				     bool transmit, unsigned int flags,
514 				     int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
515 				     void (*start_poll)(void *),
516 				     void *poll_data)
517 {
518 	struct tb_ring *ring = NULL;
519 
520 	dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
521 		transmit ? "TX" : "RX", hop, size);
522 
523 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
524 	if (!ring)
525 		return NULL;
526 
527 	spin_lock_init(&ring->lock);
528 	INIT_LIST_HEAD(&ring->queue);
529 	INIT_LIST_HEAD(&ring->in_flight);
530 	INIT_WORK(&ring->work, ring_work);
531 
532 	ring->nhi = nhi;
533 	ring->hop = hop;
534 	ring->is_tx = transmit;
535 	ring->size = size;
536 	ring->flags = flags;
537 	ring->e2e_tx_hop = e2e_tx_hop;
538 	ring->sof_mask = sof_mask;
539 	ring->eof_mask = eof_mask;
540 	ring->head = 0;
541 	ring->tail = 0;
542 	ring->running = false;
543 	ring->start_poll = start_poll;
544 	ring->poll_data = poll_data;
545 
546 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
547 			size * sizeof(*ring->descriptors),
548 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
549 	if (!ring->descriptors)
550 		goto err_free_ring;
551 
552 	if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
553 		goto err_free_descs;
554 
555 	if (nhi_alloc_hop(nhi, ring))
556 		goto err_release_msix;
557 
558 	return ring;
559 
560 err_release_msix:
561 	ring_release_msix(ring);
562 err_free_descs:
563 	dma_free_coherent(&ring->nhi->pdev->dev,
564 			  ring->size * sizeof(*ring->descriptors),
565 			  ring->descriptors, ring->descriptors_dma);
566 err_free_ring:
567 	kfree(ring);
568 
569 	return NULL;
570 }
571 
572 /**
573  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
574  * @nhi: Pointer to the NHI the ring is to be allocated
575  * @hop: HopID (ring) to allocate
576  * @size: Number of entries in the ring
577  * @flags: Flags for the ring
578  */
579 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
580 				 unsigned int flags)
581 {
582 	return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
583 }
584 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
585 
586 /**
587  * tb_ring_alloc_rx() - Allocate DMA ring for receive
588  * @nhi: Pointer to the NHI the ring is to be allocated
589  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
590  * @size: Number of entries in the ring
591  * @flags: Flags for the ring
592  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
593  * @sof_mask: Mask of PDF values that start a frame
594  * @eof_mask: Mask of PDF values that end a frame
595  * @start_poll: If not %NULL the ring will call this function when an
596  *		interrupt is triggered and masked, instead of callback
597  *		in each Rx frame.
598  * @poll_data: Optional data passed to @start_poll
599  */
600 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
601 				 unsigned int flags, int e2e_tx_hop,
602 				 u16 sof_mask, u16 eof_mask,
603 				 void (*start_poll)(void *), void *poll_data)
604 {
605 	return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
606 			     start_poll, poll_data);
607 }
608 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
609 
610 /**
611  * tb_ring_start() - enable a ring
612  * @ring: Ring to start
613  *
614  * Must not be invoked in parallel with tb_ring_stop().
615  */
616 void tb_ring_start(struct tb_ring *ring)
617 {
618 	u16 frame_size;
619 	u32 flags;
620 
621 	spin_lock_irq(&ring->nhi->lock);
622 	spin_lock(&ring->lock);
623 	if (ring->nhi->going_away)
624 		goto err;
625 	if (ring->running) {
626 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
627 		goto err;
628 	}
629 	dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
630 		RING_TYPE(ring), ring->hop);
631 
632 	if (ring->flags & RING_FLAG_FRAME) {
633 		/* Means 4096 */
634 		frame_size = 0;
635 		flags = RING_FLAG_ENABLE;
636 	} else {
637 		frame_size = TB_FRAME_SIZE;
638 		flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
639 	}
640 
641 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
642 	if (ring->is_tx) {
643 		ring_iowrite32desc(ring, ring->size, 12);
644 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
645 		ring_iowrite32options(ring, flags, 0);
646 	} else {
647 		u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
648 
649 		ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
650 		ring_iowrite32options(ring, sof_eof_mask, 4);
651 		ring_iowrite32options(ring, flags, 0);
652 	}
653 
654 	/*
655 	 * Now that the ring valid bit is set we can configure E2E if
656 	 * enabled for the ring.
