1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - eeprom access 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/crc32.h> 10 #include <linux/delay.h> 11 #include <linux/property.h> 12 #include <linux/slab.h> 13 #include "tb.h" 14 15 /* 16 * tb_eeprom_ctl_write() - write control word 17 */ 18 static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) 19 { 20 return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1); 21 } 22 23 /* 24 * tb_eeprom_ctl_write() - read control word 25 */ 26 static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl) 27 { 28 return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + ROUTER_CS_4, 1); 29 } 30 31 enum tb_eeprom_transfer { 32 TB_EEPROM_IN, 33 TB_EEPROM_OUT, 34 }; 35 36 /* 37 * tb_eeprom_active - enable rom access 38 * 39 * WARNING: Always disable access after usage. Otherwise the controller will 40 * fail to reprobe. 41 */ 42 static int tb_eeprom_active(struct tb_switch *sw, bool enable) 43 { 44 struct tb_eeprom_ctl ctl; 45 int res = tb_eeprom_ctl_read(sw, &ctl); 46 if (res) 47 return res; 48 if (enable) { 49 ctl.bit_banging_enable = 1; 50 res = tb_eeprom_ctl_write(sw, &ctl); 51 if (res) 52 return res; 53 ctl.fl_cs = 0; 54 return tb_eeprom_ctl_write(sw, &ctl); 55 } else { 56 ctl.fl_cs = 1; 57 res = tb_eeprom_ctl_write(sw, &ctl); 58 if (res) 59 return res; 60 ctl.bit_banging_enable = 0; 61 return tb_eeprom_ctl_write(sw, &ctl); 62 } 63 } 64 65 /* 66 * tb_eeprom_transfer - transfer one bit 67 * 68 * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->fl_do. 69 * If TB_EEPROM_OUT is passed, then ctl->fl_di will be written. 70 */ 71 static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl, 72 enum tb_eeprom_transfer direction) 73 { 74 int res; 75 if (direction == TB_EEPROM_OUT) { 76 res = tb_eeprom_ctl_write(sw, ctl); 77 if (res) 78 return res; 79 } 80 ctl->fl_sk = 1; 81 res = tb_eeprom_ctl_write(sw, ctl); 82 if (res) 83 return res; 84 if (direction == TB_EEPROM_IN) { 85 res = tb_eeprom_ctl_read(sw, ctl); 86 if (res) 87 return res; 88 } 89 ctl->fl_sk = 0; 90 return tb_eeprom_ctl_write(sw, ctl); 91 } 92 93 /* 94 * tb_eeprom_out - write one byte to the bus 95 */ 96 static int tb_eeprom_out(struct tb_switch *sw, u8 val) 97 { 98 struct tb_eeprom_ctl ctl; 99 int i; 100 int res = tb_eeprom_ctl_read(sw, &ctl); 101 if (res) 102 return res; 103 for (i = 0; i < 8; i++) { 104 ctl.fl_di = val & 0x80; 105 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT); 106 if (res) 107 return res; 108 val <<= 1; 109 } 110 return 0; 111 } 112 113 /* 114 * tb_eeprom_in - read one byte from the bus 115 */ 116 static int tb_eeprom_in(struct tb_switch *sw, u8 *val) 117 { 118 struct tb_eeprom_ctl ctl; 119 int i; 120 int res = tb_eeprom_ctl_read(sw, &ctl); 121 if (res) 122 return res; 123 *val = 0; 124 for (i = 0; i < 8; i++) { 125 *val <<= 1; 126 res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN); 127 if (res) 128 return res; 129 *val |= ctl.fl_do; 130 } 131 return 0; 132 } 133 134 /* 135 * tb_eeprom_get_drom_offset - get drom offset within eeprom 136 */ 137 static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset) 138 { 139 struct tb_cap_plug_events cap; 140 int res; 141 142 if (!sw->cap_plug_events) { 143 tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n"); 144 return -ENODEV; 145 } 146 res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events, 