xref: /linux/drivers/thunderbolt/eeprom.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Thunderbolt Cactus Ridge driver - eeprom access
3  *
4  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
5  */
6 
7 #include <linux/crc32.h>
8 #include <linux/slab.h>
9 #include "tb.h"
10 
11 /**
12  * tb_eeprom_ctl_write() - write control word
13  */
14 static int tb_eeprom_ctl_write(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
15 {
16 	return tb_sw_write(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
17 }
18 
19 /**
20  * tb_eeprom_ctl_write() - read control word
21  */
22 static int tb_eeprom_ctl_read(struct tb_switch *sw, struct tb_eeprom_ctl *ctl)
23 {
24 	return tb_sw_read(sw, ctl, TB_CFG_SWITCH, sw->cap_plug_events + 4, 1);
25 }
26 
27 enum tb_eeprom_transfer {
28 	TB_EEPROM_IN,
29 	TB_EEPROM_OUT,
30 };
31 
32 /**
33  * tb_eeprom_active - enable rom access
34  *
35  * WARNING: Always disable access after usage. Otherwise the controller will
36  * fail to reprobe.
37  */
38 static int tb_eeprom_active(struct tb_switch *sw, bool enable)
39 {
40 	struct tb_eeprom_ctl ctl;
41 	int res = tb_eeprom_ctl_read(sw, &ctl);
42 	if (res)
43 		return res;
44 	if (enable) {
45 		ctl.access_high = 1;
46 		res = tb_eeprom_ctl_write(sw, &ctl);
47 		if (res)
48 			return res;
49 		ctl.access_low = 0;
50 		return tb_eeprom_ctl_write(sw, &ctl);
51 	} else {
52 		ctl.access_low = 1;
53 		res = tb_eeprom_ctl_write(sw, &ctl);
54 		if (res)
55 			return res;
56 		ctl.access_high = 0;
57 		return tb_eeprom_ctl_write(sw, &ctl);
58 	}
59 }
60 
61 /**
62  * tb_eeprom_transfer - transfer one bit
63  *
64  * If TB_EEPROM_IN is passed, then the bit can be retrieved from ctl->data_in.
65  * If TB_EEPROM_OUT is passed, then ctl->data_out will be written.
66  */
67 static int tb_eeprom_transfer(struct tb_switch *sw, struct tb_eeprom_ctl *ctl,
68 			      enum tb_eeprom_transfer direction)
69 {
70 	int res;
71 	if (direction == TB_EEPROM_OUT) {
72 		res = tb_eeprom_ctl_write(sw, ctl);
73 		if (res)
74 			return res;
75 	}
76 	ctl->clock = 1;
77 	res = tb_eeprom_ctl_write(sw, ctl);
78 	if (res)
79 		return res;
80 	if (direction == TB_EEPROM_IN) {
81 		res = tb_eeprom_ctl_read(sw, ctl);
82 		if (res)
83 			return res;
84 	}
85 	ctl->clock = 0;
86 	return tb_eeprom_ctl_write(sw, ctl);
87 }
88 
89 /**
90  * tb_eeprom_out - write one byte to the bus
91  */
92 static int tb_eeprom_out(struct tb_switch *sw, u8 val)
93 {
94 	struct tb_eeprom_ctl ctl;
95 	int i;
96 	int res = tb_eeprom_ctl_read(sw, &ctl);
97 	if (res)
98 		return res;
99 	for (i = 0; i < 8; i++) {
100 		ctl.data_out = val & 0x80;
101 		res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_OUT);
102 		if (res)
103 			return res;
104 		val <<= 1;
105 	}
106 	return 0;
107 }
108 
109 /**
110  * tb_eeprom_in - read one byte from the bus
111  */
