1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Thunderbolt driver - control channel and configuration commands 4 * 5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> 6 * Copyright (C) 2018, Intel Corporation 7 */ 8 9 #include <linux/crc32.h> 10 #include <linux/delay.h> 11 #include <linux/slab.h> 12 #include <linux/pci.h> 13 #include <linux/dmapool.h> 14 #include <linux/workqueue.h> 15 16 #include "ctl.h" 17 18 19 #define TB_CTL_RX_PKG_COUNT 10 20 #define TB_CTL_RETRIES 4 21 22 /** 23 * struct tb_ctl - Thunderbolt control channel 24 * @nhi: Pointer to the NHI structure 25 * @tx: Transmit ring 26 * @rx: Receive ring 27 * @frame_pool: DMA pool for control messages 28 * @rx_packets: Received control messages 29 * @request_queue_lock: Lock protecting @request_queue 30 * @request_queue: List of outstanding requests 31 * @running: Is the control channel running at the moment 32 * @callback: Callback called when hotplug message is received 33 * @callback_data: Data passed to @callback 34 */ 35 struct tb_ctl { 36 struct tb_nhi *nhi; 37 struct tb_ring *tx; 38 struct tb_ring *rx; 39 40 struct dma_pool *frame_pool; 41 struct ctl_pkg *rx_packets[TB_CTL_RX_PKG_COUNT]; 42 struct mutex request_queue_lock; 43 struct list_head request_queue; 44 bool running; 45 46 event_cb callback; 47 void *callback_data; 48 }; 49 50 51 #define tb_ctl_WARN(ctl, format, arg...) \ 52 dev_WARN(&(ctl)->nhi->pdev->dev, format, ## arg) 53 54 #define tb_ctl_err(ctl, format, arg...) \ 55 dev_err(&(ctl)->nhi->pdev->dev, format, ## arg) 56 57 #define tb_ctl_warn(ctl, format, arg...) \ 58 dev_warn(&(ctl)->nhi->pdev->dev, format, ## arg) 59 60 #define tb_ctl_info(ctl, format, arg...) \ 61 dev_info(&(ctl)->nhi->pdev->dev, format, ## arg) 62 63 #define tb_ctl_dbg(ctl, format, arg...) \ 64 dev_dbg(&(ctl)->nhi->pdev->dev, format, ## arg) 65 66 static DECLARE_WAIT_QUEUE_HEAD(tb_cfg_request_cancel_queue); 67 /* Serializes access to request kref_get/put */ 68 static DEFINE_MUTEX(tb_cfg_request_lock); 69 70 /** 71 * tb_cfg_request_alloc() - Allocates a new config request 72 * 73 * This is refcounted object so when you are done with this, call 74 * tb_cfg_request_put() to it. 75 */ 76 struct tb_cfg_request *tb_cfg_request_alloc(void) 77 { 78 struct tb_cfg_request *req; 79 80 req = kzalloc(sizeof(*req), GFP_KERNEL); 81 if (!req) 82 return NULL; 83 84 kref_init(&req->kref); 85 86 return req; 87 } 88 89 /** 90 * tb_cfg_request_get() - Increase refcount of a request 91 * @req: Request whose refcount is increased 92 */ 93 void tb_cfg_request_get(struct tb_cfg_request *req) 94 { 95 mutex_lock(&tb_cfg_request_lock); 96 kref_get(&req->kref); 97 mutex_unlock(&tb_cfg_request_lock); 98 } 99 100 static void tb_cfg_request_destroy(struct kref *kref) 101 { 102 struct tb_cfg_request *req = container_of(kref, typeof(*req), kref); 103 104 kfree(req); 105 } 106 107 /** 108 * tb_cfg_request_put() - Decrease refcount and possibly release the request 109 * @req: Request whose refcount is decreased 110 * 111 * Call this function when you are done with the request. When refcount 112 * goes to %0 the object is released. 113 */ 114 void tb_cfg_request_put(struct tb_cfg_request *req) 115 { 116 mutex_lock(&tb_cfg_request_lock); 117 kref_put(&req->kref, tb_cfg_request_destroy); 118 mutex_unlock(&tb_cfg_request_lock); 119 } 120 121 static int tb_cfg_request_enqueue(struct tb_ctl *ctl, 122 struct tb_cfg_request *req) 123 { 124 WARN_ON(test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags)); 125 WARN_ON(req->ctl); 126 127 mutex_lock(&ctl->request_queue_lock); 128 if (!ctl->running) { 129 mutex_unlock(&ctl->request_queue_lock); 130 return -ENOTCONN; 131 } 132 req->ctl = ctl; 133 