657 	 */
658 	if (ring->flags & RING_FLAG_E2E) {
659 		if (!ring->is_tx) {
660 			u32 hop;
661 
662 			hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
663 			hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
664 			flags |= hop;
665 
666 			dev_dbg(&ring->nhi->pdev->dev,
667 				"enabling E2E for %s %d with TX HopID %d\n",
668 				RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
669 		} else {
670 			dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
671 				RING_TYPE(ring), ring->hop);
672 		}
673 
674 		flags |= RING_FLAG_E2E_FLOW_CONTROL;
675 		ring_iowrite32options(ring, flags, 0);
676 	}
677 
678 	ring_interrupt_active(ring, true);
679 	ring->running = true;
680 err:
681 	spin_unlock(&ring->lock);
682 	spin_unlock_irq(&ring->nhi->lock);
683 }
684 EXPORT_SYMBOL_GPL(tb_ring_start);
685 
686 /**
687  * tb_ring_stop() - shutdown a ring
688  * @ring: Ring to stop
689  *
690  * Must not be invoked from a callback.
691  *
692  * This method will disable the ring. Further calls to
693  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
694  * called.
695  *
696  * All enqueued frames will be canceled and their callbacks will be executed
697  * with frame->canceled set to true (on the callback thread). This method
698  * returns only after all callback invocations have finished.
699  */
700 void tb_ring_stop(struct tb_ring *ring)
701 {
702 	spin_lock_irq(&ring->nhi->lock);
703 	spin_lock(&ring->lock);
704 	dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
705 		RING_TYPE(ring), ring->hop);
706 	if (ring->nhi->going_away)
707 		goto err;
708 	if (!ring->running) {
709 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
710 			 RING_TYPE(ring), ring->hop);
711 		goto err;
712 	}
713 	ring_interrupt_active(ring, false);
714 
715 	ring_iowrite32options(ring, 0, 0);
716 	ring_iowrite64desc(ring, 0, 0);
717 	ring_iowrite32desc(ring, 0, 8);
718 	ring_iowrite32desc(ring, 0, 12);
719 	ring->head = 0;
720 	ring->tail = 0;
721 	ring->running = false;
722 
723 err:
724 	spin_unlock(&ring->lock);
725 	spin_unlock_irq(&ring->nhi->lock);
726 
727 	/*
728 	 * schedule ring->work to invoke callbacks on all remaining frames.
729 	 */
730 	schedule_work(&ring->work);
731 	flush_work(&ring->work);
732 }
733 EXPORT_SYMBOL_GPL(tb_ring_stop);
734 
735 /*
736  * tb_ring_free() - free ring
737  *
738  * When this method returns all invocations of ring->callback will have
739  * finished.
740  *
741  * Ring must be stopped.
742  *
743  * Must NOT be called from ring_frame->callback!
744  */
745 void tb_ring_free(struct tb_ring *ring)
746 {
747 	spin_lock_irq(&ring->nhi->lock);
748 	/*
749 	 * Dissociate the ring from the NHI. This also ensures that
750 	 * nhi_interrupt_work cannot reschedule ring->work.