112 static int tb_eeprom_in(struct tb_switch *sw, u8 *val)
113 {
114 	struct tb_eeprom_ctl ctl;
115 	int i;
116 	int res = tb_eeprom_ctl_read(sw, &ctl);
117 	if (res)
118 		return res;
119 	*val = 0;
120 	for (i = 0; i < 8; i++) {
121 		*val <<= 1;
122 		res = tb_eeprom_transfer(sw, &ctl, TB_EEPROM_IN);
123 		if (res)
124 			return res;
125 		*val |= ctl.data_in;
126 	}
127 	return 0;
128 }
129 
130 /**
131  * tb_eeprom_read_n - read count bytes from offset into val
132  */
133 static int tb_eeprom_read_n(struct tb_switch *sw, u16 offset, u8 *val,
134 		size_t count)
135 {
136 	int i, res;
137 	res = tb_eeprom_active(sw, true);
138 	if (res)
139 		return res;
140 	res = tb_eeprom_out(sw, 3);
141 	if (res)
142 		return res;
143 	res = tb_eeprom_out(sw, offset >> 8);
144 	if (res)
145 		return res;
146 	res = tb_eeprom_out(sw, offset);
147 	if (res)
148 		return res;
149 	for (i = 0; i < count; i++) {
150 		res = tb_eeprom_in(sw, val + i);
151 		if (res)
152 			return res;
153 	}
154 	return tb_eeprom_active(sw, false);
155 }
156 
157 static u8 tb_crc8(u8 *data, int len)
158 {
159 	int i, j;
160 	u8 val = 0xff;
161 	for (i = 0; i < len; i++) {
162 		val ^= data[i];
163 		for (j = 0; j < 8; j++)
164 			val = (val << 1) ^ ((val & 0x80) ? 7 : 0);
165 	}
166 	return val;
167 }
168 
169 static u32 tb_crc32(void *data, size_t len)
170 {
171 	return ~__crc32c_le(~0, data, len);
172 }
173 
174 #define TB_DROM_DATA_START 13
175 struct tb_drom_header {
176 	/* BYTE 0 */
177 	u8 uid_crc8; /* checksum for uid */
178 	/* BYTES 1-8 */
179 	u64 uid;
180 	/* BYTES 9-12 */
181 	u32 data_crc32; /* checksum for data_len bytes starting at byte 13 */
182 	/* BYTE 13 */
183 	u8 device_rom_revision; /* should be <= 1 */
184 	u16 data_len:10;
185 	u8 __unknown1:6;
186 	/* BYTES 16-21 */
187 	u16 vendor_id;
188 	u16 model_id;
189 	u8 model_rev;
190 	u8 eeprom_rev;
191 } __packed;
192 
193 enum tb_drom_entry_type {
194 	/* force unsigned to prevent "one-bit signed bitfield" warning */
195 	TB_DROM_ENTRY_GENERIC = 0U,
196 	TB_DROM_ENTRY_PORT,
197 };
198 
199 struct tb_drom_entry_header {
200 	u8 len;
201 	u8 index:6;
202 	bool port_disabled:1; /* only valid if type is TB_DROM_ENTRY_PORT */
203 	enum tb_drom_entry_type type:1;
204 } __packed;
205 
206 struct tb_drom_entry_port {
207 	/* BYTES 0-1 */
208 	struct tb_drom_entry_header header;
209 	/* BYTE 2 */
210 	u8 dual_link_port_rid:4;
211 	u8 link_nr:1;
212 	u8 unknown1:2;
213 	bool has_dual_link_port:1;
214 
215 	/* BYTE 3 */
216 	u8 dual_link_port_nr:6;
217 	u8 unknown2:2;
218 
219 	/* BYTES 4 - 5 TODO decode */
220 	u8 micro2:4;
221 	u8 micro1:4;
222 	u8 micro3;
223 
224 	/* BYTES 6-7, TODO: verify (find hardware that has these set) */
225 	u8 peer_port_rid:4;
226 	u8 unknown3:3;
227 	bool has_peer_port:1;
228 	u8 peer_port_nr:6;
229 	u8 unknown4:2;
230 } __packed;
231 
232 
233 /**