list_add_tail(&req->list, &ctl->request_queue); 134 set_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); 135 mutex_unlock(&ctl->request_queue_lock); 136 return 0; 137 } 138 139 static void tb_cfg_request_dequeue(struct tb_cfg_request *req) 140 { 141 struct tb_ctl *ctl = req->ctl; 142 143 mutex_lock(&ctl->request_queue_lock); 144 list_del(&req->list); 145 clear_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); 146 if (test_bit(TB_CFG_REQUEST_CANCELED, &req->flags)) 147 wake_up(&tb_cfg_request_cancel_queue); 148 mutex_unlock(&ctl->request_queue_lock); 149 } 150 151 static bool tb_cfg_request_is_active(struct tb_cfg_request *req) 152 { 153 return test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags); 154 } 155 156 static struct tb_cfg_request * 157 tb_cfg_request_find(struct tb_ctl *ctl, struct ctl_pkg *pkg) 158 { 159 struct tb_cfg_request *req; 160 bool found = false; 161 162 mutex_lock(&pkg->ctl->request_queue_lock); 163 list_for_each_entry(req, &pkg->ctl->request_queue, list) { 164 tb_cfg_request_get(req); 165 if (req->match(req, pkg)) { 166 found = true; 167 break; 168 } 169 tb_cfg_request_put(req); 170 } 171 mutex_unlock(&pkg->ctl->request_queue_lock); 172 173 return found ? req : NULL; 174 } 175 176 /* utility functions */ 177 178 179 static int check_header(const struct ctl_pkg *pkg, u32 len, 180 enum tb_cfg_pkg_type type, u64 route) 181 { 182 struct tb_cfg_header *header = pkg->buffer; 183 184 /* check frame, TODO: frame flags */ 185 if (WARN(len != pkg->frame.size, 186 "wrong framesize (expected %#x, got %#x)\n", 187 len, pkg->frame.size)) 188 return -EIO; 189 if (WARN(type != pkg->frame.eof, "wrong eof (expected %#x, got %#x)\n", 190 type, pkg->frame.eof)) 191 return -EIO; 192 if (WARN(pkg->frame.sof, "wrong sof (expected 0x0, got %#x)\n", 193 pkg->frame.sof)) 194 return -EIO; 195 196 /* check header */ 197 if (WARN(header->unknown != 1 << 9, 198 "header->unknown is %#x\n", header->unknown)) 199 return -EIO; 200 if (WARN(route != tb_cfg_get_route(header), 201 "wrong route (expected %llx, got %llx)", 202 route, tb_cfg_get_route(header))) 203 return -EIO; 204 return 0; 205 } 206 207 static int check_config_address(struct tb_cfg_address addr, 208 enum tb_cfg_space space, u32 offset, 209 u32 length) 210 { 211 if (WARN(addr.zero, "addr.zero is %#x\n", addr.zero)) 212 return -EIO; 213 if (WARN(space != addr.space, "wrong space (expected %x, got %x\n)", 214 space, addr.space)) 215 return -EIO; 216 if (WARN(offset != addr.offset, "wrong offset (expected %x, got %x\n)", 217 offset, addr.offset)) 218 return -EIO; 219 if (WARN(length != addr.length, "wrong space (expected %x, got %x\n)", 220 length, addr.length)) 221 return -EIO; 222 /* 223 * We cannot check addr->port as it is set to the upstream port of the 224 * sender. 225 */ 226 return 0; 227 } 228 229 static struct tb_cfg_result decode_error(const struct ctl_pkg *response) 230 { 231 struct cfg_error_pkg *pkg = response->buffer; 232 struct tb_ctl *ctl = response->ctl; 233 struct tb_cfg_result res = { 0 }; 234 res.response_route = tb_cfg_get_route(&pkg->header); 235 res.response_port = 0; 236 res.err = check_header(response, sizeof(*pkg), TB_CFG_PKG_ERROR, 237 tb_cfg_get_route(&pkg->header)); 238 if (res.err) 239 return res; 240 241 if (pkg->zero1) 242 tb_ctl_warn(ctl, "pkg->zero1 is %#x\n", pkg->zero1); 243 if (pkg->zero2) 244 tb_ctl_warn(ctl, "pkg->zero2 is %#x\n", pkg->zero2); 245 if (pkg->zero3) 246 tb_ctl_warn(ctl, "pkg->zero3 is %#x\n", pkg->zero3); 247 248 res.err = 1; 249 res.tb_error = pkg->error; 250 res.response_port = pkg->port; 251 return res; 252 253 } 254 255 static struct tb_cfg_result parse_header(const struct ctl_pkg *pkg, u32 len, 256 