147 sizeof(cap) / 4); 148 if (res) 149 return res; 150 151 if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) { 152 tb_sw_warn(sw, "no NVM\n"); 153 return -ENODEV; 154 } 155 156 if (cap.drom_offset > 0xffff) { 157 tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n", 158 cap.drom_offset); 159 return -ENXIO; 160 } 161 *offset = cap.drom_offset; 162 return 0; 163 } 164 165 /* 166 * tb_eeprom_read_n - read count bytes from offset into val 167 */ 168 static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val, 169 size_t count) 170 { 171 u16 drom_offset; 172 int i, res; 173 174 res = tb_eeprom_get_drom_offset(sw, &drom_offset); 175 if (res) 176 return res; 177 178 offset += drom_offset; 179 180 res = tb_eeprom_active(sw, true); 181 if (res) 182 return res; 183 res = tb_eeprom_out(sw, 3); 184 if (res) 185 return res; 186 res = tb_eeprom_out(sw, offset >> 8); 187 if (res) 188 return res; 189 res = tb_eeprom_out(sw, offset); 190 if (res) 191 return res; 192 for (i = 0; i < count; i++) { 193 res = tb_eeprom_in(sw, val + i); 194 if (res) 195 return res; 196 } 197 return tb_eeprom_active(sw, false); 198 } 199 200 static u8 tb_crc8(u8 *data, int len) 201 { 202 int i, j; 203 u8 val = 0xff; 204 for (i = 0; i < len; i++) { 205 val ^= data[i]; 206 for (j = 0; j < 8; j++) 207 val = (val << 1) ^ ((val & 0x80) ? 7 : 0); 208 } 209 return val; 210 } 211 212 static u32 tb_crc32(void *data, size_t len) 213 { 214 return ~__crc32c_le(~0, data, len); 215 } 216 217 #define TB_DROM_DATA_START 13 218 #define TB_DROM_HEADER_SIZE 22 219 #define USB4_DROM_HEADER_SIZE 16 220 221 struct tb_drom_header { 222 /* BYTE 0 */ 223 u8 uid_crc8; /* checksum for uid */ 224 /* BYTES 1-8 */ 225 u64 uid; 226 /* BYTES 9-12 */ 227 u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */ 228 /* BYTE 13 */ 229 u8 device_rom_revision; /* should be <= 1 */ 230 u16 data_len:12; 231 u8 reserved:4; 232 /* BYTES 16-21 - Only for TBT DROM, nonexistent in USB4 DROM */ 233 u16 vendor_id; 234 u16 model_id; 235 u8 model_rev; 236 u8 eeprom_rev; 237 } __packed; 238 239 enum tb_drom_entry_type { 240 /* force unsigned to prevent "one-bit signed bitfield" warning */ 241 TB_DROM_ENTRY_GENERIC = 0U, 242 TB_DROM_ENTRY_PORT, 243 }; 244 245 struct tb_drom_entry_header { 246 u8 len; 247 u8 index:6; 248 bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */ 249 enum tb_drom_entry_type type:1; 250 } __packed; 251 252 struct tb_drom_entry_generic { 253 struct tb_drom_entry_header header; 254 u8 data[]; 255 } __packed; 256 257 struct tb_drom_entry_port { 258 /* BYTES 0-1 */ 259 struct tb_drom_entry_header header; 260 /* BYTE 2 */ 261 u8 dual_link_port_rid:4; 262 u8 link_nr:1; 263 u8 unknown1:2; 264 bool has_dual_link_port:1; 265 266 /* BYTE 3 */ 267 u8 dual_link_port_nr:6; 268 u8 unknown2:2; 269 270 /* BYTES 4 - 5 TODO decode */ 271 u8 micro2:4; 272 u8 micro1:4; 273 u8 micro3; 274 275 /* BYTES 6-7, TODO: verify (find hardware that has these set) */ 276 u8 peer_port_rid:4; 277 u8 unknown3:3; 278 bool has_peer_port:1; 279 u8 peer_port_nr:6; 280 u8 unknown4:2; 281 } __packed; 282 283 /* USB4 product descriptor */ 284 struct tb_drom_entry_desc { 285 struct tb_drom_entry_header header; 286 u16 bcdUSBSpec; 287 u16 idVendor; 288 u16 idProduct; 289 u16 bcdProductFWRevision; 290 u32 TID; 291 u8 productHWRevision; 292 }; 293 294 /** 295 * tb_drom_read_uid_only() - Read UID directly from DROM 296 * @sw: Router whose UID to read 297 * @uid: UID is placed here 298 * 299 * Does not use the cached copy in sw->drom. Used during resume to check switch 300 * identity. 