751 	 */
752 	if (ring->is_tx)
753 		ring->nhi->tx_rings[ring->hop] = NULL;
754 	else
755 		ring->nhi->rx_rings[ring->hop] = NULL;
756 
757 	if (ring->running) {
758 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
759 			 RING_TYPE(ring), ring->hop);
760 	}
761 	spin_unlock_irq(&ring->nhi->lock);
762 
763 	ring_release_msix(ring);
764 
765 	dma_free_coherent(&ring->nhi->pdev->dev,
766 			  ring->size * sizeof(*ring->descriptors),
767 			  ring->descriptors, ring->descriptors_dma);
768 
769 	ring->descriptors = NULL;
770 	ring->descriptors_dma = 0;
771 
772 
773 	dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
774 		ring->hop);
775 
776 	/*
777 	 * ring->work can no longer be scheduled (it is scheduled only
778 	 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
779 	 * to finish before freeing the ring.
780 	 */
781 	flush_work(&ring->work);
782 	kfree(ring);
783 }
784 EXPORT_SYMBOL_GPL(tb_ring_free);
785 
786 /**
787  * nhi_mailbox_cmd() - Send a command through NHI mailbox
788  * @nhi: Pointer to the NHI structure
789  * @cmd: Command to send
790  * @data: Data to be send with the command
791  *
792  * Sends mailbox command to the firmware running on NHI. Returns %0 in
793  * case of success and negative errno in case of failure.
794  */
795 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
796 {
797 	ktime_t timeout;
798 	u32 val;
799 
800 	iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
801 
802 	val = ioread32(nhi->iobase + REG_INMAIL_CMD);
803 	val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
804 	val |= REG_INMAIL_OP_REQUEST | cmd;
805 	iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
806 
807 	timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
808 	do {
809 		val = ioread32(nhi->iobase + REG_INMAIL_CMD);
810 		if (!(val & REG_INMAIL_OP_REQUEST))
811 			break;
812 		usleep_range(10, 20);
813 	} while (ktime_before(ktime_get(), timeout));
814 
815 	if (val & REG_INMAIL_OP_REQUEST)
816 		return -ETIMEDOUT;
817 	if (val & REG_INMAIL_ERROR)
818 		return -EIO;
819 
820 	return 0;
821 }
822 
823 /**
824  * nhi_mailbox_mode() - Return current firmware operation mode
825  * @nhi: Pointer to the NHI structure
826  *
827  * The function reads current firmware operation mode using NHI mailbox
828  * registers and returns it to the caller.
829  */
830 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
831 {
832 	u32 val;
833 
834 	val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
835 	val &= REG_OUTMAIL_CMD_OPMODE_MASK;
836 	val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
837 
838 	return (enum nhi_fw_mode)val;
839 }
840 
841 static void nhi_interrupt_work(struct work_struct *work)
842 {
843 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
844 	int value = 0; /* Suppress uninitialized usage warning. */
845 	int bit;
846 	int hop = -1;
847 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
848 	struct tb_ring *ring;
849 
850 	spin_lock_irq(&nhi->lock);
851 
852 	/*
853 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
854 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
855 	 * dwords as required. The registers are cleared on read.