enum tb_cfg_pkg_type type, u64 route) 257 { 258 struct tb_cfg_header *header = pkg->buffer; 259 struct tb_cfg_result res = { 0 }; 260 261 if (pkg->frame.eof == TB_CFG_PKG_ERROR) 262 return decode_error(pkg); 263 264 res.response_port = 0; /* will be updated later for cfg_read/write */ 265 res.response_route = tb_cfg_get_route(header); 266 res.err = check_header(pkg, len, type, route); 267 return res; 268 } 269 270 static void tb_cfg_print_error(struct tb_ctl *ctl, 271 const struct tb_cfg_result *res) 272 { 273 WARN_ON(res->err != 1); 274 switch (res->tb_error) { 275 case TB_CFG_ERROR_PORT_NOT_CONNECTED: 276 /* Port is not connected. This can happen during surprise 277 * removal. Do not warn. */ 278 return; 279 case TB_CFG_ERROR_INVALID_CONFIG_SPACE: 280 /* 281 * Invalid cfg_space/offset/length combination in 282 * cfg_read/cfg_write. 283 */ 284 tb_ctl_dbg(ctl, "%llx:%x: invalid config space or offset\n", 285 res->response_route, res->response_port); 286 return; 287 case TB_CFG_ERROR_NO_SUCH_PORT: 288 /* 289 * - The route contains a non-existent port. 290 * - The route contains a non-PHY port (e.g. PCIe). 291 * - The port in cfg_read/cfg_write does not exist. 292 */ 293 tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Invalid port\n", 294 res->response_route, res->response_port); 295 return; 296 case TB_CFG_ERROR_LOOP: 297 tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Route contains a loop\n", 298 res->response_route, res->response_port); 299 return; 300 case TB_CFG_ERROR_LOCK: 301 tb_ctl_warn(ctl, "%llx:%x: downstream port is locked\n", 302 res->response_route, res->response_port); 303 return; 304 default: 305 /* 5,6,7,9 and 11 are also valid error codes */ 306 tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Unknown error\n", 307 res->response_route, res->response_port); 308 return; 309 } 310 } 311 312 static __be32 tb_crc(const void *data, size_t len) 313 { 314 return cpu_to_be32(~__crc32c_le(~0, data, len)); 315 } 316 317 static void tb_ctl_pkg_free(struct ctl_pkg *pkg) 318 { 319 if (pkg) { 320 dma_pool_free(pkg->ctl->frame_pool, 321 pkg->buffer, pkg->frame.buffer_phy); 322 kfree(pkg); 323 } 324 } 325 326 static struct ctl_pkg *tb_ctl_pkg_alloc(struct tb_ctl *ctl) 327 { 328 struct ctl_pkg *pkg = kzalloc(sizeof(*pkg), GFP_KERNEL); 329 if (!pkg) 330 return NULL; 331 pkg->ctl = ctl; 332 pkg->buffer = dma_pool_alloc(ctl->frame_pool, GFP_KERNEL, 333 &pkg->frame.buffer_phy); 334 if (!pkg->buffer) { 335 kfree(pkg); 336 return NULL; 337 } 338 return pkg; 339 } 340 341 342 /* RX/TX handling */ 343 344 static void tb_ctl_tx_callback(struct tb_ring *ring, struct ring_frame *frame, 345 bool canceled) 346 { 347 struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame); 348 tb_ctl_pkg_free(pkg); 349 } 350 351 /* 352 * tb_cfg_tx() - transmit a packet on the control channel 353 * 354 * len must be a multiple of four. 355 * 356 * Return: Returns 0 on success or an error code on failure. 357 */ 358 static int tb_ctl_tx(struct tb_ctl *ctl, const void *data, size_t len, 359 enum tb_cfg_pkg_type type) 360 { 361 int res; 362 struct ctl_pkg *pkg; 363 if (len % 4 != 0) { /* required for le->be conversion */ 364 tb_ctl_WARN(ctl, "TX: invalid size: %zu\n", len); 365 return -EINVAL; 366 } 367 if (len > TB_FRAME_SIZE - 4) { /* checksum is 4 bytes */ 368 tb_ctl_WARN(ctl, "TX: packet too large: %zu/%d\n", 369 len, TB_FRAME_SIZE - 4); 370 return -EINVAL; 371 } 372 pkg = tb_ctl_pkg_alloc(ctl); 373 if (!pkg) 374 return -ENOMEM; 375 pkg->frame.callback = tb_ctl_tx_callback; 376 pkg->frame.size = len + 4; 377 pkg->frame.sof = type; 378 pkg->frame.eof = type; 379 cpu_to_be32_array(pkg->buffer, data, len / 4); 380 *(__be32 *) (pkg->buffer + len) = tb_crc(pkg->buffer, len); 381 382 res = tb_ring_tx(ctl->tx, &pkg->frame); 383 if (res) /* ring is stopped */ 384 tb_ctl_pkg_free(pkg); 385 return res; 386 } 387 388 /* 389 * tb_ctl_handle_event() - acknowledge a plug event, invoke ctl->callback 390 */ 391 static bool tb_ctl_handle_event(struct tb_ctl *ctl, enum tb_cfg_pkg_type type, 392 struct ctl_pkg *pkg, size_t size) 393 { 394 return ctl->callback(ctl->callback_data, type, pkg->buffer, size); 395 } 396 397 static void tb_ctl_rx_submit(struct ctl_pkg *pkg) 398 { 399 tb_ring_rx(pkg->ctl->rx, &pkg->frame); /* 400 * We ignore failures during stop. 401 * All rx packets are referenced 402 * from ctl->rx_packets, so we do 403 * not loose them. 404 */ 405 } 406 407 static int tb_async_error(const struct ctl_pkg *pkg) 408 { 409 const struct cfg_error_pkg *error = (const struct cfg_error_pkg *)pkg; 410 411 if (pkg->frame.eof != TB_CFG_PKG_ERROR) 412 return false; 413 414 switch (error->error) { 415 case TB_CFG_ERROR_LINK_ERROR: 416 case TB_CFG_ERROR_HEC_ERROR_DETECTED: 417 case TB_CFG_ERROR_FLOW_CONTROL_ERROR: 418 return true; 419 420 default: 421 return false; 422 } 423 } 424 425 static void tb_ctl_rx_callback(struct tb_ring *ring, struct ring_frame *frame, 426 bool canceled) 427 { 428 struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame); 429 struct tb_cfg_request *req; 430 __be32 crc32; 431 432 if (canceled) 433 return; /* 434 * ring is stopped, packet is referenced from 435 * ctl->rx_packets. 436 */ 437 438 if (frame->size < 4 || frame->size % 4 != 0) { 439 tb_ctl_err(pkg->ctl, "RX: invalid size %#x, dropping packet\n", 440 frame->size); 441 goto rx; 442 } 443 444 frame->size -= 4; /* remove checksum */ 445 crc32 = tb_crc(pkg->buffer, frame->size); 446 be32_to_cpu_array(pkg->buffer, pkg->buffer, frame->size / 4); 447 448 switch (frame->eof) { 449 case TB_CFG_PKG_READ: 450 case TB_CFG_PKG_WRITE: 451 case TB_CFG_PKG_ERROR: 452 case TB_CFG_PKG_OVERRIDE: 453 case TB_CFG_PKG_RESET: 454 if (*(__be32 *)(pkg->buffer + frame->size) != crc32) { 455 tb_ctl_err(pkg->ctl, 456 "RX: checksum mismatch, dropping packet\n"); 457 goto rx; 458 } 459 if (tb_async_error(pkg)) { 460 tb_ctl_handle_event(pkg->ctl, frame->eof, 461 pkg, frame->size); 462 goto rx; 463 } 464 break; 465 466 case TB_CFG_PKG_EVENT: 467 case TB_CFG_PKG_XDOMAIN_RESP: 468 case TB_CFG_PKG_XDOMAIN_REQ: 469 if (*(__be32 *)(pkg->buffer + frame->size) != crc32) { 470 tb_ctl_err(pkg->ctl, 471 "RX: checksum mismatch, dropping packet\n"); 472 goto rx; 473 } 474 fallthrough; 475 case TB_CFG_PKG_ICM_EVENT: 476 if (tb_ctl_handle_event(pkg->ctl, frame->eof, pkg, frame->size)) 477 goto rx; 478 break; 479 480 default: 481 break; 482 } 483 484 /* 485 * The received packet will be processed only if there is an 486 * active request and that the packet is what is expected. This 487 * prevents packets such as replies coming after timeout has 488 * triggered from messing with the active requests. 489 */ 490 req = tb_cfg_request_find(pkg->ctl, pkg); 491 if (req) { 492 if (req->copy(req, pkg)) 493 schedule_work(&req->work); 494 tb_cfg_request_put(req); 495 } 496 497 rx: 498 tb_ctl_rx_submit(pkg); 499 } 500 501 static void tb_cfg_request_work(struct work_struct *work) 502 { 503 struct tb_cfg_request *req = container_of(work, typeof(*req), work); 504 505 if (!test_bit(TB_CFG_REQUEST_CANCELED, &req->flags)) 506 req->callback(req->callback_data); 507 508 tb_cfg_request_dequeue(req); 509 tb_cfg_request_put(req); 510 } 511 512 /** 513 * tb_cfg_request() - Start control request not waiting for it to complete 514 * @ctl: Control channel to use 515 * @req: Request to start 516 * @callback: Callback called when the request is completed 517 * @callback_data: Data to be passed to @callback 518 * 519 * This queues @req on the given control channel without waiting for it 520 * to complete. When the request completes @callback is called. 