301 */ 302 int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid) 303 { 304 u8 data[9]; 305 u8 crc; 306 int res; 307 308 /* read uid */ 309 res = tb_eeprom_read_n(sw, 0, data, 9); 310 if (res) 311 return res; 312 313 crc = tb_crc8(data + 1, 8); 314 if (crc != data[0]) { 315 tb_sw_warn(sw, "uid crc8 mismatch (expected: %#x, got: %#x)\n", 316 data[0], crc); 317 return -EIO; 318 } 319 320 *uid = *(u64 *)(data+1); 321 return 0; 322 } 323 324 static int tb_drom_parse_entry_generic(struct tb_switch *sw, 325 struct tb_drom_entry_header *header) 326 { 327 const struct tb_drom_entry_generic *entry = 328 (const struct tb_drom_entry_generic *)header; 329 330 switch (header->index) { 331 case 1: 332 /* Length includes 2 bytes header so remove it before copy */ 333 sw->vendor_name = kstrndup(entry->data, 334 header->len - sizeof(*header), GFP_KERNEL); 335 if (!sw->vendor_name) 336 return -ENOMEM; 337 break; 338 339 case 2: 340 sw->device_name = kstrndup(entry->data, 341 header->len - sizeof(*header), GFP_KERNEL); 342 if (!sw->device_name) 343 return -ENOMEM; 344 break; 345 case 9: { 346 const struct tb_drom_entry_desc *desc = 347 (const struct tb_drom_entry_desc *)entry; 348 349 if (!sw->vendor && !sw->device) { 350 sw->vendor = desc->idVendor; 351 sw->device = desc->idProduct; 352 } 353 break; 354 } 355 } 356 357 return 0; 358 } 359 360 static int tb_drom_parse_entry_port(struct tb_switch *sw, 361 struct tb_drom_entry_header *header) 362 { 363 struct tb_port *port; 364 int res; 365 enum tb_port_type type; 366 367 /* 368 * Some DROMs list more ports than the controller actually has 369 * so we skip those but allow the parser to continue. 370 */ 371 if (header->index > sw->config.max_port_number) { 372 dev_info_once(&sw->dev, "ignoring unnecessary extra entries in DROM\n"); 373 return 0; 374 } 375 376 port = &sw->ports[header->index]; 377 port->disabled = header->port_disabled; 378 if (port->disabled) 379 return 0; 380 381 res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1); 382 if (res) 383 return res; 384 type &= 0xffffff; 385 386 if (type == TB_TYPE_PORT) { 387 struct tb_drom_entry_port *entry = (void *) header; 388 if (header->len != sizeof(*entry)) { 389 tb_sw_warn(sw, 390 "port entry has size %#x (expected %#zx)\n", 391 header->len, sizeof(struct tb_drom_entry_port)); 392 return -EIO; 393 } 394 port->link_nr = entry->link_nr; 395 if (entry->has_dual_link_port) 396 port->dual_link_port = 397 &port->sw->ports[entry->dual_link_port_nr]; 398 } 399 return 0; 400 } 401 402 /* 403 * tb_drom_parse_entries - parse the linked list of drom entries 404 * 405 * Drom must have been copied to sw->drom. 406 */ 407 static int tb_drom_parse_entries(struct tb_switch *sw, size_t header_size) 408 { 409 struct tb_drom_header *header = (void *) sw->drom; 410 u16 pos = header_size; 411 u16 drom_size = header->data_len + TB_DROM_DATA_START; 412 int res; 413 414 while (pos < drom_size) { 415 struct tb_drom_entry_header *entry = (void *) (sw->drom + pos); 416 if (pos + 1 == drom_size || pos + entry->len > drom_size 417 || !entry->len) { 418 tb_sw_warn(sw, "DROM