234  * tb_eeprom_get_drom_offset - get drom offset within eeprom
235  */
236 static int tb_eeprom_get_drom_offset(struct tb_switch *sw, u16 *offset)
237 {
238 	struct tb_cap_plug_events cap;
239 	int res;
240 	if (!sw->cap_plug_events) {
241 		tb_sw_warn(sw, "no TB_CAP_PLUG_EVENTS, cannot read eeprom\n");
242 		return -ENOSYS;
243 	}
244 	res = tb_sw_read(sw, &cap, TB_CFG_SWITCH, sw->cap_plug_events,
245 			     sizeof(cap) / 4);
246 	if (res)
247 		return res;
248 
249 	if (!cap.eeprom_ctl.present || cap.eeprom_ctl.not_present) {
250 		tb_sw_warn(sw, "no NVM\n");
251 		return -ENOSYS;
252 	}
253 
254 	if (cap.drom_offset > 0xffff) {
255 		tb_sw_warn(sw, "drom offset is larger than 0xffff: %#x\n",
256 				cap.drom_offset);
257 		return -ENXIO;
258 	}
259 	*offset = cap.drom_offset;
260 	return 0;
261 }
262 
263 /**
264  * tb_drom_read_uid_only - read uid directly from drom
265  *
266  * Does not use the cached copy in sw->drom. Used during resume to check switch
267  * identity.
268  */
269 int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid)
270 {
271 	u8 data[9];
272 	u16 drom_offset;
273 	u8 crc;
274 	int res = tb_eeprom_get_drom_offset(sw, &drom_offset);
275 	if (res)
276 		return res;
277 
278 	/* read uid */
279 	res = tb_eeprom_read_n(sw, drom_offset, data, 9);
280 	if (res)
281 		return res;
282 
283 	crc = tb_crc8(data + 1, 8);
284 	if (crc != data[0]) {
285 		tb_sw_warn(sw, "uid crc8 missmatch (expected: %#x, got: %#x)\n",
286 				data[0], crc);
287 		return -EIO;
288 	}
289 
290 	*uid = *(u64 *)(data+1);
291 	return 0;
292 }
293 
294 static void tb_drom_parse_port_entry(struct tb_port *port,
295 		struct tb_drom_entry_port *entry)
296 {
297 	port->link_nr = entry->link_nr;
298 	if (entry->has_dual_link_port)
299 		port->dual_link_port =
300 				&port->sw->ports[entry->dual_link_port_nr];
301 }
302 
303 static int tb_drom_parse_entry(struct tb_switch *sw,
304 		struct tb_drom_entry_header *header)
305 {
306 	struct tb_port *port;
307 	int res;
308 	enum tb_port_type type;
309 
310 	if (header->type != TB_DROM_ENTRY_PORT)
311 		return 0;
312 
313 	port = &sw->ports[header->index];
314 	port->disabled = header->port_disabled;
315 	if (port->disabled)
316 		return 0;
317 
318 	res = tb_port_read(port, &type, TB_CFG_PORT, 2, 1);
319 	if (res)
320 		return res;
321 	type &= 0xffffff;
322 
323 	if (type == TB_TYPE_PORT) {
324 		struct tb_drom_entry_port *entry = (void *) header;
325 		if (header->len != sizeof(*entry)) {
326 			tb_sw_warn(sw,
327 				"port entry has size %#x (expected %#zx)\n",
328 				header->len, sizeof(struct tb_drom_entry_port));
329 			return -EIO;
330 		}
331 		tb_drom_parse_port_entry(port, entry);
332 	}
333 	return 0;
334 }
335 
336 /**
337  * tb_drom_parse_entries - parse the linked list of drom entries
338  *
339  * Drom must have been copied to sw->drom.