521 */ 522 int tb_cfg_request(struct tb_ctl *ctl, struct tb_cfg_request *req, 523 void (*callback)(void *), void *callback_data) 524 { 525 int ret; 526 527 req->flags = 0; 528 req->callback = callback; 529 req->callback_data = callback_data; 530 INIT_WORK(&req->work, tb_cfg_request_work); 531 INIT_LIST_HEAD(&req->list); 532 533 tb_cfg_request_get(req); 534 ret = tb_cfg_request_enqueue(ctl, req); 535 if (ret) 536 goto err_put; 537 538 ret = tb_ctl_tx(ctl, req->request, req->request_size, 539 req->request_type); 540 if (ret) 541 goto err_dequeue; 542 543 if (!req->response) 544 schedule_work(&req->work); 545 546 return 0; 547 548 err_dequeue: 549 tb_cfg_request_dequeue(req); 550 err_put: 551 tb_cfg_request_put(req); 552 553 return ret; 554 } 555 556 /** 557 * tb_cfg_request_cancel() - Cancel a control request 558 * @req: Request to cancel 559 * @err: Error to assign to the request 560 * 561 * This function can be used to cancel ongoing request. It will wait 562 * until the request is not active anymore. 563 */ 564 void tb_cfg_request_cancel(struct tb_cfg_request *req, int err) 565 { 566 set_bit(TB_CFG_REQUEST_CANCELED, &req->flags); 567 schedule_work(&req->work); 568 wait_event(tb_cfg_request_cancel_queue, !tb_cfg_request_is_active(req)); 569 req->result.err = err; 570 } 571 572 static void tb_cfg_request_complete(void *data) 573 { 574 complete(data); 575 } 576 577 /** 578 * tb_cfg_request_sync() - Start control request and wait until it completes 579 * @ctl: Control channel to use 580 * @req: Request to start 581 * @timeout_msec: Timeout how long to wait @req to complete 582 * 583 * Starts a control request and waits until it completes. If timeout 584 * triggers the request is canceled before function returns. Note the 585 * caller needs to make sure only one message for given switch is active 586 * at a time. 587 */ 588 struct tb_cfg_result tb_cfg_request_sync(struct tb_ctl *ctl, 589 struct tb_cfg_request *req, 590 int timeout_msec) 591 { 592 unsigned long timeout = msecs_to_jiffies(timeout_msec); 593 struct tb_cfg_result res = { 0 }; 594 DECLARE_COMPLETION_ONSTACK(done); 595 int ret; 596 597 ret = tb_cfg_request(ctl, req, tb_cfg_request_complete, &done); 598 if (ret) { 599 res.err = ret; 600 return res; 601 } 602 603 if (!wait_for_completion_timeout(&done, timeout)) 604 tb_cfg_request_cancel(req, -ETIMEDOUT); 605 606 flush_work(&req->work); 607 608 return req->result; 609 } 610 611 /* public interface, alloc/start/stop/free */ 612 613 /** 614 * tb_ctl_alloc() - allocate a control channel 615 * @nhi: Pointer to NHI 616 * @cb: Callback called for plug events 617 * @cb_data: Data passed to @cb 618 * 619 * cb will be invoked once for every hot plug event. 620 * 621 * Return: Returns a pointer on success or NULL on failure. 622 */ 623 struct tb_ctl *tb_ctl_alloc(struct tb_nhi *nhi, event_cb cb, void *cb_data) 624 { 625 int i; 626 struct tb_ctl *ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); 627 if (!ctl) 628 return NULL; 629 ctl->nhi = nhi; 630 ctl->callback = cb; 631 ctl->callback_data = cb_data; 632 633 mutex_init(&ctl->request_queue_lock); 634 INIT_LIST_HEAD(&ctl->request_queue); 635 ctl->frame_pool = dma_pool_create("thunderbolt_ctl", &nhi->pdev->dev, 636 TB_FRAME_SIZE, 4, 0); 637 if (!ctl->frame_pool) 638 goto err; 639 640 ctl->tx = tb_ring_alloc_tx(nhi, 0, 10, RING_FLAG_NO_SUSPEND); 641 if (!ctl->tx) 642 goto err; 643 644 ctl->rx = tb_ring_alloc_rx(nhi, 0, 10, RING_FLAG_NO_SUSPEND, 0, 0xffff, 645 