856 	 */
857 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
858 		if (bit % 32 == 0)
859 			value = ioread32(nhi->iobase
860 					 + REG_RING_NOTIFY_BASE
861 					 + 4 * (bit / 32));
862 		if (++hop == nhi->hop_count) {
863 			hop = 0;
864 			type++;
865 		}
866 		if ((value & (1 << (bit % 32))) == 0)
867 			continue;
868 		if (type == 2) {
869 			dev_warn(&nhi->pdev->dev,
870 				 "RX overflow for ring %d\n",
871 				 hop);
872 			continue;
873 		}
874 		if (type == 0)
875 			ring = nhi->tx_rings[hop];
876 		else
877 			ring = nhi->rx_rings[hop];
878 		if (ring == NULL) {
879 			dev_warn(&nhi->pdev->dev,
880 				 "got interrupt for inactive %s ring %d\n",
881 				 type ? "RX" : "TX",
882 				 hop);
883 			continue;
884 		}
885 
886 		spin_lock(&ring->lock);
887 		__ring_interrupt(ring);
888 		spin_unlock(&ring->lock);
889 	}
890 	spin_unlock_irq(&nhi->lock);
891 }
892 
893 static irqreturn_t nhi_msi(int irq, void *data)
894 {
895 	struct tb_nhi *nhi = data;
896 	schedule_work(&nhi->interrupt_work);
897 	return IRQ_HANDLED;
898 }
899 
900 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
901 {
902 	struct pci_dev *pdev = to_pci_dev(dev);
903 	struct tb *tb = pci_get_drvdata(pdev);
904 	struct tb_nhi *nhi = tb->nhi;
905 	int ret;
906 
907 	ret = tb_domain_suspend_noirq(tb);
908 	if (ret)
909 		return ret;
910 
911 	if (nhi->ops && nhi->ops->suspend_noirq) {
912 		ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
913 		if (ret)
914 			return ret;
915 	}
916 
917 	return 0;
918 }
919 
920 static int nhi_suspend_noirq(struct device *dev)
921 {
922 	return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
923 }
924 
925 static int nhi_freeze_noirq(struct device *dev)
926 {
927 	struct pci_dev *pdev = to_pci_dev(dev);
928 	struct tb *tb = pci_get_drvdata(pdev);
929 
930 	return tb_domain_freeze_noirq(tb);
931 }
932 
933 static int nhi_thaw_noirq(struct device *dev)
934 {
935 	struct pci_dev *pdev = to_pci_dev(dev);
936 	struct tb *tb = pci_get_drvdata(pdev);
937 
938 	return tb_domain_thaw_noirq(tb);
939 }
940 
941 static bool nhi_wake_supported(struct pci_dev *pdev)
942 {
943 	u8 val;
944 
945 	/*
946 	 * If power rails are sustainable for wakeup from S4 this
947 	 * property is set by the BIOS.
948 	 */
949 	if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
950 		return !!val;
951 
952 	return true;
953 }
954 
955 static int nhi_poweroff_noirq(struct device *dev)
956 {
957 	struct pci_dev *pdev = to_pci_dev(dev);
958 	bool wakeup;
959 
960 	wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
961 	return __nhi_suspend_noirq(dev, wakeup);
962 }
963 
964 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
965 {
966 	/* Throttling is specified in 256ns increments */
967 	u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
968 	unsigned int i;
969 
970 	/*
971 	 * Configure interrupt throttling for all vectors even if we
972 	 * only use few.
973 	 */
974 	for (i = 0; i < MSIX_MAX_VECS; i++) {
975 		u32 reg = REG_INT_THROTTLING_RATE + i * 4;
976 		iowrite32(throttle, nhi->iobase + reg);
977 	}
978 }
979 
980 static int nhi_resume_noirq(struct device *dev)
981 {
982 	struct pci_dev *pdev = to_pci_dev(dev);
983 	struct tb *tb = pci_get_drvdata(pdev);
984 	struct tb_nhi *nhi = tb->nhi;
985 	int ret;
986 
987 	/*
988 	 * Check that the device is still there. It may be that the user
989 	 * unplugged last device which causes the host controller to go
990 	 * away on PCs.
991 	 */
992 	if (!pci_device_is_present(pdev)) {
993 		nhi->going_away = true;
994 	} else {
995 		if (nhi->ops && nhi->ops->resume_noirq) {
996 			ret = nhi->ops->resume_noirq(nhi);
997 			if (ret)
998 				return ret;
999 		}
1000 		nhi_enable_int_throttling(tb->nhi);
1001 	}
1002 
1003 	return tb_domain_resume_noirq(tb);
1004 }
1005 
1006 static int nhi_suspend(struct device *dev)
1007 {
1008 	struct pci_dev *pdev = to_pci_dev(dev);
1009 	struct tb *tb = pci_get_drvdata(pdev);
1010 
1011 	return tb_domain_suspend(tb);
1012 }
1013 
1014 static void nhi_complete(struct device *dev)
1015 {
1016 	struct pci_dev *pdev = to_pci_dev(dev);
1017 	struct tb *tb = pci_get_drvdata(pdev);
1018 
1019 	/*
1020 	 * If we were runtime suspended when system suspend started,
1021 	 * schedule runtime resume now. It should bring the domain back
1022 	 * to functional state.