340  */
341 static int tb_drom_parse_entries(struct tb_switch *sw)
342 {
343 	struct tb_drom_header *header = (void *) sw->drom;
344 	u16 pos = sizeof(*header);
345 	u16 drom_size = header->data_len + TB_DROM_DATA_START;
346 
347 	while (pos < drom_size) {
348 		struct tb_drom_entry_header *entry = (void *) (sw->drom + pos);
349 		if (pos + 1 == drom_size || pos + entry->len > drom_size
350 				|| !entry->len) {
351 			tb_sw_warn(sw, "drom buffer overrun, aborting\n");
352 			return -EIO;
353 		}
354 
355 		tb_drom_parse_entry(sw, entry);
356 
357 		pos += entry->len;
358 	}
359 	return 0;
360 }
361 
362 /**
363  * tb_drom_read - copy drom to sw->drom and parse it
364  */
365 int tb_drom_read(struct tb_switch *sw)
366 {
367 	u16 drom_offset;
368 	u16 size;
369 	u32 crc;
370 	struct tb_drom_header *header;
371 	int res;
372 	if (sw->drom)
373 		return 0;
374 
375 	if (tb_route(sw) == 0) {
376 		/*
377 		 * The root switch contains only a dummy drom (header only,
378 		 * no entries). Hardcode the configuration here.
379 		 */
380 		tb_drom_read_uid_only(sw, &sw->uid);
381 
382 		sw->ports[1].link_nr = 0;
383 		sw->ports[2].link_nr = 1;
384 		sw->ports[1].dual_link_port = &sw->ports[2];
385 		sw->ports[2].dual_link_port = &sw->ports[1];
386 
387 		sw->ports[3].link_nr = 0;
388 		sw->ports[4].link_nr = 1;
389 		sw->ports[3].dual_link_port = &sw->ports[4];
390 		sw->ports[4].dual_link_port = &sw->ports[3];
391 
392 		/* Port 5 is inaccessible on this gen 1 controller */
393 		if (sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE)
394 			sw->ports[5].disabled = true;
395 
396 		return 0;
397 	}
398 
399 	res = tb_eeprom_get_drom_offset(sw, &drom_offset);
400 	if (res)
401 		return res;
402 
403 	res = tb_eeprom_read_n(sw, drom_offset + 14, (u8 *) &size, 2);
404 	if (res)
405 		return res;
406 	size &= 0x3ff;
407 	size += TB_DROM_DATA_START;
408 	tb_sw_info(sw, "reading drom (length: %#x)\n", size);
409 	if (size < sizeof(*header)) {
410 		tb_sw_warn(sw, "drom too small, aborting\n");
411 		return -EIO;
412 	}
413 
414 	sw->drom = kzalloc(size, GFP_KERNEL);
415 	if (!sw->drom)
416 		return -ENOMEM;
417 	res = tb_eeprom_read_n(sw, drom_offset, sw->drom, size);
418 	if (res)
419 		goto err;
420 
421 	header = (void *) sw->drom;
422 
423 	if (header->data_len + TB_DROM_DATA_START != size) {
424 		tb_sw_warn(sw, "drom size mismatch, aborting\n");
425 		goto err;
426 	}
427 
428 	crc = tb_crc8((u8 *) &header->uid, 8);
429 	if (crc != header->uid_crc8) {
430 		tb_sw_warn(sw,
431 			"drom uid crc8 mismatch (expected: %#x, got: %#x), aborting\n",
432 			header->uid_crc8, crc);
433 		goto err;
434 	}
435 	sw->uid = header->uid;
436 
437 	crc = tb_crc32(sw->drom + TB_DROM_DATA_START, header->data_len);
438 	if (crc != header->data_crc32) {
439 		tb_sw_warn(sw,
440 			"drom data crc32 mismatch (expected: %#x, got: %#x), aborting\n",
441 			header->data_crc32, crc);
442 		goto err;
443 	}
444 
445 	if (header->device_rom_revision > 1)
446 		tb_sw_warn(sw, "drom device_rom_revision %#x unknown\n",
447 			header->device_rom_revision);
448 
449 	return tb_drom_parse_entries(sw);
450 err:
451 	kfree(sw->drom);
452 	sw->drom = NULL;
453 	return -EIO;
454 
455 }
456