0xffff, NULL, NULL); 646 if (!ctl->rx) 647 goto err; 648 649 for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) { 650 ctl->rx_packets[i] = tb_ctl_pkg_alloc(ctl); 651 if (!ctl->rx_packets[i]) 652 goto err; 653 ctl->rx_packets[i]->frame.callback = tb_ctl_rx_callback; 654 } 655 656 tb_ctl_dbg(ctl, "control channel created\n"); 657 return ctl; 658 err: 659 tb_ctl_free(ctl); 660 return NULL; 661 } 662 663 /** 664 * tb_ctl_free() - free a control channel 665 * @ctl: Control channel to free 666 * 667 * Must be called after tb_ctl_stop. 668 * 669 * Must NOT be called from ctl->callback. 670 */ 671 void tb_ctl_free(struct tb_ctl *ctl) 672 { 673 int i; 674 675 if (!ctl) 676 return; 677 678 if (ctl->rx) 679 tb_ring_free(ctl->rx); 680 if (ctl->tx) 681 tb_ring_free(ctl->tx); 682 683 /* free RX packets */ 684 for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) 685 tb_ctl_pkg_free(ctl->rx_packets[i]); 686 687 688 dma_pool_destroy(ctl->frame_pool); 689 kfree(ctl); 690 } 691 692 /** 693 * tb_cfg_start() - start/resume the control channel 694 * @ctl: Control channel to start 695 */ 696 void tb_ctl_start(struct tb_ctl *ctl) 697 { 698 int i; 699 tb_ctl_dbg(ctl, "control channel starting...\n"); 700 tb_ring_start(ctl->tx); /* is used to ack hotplug packets, start first */ 701 tb_ring_start(ctl->rx); 702 for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) 703 tb_ctl_rx_submit(ctl->rx_packets[i]); 704 705 ctl->running = true; 706 } 707 708 /** 709 * tb_ctrl_stop() - pause the control channel 710 * @ctl: Control channel to stop 711 * 712 * All invocations of ctl->callback will have finished after this method 713 * returns. 714 * 715 * Must NOT be called from ctl->callback. 716 */ 717 void tb_ctl_stop(struct tb_ctl *ctl) 718 { 719 mutex_lock(&ctl->request_queue_lock); 720 ctl->running = false; 721 mutex_unlock(&ctl->request_queue_lock); 722 723 tb_ring_stop(ctl->rx); 724 tb_ring_stop(ctl->tx); 725 726 if (!list_empty(&ctl->request_queue)) 727 tb_ctl_WARN(ctl, "dangling request in request_queue\n"); 728 INIT_LIST_HEAD(&ctl->request_queue); 729 tb_ctl_dbg(ctl, "control channel stopped\n"); 730 } 731 732 /* public interface, commands */ 733 734 /** 735 * tb_cfg_ack_plug() - Ack hot plug/unplug event 736 * @ctl: Control channel to use 737 * @route: Router that originated the event 738 * @port: Port where the hot plug/unplug happened 739 * @unplug: Ack hot plug or unplug 740 * 741 * Call this as response for hot plug/unplug event to ack it. 742 * Returns %0 on success or an error code on failure. 743 */ 744 int tb_cfg_ack_plug(struct tb_ctl *ctl, u64 route, u32 port, bool unplug) 745 { 746 struct cfg_error_pkg pkg = { 747 .header = tb_cfg_make_header(route), 748 .port = port, 749 .error = TB_CFG_ERROR_ACK_PLUG_EVENT, 750 .pg = unplug ? TB_CFG_ERROR_PG_HOT_UNPLUG 751 : TB_CFG_ERROR_PG_HOT_PLUG, 752 }; 753 tb_ctl_dbg(ctl, "acking hot %splug event on %llx:%x\n", 754 unplug ? "un" : "", route, port); 755 return tb_ctl_tx(ctl, &pkg, sizeof(pkg), TB_CFG_PKG_ERROR); 756 } 757 758 static bool tb_cfg_match(const struct tb_cfg_request *req, 759 const struct ctl_pkg *pkg) 760 { 761 u64 route = tb_cfg_get_route(pkg->buffer) & ~BIT_ULL(63); 762 763 if (pkg->frame.eof == TB_CFG_PKG_ERROR) 764 return true; 765 766 if (pkg->frame.eof != req->response_type) 767 return false; 768 if (route != tb_cfg_get_route(req->request)) 769 return false; 770 if (pkg->frame.size != req->response_size) 771 return false; 772 773 if (pkg->frame.eof == TB_CFG_PKG_READ || 774 pkg->frame.eof == TB_CFG_PKG_WRITE) { 775 const struct cfg_read_pkg *req_hdr = req->request; 776 const struct cfg_read_pkg *res_hdr = pkg->buffer; 777 778 if (req_hdr->addr.seq != res_hdr->addr.seq) 