1023 	 */
1024 	if (pm_runtime_suspended(&pdev->dev))
1025 		pm_runtime_resume(&pdev->dev);
1026 	else
1027 		tb_domain_complete(tb);
1028 }
1029 
1030 static int nhi_runtime_suspend(struct device *dev)
1031 {
1032 	struct pci_dev *pdev = to_pci_dev(dev);
1033 	struct tb *tb = pci_get_drvdata(pdev);
1034 	struct tb_nhi *nhi = tb->nhi;
1035 	int ret;
1036 
1037 	ret = tb_domain_runtime_suspend(tb);
1038 	if (ret)
1039 		return ret;
1040 
1041 	if (nhi->ops && nhi->ops->runtime_suspend) {
1042 		ret = nhi->ops->runtime_suspend(tb->nhi);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 	return 0;
1047 }
1048 
1049 static int nhi_runtime_resume(struct device *dev)
1050 {
1051 	struct pci_dev *pdev = to_pci_dev(dev);
1052 	struct tb *tb = pci_get_drvdata(pdev);
1053 	struct tb_nhi *nhi = tb->nhi;
1054 	int ret;
1055 
1056 	if (nhi->ops && nhi->ops->runtime_resume) {
1057 		ret = nhi->ops->runtime_resume(nhi);
1058 		if (ret)
1059 			return ret;
1060 	}
1061 
1062 	nhi_enable_int_throttling(nhi);
1063 	return tb_domain_runtime_resume(tb);
1064 }
1065 
1066 static void nhi_shutdown(struct tb_nhi *nhi)
1067 {
1068 	int i;
1069 
1070 	dev_dbg(&nhi->pdev->dev, "shutdown\n");
1071 
1072 	for (i = 0; i < nhi->hop_count; i++) {
1073 		if (nhi->tx_rings[i])
1074 			dev_WARN(&nhi->pdev->dev,
1075 				 "TX ring %d is still active\n", i);
1076 		if (nhi->rx_rings[i])
1077 			dev_WARN(&nhi->pdev->dev,
1078 				 "RX ring %d is still active\n", i);
1079 	}
1080 	nhi_disable_interrupts(nhi);
1081 	/*
1082 	 * We have to release the irq before calling flush_work. Otherwise an
1083 	 * already executing IRQ handler could call schedule_work again.
1084 	 */
1085 	if (!nhi->pdev->msix_enabled) {
1086 		devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1087 		flush_work(&nhi->interrupt_work);
1088 	}
1089 	ida_destroy(&nhi->msix_ida);
1090 
1091 	if (nhi->ops && nhi->ops->shutdown)
1092 		nhi->ops->shutdown(nhi);
1093 }
1094 
1095 static void nhi_check_quirks(struct tb_nhi *nhi)
1096 {
1097 	/*
1098 	 * Intel hardware supports auto clear of the interrupt status
1099 	 * reqister right after interrupt is being issued.
1100 	 */
1101 	if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL)
1102 		nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1103 }
1104 
1105 static int nhi_init_msi(struct tb_nhi *nhi)
1106 {
1107 	struct pci_dev *pdev = nhi->pdev;
1108 	int res, irq, nvec;
1109 
1110 	/* In case someone left them on. */
1111 	nhi_disable_interrupts(nhi);
1112 
1113 	nhi_enable_int_throttling(nhi);
1114 
1115 	ida_init(&nhi->msix_ida);
1116 
1117 	/*
1118 	 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1119 	 * get all MSI-X vectors and if we succeed, each ring will have
1120 	 * one MSI-X. If for some reason that does not work out, we
1121 	 * fallback to a single MSI.