buffer overrun\n"); 419 return -EIO; 420 } 421 422 switch (entry->type) { 423 case TB_DROM_ENTRY_GENERIC: 424 res = tb_drom_parse_entry_generic(sw, entry); 425 break; 426 case TB_DROM_ENTRY_PORT: 427 res = tb_drom_parse_entry_port(sw, entry); 428 break; 429 } 430 if (res) 431 return res; 432 433 pos += entry->len; 434 } 435 return 0; 436 } 437 438 /* 439 * tb_drom_copy_efi - copy drom supplied by EFI to sw->drom if present 440 */ 441 static int tb_drom_copy_efi(struct tb_switch *sw, u16 *size) 442 { 443 struct device *dev = &sw->tb->nhi->pdev->dev; 444 int len, res; 445 446 len = device_property_count_u8(dev, "ThunderboltDROM"); 447 if (len < 0 || len < sizeof(struct tb_drom_header)) 448 return -EINVAL; 449 450 sw->drom = kmalloc(len, GFP_KERNEL); 451 if (!sw->drom) 452 return -ENOMEM; 453 454 res = device_property_read_u8_array(dev, "ThunderboltDROM", sw->drom, 455 len); 456 if (res) 457 goto err; 458 459 *size = ((struct tb_drom_header *)sw->drom)->data_len + 460 TB_DROM_DATA_START; 461 if (*size > len) 462 goto err; 463 464 return 0; 465 466 err: 467 kfree(sw->drom); 468 sw->drom = NULL; 469 return -EINVAL; 470 } 471 472 static int tb_drom_copy_nvm(struct tb_switch *sw, u16 *size) 473 { 474 u16 drom_offset; 475 int ret; 476 477 if (!sw->dma_port) 478 return -ENODEV; 479 480 ret = tb_eeprom_get_drom_offset(sw, &drom_offset); 481 if (ret) 482 return ret; 483 484 if (!drom_offset) 485 return -ENODEV; 486 487 ret = dma_port_flash_read(sw->dma_port, drom_offset + 14, size, 488 sizeof(*size)); 489 if (ret) 490 return ret; 491 492 /* Size includes CRC8 + UID + CRC32 */ 493 *size += 1 + 8 + 4; 494 sw->drom = kzalloc(*size, GFP_KERNEL); 495 if (!sw->drom) 496 return -ENOMEM; 497 498 ret = dma_port_flash_read(sw->dma_port, drom_offset, sw->drom, *size); 499 if (ret) 500 goto err_free; 501 502 /* 503 * Read UID from the minimal DROM because the one in NVM is just 504 * a placeholder. 505 */ 506 tb_drom_read_uid_only(sw, &sw->uid); 507 return 0; 508 509 err_free: 510 kfree(sw->drom); 511 sw->drom = NULL; 512 return ret; 513 } 514 515 static int usb4_copy_drom(struct tb_switch *sw, u16 *size) 516 { 517 int ret; 518 519 ret = usb4_switch_drom_read(sw, 14, size, sizeof(*size)); 520 if (ret) 521 return ret; 522 523 /* Size includes CRC8 + UID + CRC32 */ 524 *size += 1 + 8 + 4; 525 sw->drom = kzalloc(*size, GFP_KERNEL); 526 if (!sw->drom) 527 return -ENOMEM; 528 529 ret = usb4_switch_drom_read(sw, 0, sw->drom, *size); 530 if (ret) { 531 kfree(sw->drom); 532 sw->drom = NULL; 533 } 534 535 return ret; 536 } 537 538 static int tb_drom_bit_bang(struct tb_switch *sw, u16 *size) 539 { 540 int ret; 541 542 ret = tb_eeprom_read_n(sw, 14, (u8 *)size, 2); 543 if (ret) 544 return ret; 545 546 *size &= 0x3ff; 547 *size += TB_DROM_DATA_START; 548 549 tb_sw_dbg(sw, "reading DROM (length: %#x)\n", *size); 550 if (*size < sizeof(struct tb_drom_header)) { 551 tb_sw_warn(sw, "DROM too small, aborting\n"); 552 return -EIO; 553 } 554 555 sw->drom = kzalloc(*size, GFP_KERNEL); 556 if (!sw->drom) 557 return -ENOMEM; 558 559 ret = tb_eeprom_read_n(sw, 0, sw->drom, *size); 560 if (ret) 561 goto err; 562 563 return 0; 564 565 err: 566 kfree(sw->drom); 567 sw->drom = NULL; 568 return ret; 569 } 570 571 static int tb_drom_parse_v1(struct tb_switch *sw) 572 { 573 const struct tb_drom_header *header = 574 (const struct