779 return false; 780 } 781 782 return true; 783 } 784 785 static bool tb_cfg_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg) 786 { 787 struct tb_cfg_result res; 788 789 /* Now make sure it is in expected format */ 790 res = parse_header(pkg, req->response_size, req->response_type, 791 tb_cfg_get_route(req->request)); 792 if (!res.err) 793 memcpy(req->response, pkg->buffer, req->response_size); 794 795 req->result = res; 796 797 /* Always complete when first response is received */ 798 return true; 799 } 800 801 /** 802 * tb_cfg_reset() - send a reset packet and wait for a response 803 * @ctl: Control channel pointer 804 * @route: Router string for the router to send reset 805 * @timeout_msec: Timeout in ms how long to wait for the response 806 * 807 * If the switch at route is incorrectly configured then we will not receive a 808 * reply (even though the switch will reset). The caller should check for 809 * -ETIMEDOUT and attempt to reconfigure the switch. 810 */ 811 struct tb_cfg_result tb_cfg_reset(struct tb_ctl *ctl, u64 route, 812 int timeout_msec) 813 { 814 struct cfg_reset_pkg request = { .header = tb_cfg_make_header(route) }; 815 struct tb_cfg_result res = { 0 }; 816 struct tb_cfg_header reply; 817 struct tb_cfg_request *req; 818 819 req = tb_cfg_request_alloc(); 820 if (!req) { 821 res.err = -ENOMEM; 822 return res; 823 } 824 825 req->match = tb_cfg_match; 826 req->copy = tb_cfg_copy; 827 req->request = &request; 828 req->request_size = sizeof(request); 829 req->request_type = TB_CFG_PKG_RESET; 830 req->response = &reply; 831 req->response_size = sizeof(reply); 832 req->response_type = TB_CFG_PKG_RESET; 833 834 res = tb_cfg_request_sync(ctl, req, timeout_msec); 835 836 tb_cfg_request_put(req); 837 838 return res; 839 } 840 841 /** 842 * tb_cfg_read_raw() - read from config space into buffer 843 * @ctl: Pointer to the control channel 844 * @buffer: Buffer where the data is read 845 * @route: Route string of the router 846 * @port: Port number when reading from %TB_CFG_PORT, %0 otherwise 847 * @space: Config space selector 848 * @offset: Dword word offset of the register to start reading 849 * @length: Number of dwords to read 850 * @timeout_msec: Timeout in ms how long to wait for the response 851 * 852 * Reads from router config space without translating the possible error. 853 */ 854 struct tb_cfg_result tb_cfg_read_raw(struct tb_ctl *ctl, void *buffer, 855 u64 route, u32 port, enum tb_cfg_space space, 856 u32 offset, u32 length, int timeout_msec) 857 { 858 struct tb_cfg_result res = { 0 }; 859 struct cfg_read_pkg request = { 860 .header = tb_cfg_make_header(route), 861 .addr = { 862 .port = port, 863 .space = space, 864 .offset = offset, 865 .length = length, 866 }, 867 }; 868 struct cfg_write_pkg reply; 869 int retries = 0; 870 871 while (retries < TB_CTL_RETRIES) { 872 struct tb_cfg_request *req; 873 874 req = tb_cfg_request_alloc(); 875 if (!req) { 876 res.err = -ENOMEM; 877 return res; 878 } 879 880 request.addr.seq = retries++; 881 882 req->match = tb_cfg_match; 883 req->copy = tb_cfg_copy; 884 req->request = &request; 885 req->request_size = sizeof(request); 886 req->request_type = TB_CFG_PKG_READ; 887 req->response = &reply; 888 req->response_size = 12 + 4 * length; 889 req->response_type = TB_CFG_PKG_READ; 890 891 res = tb_cfg_request_sync(ctl, req, timeout_msec); 892 893 tb_cfg_request_put(req); 894 895 if (res.err != -ETIMEDOUT) 896 break; 897 898 /* Wait a bit (arbitrary time) until we send a retry */ 899 usleep_range(10, 100); 900 } 901 902 if (res.err) 903 return res; 904 905 res.response_port = reply.addr.port; 906 res.err = check_config_address(reply.addr, space, offset, length); 907 