1122 	 */
1123 	nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1124 				     PCI_IRQ_MSIX);
1125 	if (nvec < 0) {
1126 		nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1127 		if (nvec < 0)
1128 			return nvec;
1129 
1130 		INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1131 
1132 		irq = pci_irq_vector(nhi->pdev, 0);
1133 		if (irq < 0)
1134 			return irq;
1135 
1136 		res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1137 				       IRQF_NO_SUSPEND, "thunderbolt", nhi);
1138 		if (res) {
1139 			dev_err(&pdev->dev, "request_irq failed, aborting\n");
1140 			return res;
1141 		}
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 static bool nhi_imr_valid(struct pci_dev *pdev)
1148 {
1149 	u8 val;
1150 
1151 	if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1152 		return !!val;
1153 
1154 	return true;
1155 }
1156 
1157 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1158 {
1159 	struct tb *tb;
1160 
1161 	/*
1162 	 * USB4 case is simple. If we got control of any of the
1163 	 * capabilities, we use software CM.
1164 	 */
1165 	if (tb_acpi_is_native())
1166 		return tb_probe(nhi);
1167 
1168 	/*
1169 	 * Either firmware based CM is running (we did not get control
1170 	 * from the firmware) or this is pre-USB4 PC so try first
1171 	 * firmware CM and then fallback to software CM.
1172 	 */
1173 	tb = icm_probe(nhi);
1174 	if (!tb)
1175 		tb = tb_probe(nhi);
1176 
1177 	return tb;
1178 }
1179 
1180 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181 {
1182 	struct tb_nhi *nhi;
1183 	struct tb *tb;
1184 	int res;
1185 
1186 	if (!nhi_imr_valid(pdev)) {
1187 		dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1188 		return -ENODEV;
1189 	}
1190 
1191 	res = pcim_enable_device(pdev);
1192 	if (res) {
1193 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1194 		return res;
1195 	}
1196 
1197 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1198 	if (res) {
1199 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1200 		return res;
1201 	}
1202 
1203 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1204 	if (!nhi)
1205 		return -ENOMEM;
1206 
1207 	nhi->pdev = pdev;
1208 	nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1209 	/* cannot fail - table is allocated bin pcim_iomap_regions */
1210 	nhi->iobase = pcim_iomap_table(pdev)[0];
1211 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1212 	dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1213 
1214 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1215 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
1216 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1217 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
1218 	if (!nhi->tx_rings || !nhi->rx_rings)
1219 		return -ENOMEM;
1220 
1221 	nhi_check_quirks(nhi);
1222 
1223 	res = nhi_init_msi(nhi);
1224 	if (res) {
1225 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1226 		return res;
1227 	}
1228 
1229 	spin_lock_init(&nhi->lock);
1230 
1231 	res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1232 	if (res)
1233 		res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1234 	if (res) {
1235 		dev_err(&pdev->dev, "failed to set DMA mask\n");
1236 		return res;
1237 	}
1238 
1239 	pci_set_master(pdev);
1240 
1241 	if (nhi->ops && nhi->ops->init) {
1242 		res = nhi->ops->init(nhi);
1243 		if (res)
1244 			return res;
1245 	}
1246 
1247 	tb = nhi_select_cm(nhi);
1248 	if (!tb) {
1249 		dev_err(&nhi->pdev->dev,
1250 			"failed to determine connection manager, aborting\n");
1251 		return -ENODEV;
1252 	}
1253 
1254 	dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1255 
1256 	res = tb_domain_add(tb);
1257 	if (res) {
1258 		/*
1259 		 * At this point the RX/TX rings might already have been
1260 		 * activated. Do a proper shutdown.