tb_drom_header *)sw->drom; 575 u32 crc; 576 577 crc = tb_crc8((u8 *) &header->uid, 8); 578 if (crc != header->uid_crc8) { 579 tb_sw_warn(sw, 580 "DROM UID CRC8 mismatch (expected: %#x, got: %#x)\n", 581 header->uid_crc8, crc); 582 return -EIO; 583 } 584 if (!sw->uid) 585 sw->uid = header->uid; 586 sw->vendor = header->vendor_id; 587 sw->device = header->model_id; 588 589 crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len); 590 if (crc != header->data_crc32) { 591 tb_sw_warn(sw, 592 "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n", 593 header->data_crc32, crc); 594 } 595 596 return tb_drom_parse_entries(sw, TB_DROM_HEADER_SIZE); 597 } 598 599 static int usb4_drom_parse(struct tb_switch *sw) 600 { 601 const struct tb_drom_header *header = 602 (const struct tb_drom_header *)sw->drom; 603 u32 crc; 604 605 crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len); 606 if (crc != header->data_crc32) { 607 tb_sw_warn(sw, 608 "DROM data CRC32 mismatch (expected: %#x, got: %#x), continuing\n", 609 header->data_crc32, crc); 610 } 611 612 return tb_drom_parse_entries(sw, USB4_DROM_HEADER_SIZE); 613 } 614 615 static int tb_drom_parse(struct tb_switch *sw, u16 size) 616 { 617 const struct tb_drom_header *header = (const void *)sw->drom; 618 int ret; 619 620 if (header->data_len + TB_DROM_DATA_START != size) { 621 tb_sw_warn(sw, "DROM size mismatch\n"); 622 ret = -EIO; 623 goto err; 624 } 625 626 tb_sw_dbg(sw, "DROM version: %d\n", header->device_rom_revision); 627 628 switch (header->device_rom_revision) { 629 case 3: 630 ret = usb4_drom_parse(sw); 631 break; 632 default: 633 tb_sw_warn(sw, "DROM device_rom_revision %#x unknown\n", 634 header->device_rom_revision); 635 fallthrough; 636 case 1: 637 ret = tb_drom_parse_v1(sw); 638 break; 639 } 640 641 if (ret) { 642 tb_sw_warn(sw, "parsing DROM failed\n"); 643 goto err; 644 } 645 646 return 0; 647 648 err: 649 kfree(sw->drom); 650 sw->drom = NULL; 651 652 return ret; 653 } 654 655 static int tb_drom_host_read(struct tb_switch *sw) 656 { 657 u16 size; 658 659 if (tb_switch_is_usb4(sw)) { 660 usb4_switch_read_uid(sw, &sw->uid); 661 if (!usb4_copy_drom(sw, &size)) 662 return tb_drom_parse(sw, size); 663 } else { 664 if (!tb_drom_copy_efi(sw, &size)) 665 return tb_drom_parse(sw, size); 666 667 if (!tb_drom_copy_nvm(sw, &size)) 668 return tb_drom_parse(sw, size); 669 670 tb_drom_read_uid_only(sw, &sw->uid); 671 } 672 673 return 0; 674 } 675 676 static int tb_drom_device_read(struct tb_switch *sw) 677 { 678 u16 size; 679 int ret; 680 681 if (tb_switch_is_usb4(sw)) { 682 usb4_switch_read_uid(sw, &sw->uid); 683 ret = usb4_copy_drom(sw, &size); 684 } else { 685 ret = tb_drom_bit_bang(sw, &size); 686 } 687 688 if (ret) 689 return ret; 690 691 return tb_drom_parse(sw, size); 692 } 693 694 /** 695 * tb_drom_read() - Copy DROM to sw->drom and parse it 696 * @sw: Router whose DROM to read and parse 697 * 698 * This function reads router DROM and if successful parses the entries and 699 * populates the fields in @sw accordingly. Can be called for any router 700 * generation. 701 * 702 * Returns %0 in case of success and negative errno otherwise. 703 */ 704 int tb_drom_read(struct tb_switch *sw) 705 { 706 if (sw->drom) 707 return 0; 708 709 if (!tb_route(sw)) 710 return tb_drom_host_read(sw); 711 return tb_drom_device_read(sw); 712 } 713