1261 		 */
1262 		tb_domain_put(tb);
1263 		nhi_shutdown(nhi);
1264 		return res;
1265 	}
1266 	pci_set_drvdata(pdev, tb);
1267 
1268 	device_wakeup_enable(&pdev->dev);
1269 
1270 	pm_runtime_allow(&pdev->dev);
1271 	pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1272 	pm_runtime_use_autosuspend(&pdev->dev);
1273 	pm_runtime_put_autosuspend(&pdev->dev);
1274 
1275 	return 0;
1276 }
1277 
1278 static void nhi_remove(struct pci_dev *pdev)
1279 {
1280 	struct tb *tb = pci_get_drvdata(pdev);
1281 	struct tb_nhi *nhi = tb->nhi;
1282 
1283 	pm_runtime_get_sync(&pdev->dev);
1284 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1285 	pm_runtime_forbid(&pdev->dev);
1286 
1287 	tb_domain_remove(tb);
1288 	nhi_shutdown(nhi);
1289 }
1290 
1291 /*
1292  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1293  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1294  * resume_noirq until we are done.
1295  */
1296 static const struct dev_pm_ops nhi_pm_ops = {
1297 	.suspend_noirq = nhi_suspend_noirq,
1298 	.resume_noirq = nhi_resume_noirq,
1299 	.freeze_noirq = nhi_freeze_noirq,  /*
1300 					    * we just disable hotplug, the
1301 					    * pci-tunnels stay alive.
1302 					    */
1303 	.thaw_noirq = nhi_thaw_noirq,
1304 	.restore_noirq = nhi_resume_noirq,
1305 	.suspend = nhi_suspend,
1306 	.poweroff_noirq = nhi_poweroff_noirq,
1307 	.poweroff = nhi_suspend,
1308 	.complete = nhi_complete,
1309 	.runtime_suspend = nhi_runtime_suspend,
1310 	.runtime_resume = nhi_runtime_resume,
1311 };
1312 
1313 static struct pci_device_id nhi_ids[] = {
1314 	/*
1315 	 * We have to specify class, the TB bridges use the same device and
1316 	 * vendor (sub)id on gen 1 and gen 2 controllers.
1317 	 */
1318 	{
1319 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1320 		.vendor = PCI_VENDOR_ID_INTEL,
1321 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1322 		.subvendor = 0x2222, .subdevice = 0x1111,
1323 	},
1324 	{
1325 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1326 		.vendor = PCI_VENDOR_ID_INTEL,
1327 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1328 		.subvendor = 0x2222, .subdevice = 0x1111,
1329 	},
1330 	{
1331 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1332 		.vendor = PCI_VENDOR_ID_INTEL,
1333 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1334 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1335 	},
1336 	{
1337 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1338 		.vendor = PCI_VENDOR_ID_INTEL,
1339 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1340 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1341 	},
1342 
1343 	/* Thunderbolt 3 */
1344 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1345 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1346 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1347 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1348 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1349 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1350 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1351 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1352 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1353 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1354 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1355 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1356 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1357 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1358 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1359 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1360 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1361 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1362 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1363 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1364 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1365 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1366 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1367 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1368 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1369 	  .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1370 
1371 	/* Any USB4 compliant host */
1372 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1373 
1374 	{ 0,}
1375 };
1376 
1377 MODULE_DEVICE_TABLE(pci, nhi_ids);
1378 MODULE_LICENSE("GPL");
1379 
1380 static struct pci_driver nhi_driver = {
1381 	.name = "thunderbolt",
1382 	.id_table = nhi_ids,
1383 	.probe = nhi_probe,
1384 	.remove = nhi_remove,
1385 	.shutdown = nhi_remove,
1386 	.driver.pm = &nhi_pm_ops,
1387 };
1388 
1389 static int __init nhi_init(void)
1390 {
1391 	int ret;
1392 
1393 	ret = tb_domain_init();
1394 	if (ret)
1395 		return ret;
1396 	ret = pci_register_driver(&nhi_driver);
1397 	if (ret)
1398 		tb_domain_exit();
1399 	return ret;
1400 }
1401 
1402 static void __exit nhi_unload(void)
1403 {
1404 	pci_unregister_driver(&nhi_driver);
1405 	tb_domain_exit();
1406 }
1407 
1408 rootfs_initcall(nhi_init);
1409 module_exit(nhi_unload);
1410