if (!res.err) 908 memcpy(buffer, &reply.data, 4 * length); 909 return res; 910 } 911 912 /** 913 * tb_cfg_write() - write from buffer into config space 914 * @ctl: Pointer to the control channel 915 * @buffer: Data to write 916 * @route: Route string of the router 917 * @port: Port number when writing to %TB_CFG_PORT, %0 otherwise 918 * @space: Config space selector 919 * @offset: Dword word offset of the register to start writing 920 * @length: Number of dwords to write 921 * @timeout_msec: Timeout in ms how long to wait for the response 922 * 923 * Writes to router config space without translating the possible error. 924 */ 925 struct tb_cfg_result tb_cfg_write_raw(struct tb_ctl *ctl, const void *buffer, 926 u64 route, u32 port, enum tb_cfg_space space, 927 u32 offset, u32 length, int timeout_msec) 928 { 929 struct tb_cfg_result res = { 0 }; 930 struct cfg_write_pkg request = { 931 .header = tb_cfg_make_header(route), 932 .addr = { 933 .port = port, 934 .space = space, 935 .offset = offset, 936 .length = length, 937 }, 938 }; 939 struct cfg_read_pkg reply; 940 int retries = 0; 941 942 memcpy(&request.data, buffer, length * 4); 943 944 while (retries < TB_CTL_RETRIES) { 945 struct tb_cfg_request *req; 946 947 req = tb_cfg_request_alloc(); 948 if (!req) { 949 res.err = -ENOMEM; 950 return res; 951 } 952 953 request.addr.seq = retries++; 954 955 req->match = tb_cfg_match; 956 req->copy = tb_cfg_copy; 957 req->request = &request; 958 req->request_size = 12 + 4 * length; 959 req->request_type = TB_CFG_PKG_WRITE; 960 req->response = &reply; 961 req->response_size = sizeof(reply); 962 req->response_type = TB_CFG_PKG_WRITE; 963 964 res = tb_cfg_request_sync(ctl, req, timeout_msec); 965 966 tb_cfg_request_put(req); 967 968 if (res.err != -ETIMEDOUT) 969 break; 970 971 /* Wait a bit (arbitrary time) until we send a retry */ 972 usleep_range(10, 100); 973 } 974 975 if (res.err) 976 return res; 977 978 res.response_port = reply.addr.port; 979 res.err = check_config_address(reply.addr, space, offset, length); 980 return res; 981 } 982 983 static int tb_cfg_get_error(struct tb_ctl *ctl, enum tb_cfg_space space, 984 const struct tb_cfg_result *res) 985 { 986 /* 987 * For unimplemented ports access to port config space may return 988 * TB_CFG_ERROR_INVALID_CONFIG_SPACE (alternatively their type is 989 * set to TB_TYPE_INACTIVE). In the former case return -ENODEV so 990 * that the caller can mark the port as disabled. 991 */ 992 if (space == TB_CFG_PORT && 993 res->tb_error == TB_CFG_ERROR_INVALID_CONFIG_SPACE) 994 return -ENODEV; 995 996 tb_cfg_print_error(ctl, res); 997 998 if (res->tb_error == TB_CFG_ERROR_LOCK) 999 return -EACCES; 1000 else if (res->tb_error == TB_CFG_ERROR_PORT_NOT_CONNECTED) 1001 return -ENOTCONN; 1002 1003 return -EIO; 1004 } 1005 1006 int tb_cfg_read(struct tb_ctl *ctl, void *buffer, u64 route, u32 port, 1007 enum tb_cfg_space space, u32 offset, u32 length) 1008 { 1009 struct tb_cfg_result res = tb_cfg_read_raw(ctl, buffer, route, port, 1010 space, offset, length, TB_CFG_DEFAULT_TIMEOUT); 1011 switch (res.err) { 1012 case 0: 1013 /* Success */ 1014 break; 1015 1016 case 1: 1017 /* Thunderbolt error, tb_error holds the actual number */ 1018 return tb_cfg_get_error(ctl, space, &res); 1019 1020 case -ETIMEDOUT: 1021 tb_ctl_warn(ctl, "%llx: timeout reading config space %u from %#x\n", 1022 route, space, offset); 1023 break; 1024 1025 default: 1026 WARN(1, "tb_cfg_read: %d\n", res.err); 1027 break; 1028 } 1029 return res.err; 1030 } 1031 1032 int tb_cfg_write(struct tb_ctl *ctl, const void *buffer, u64 route, u32 port, 1033 enum tb_cfg_space space, u32 offset, u32 length) 1034 { 1035 struct tb_cfg_result res = tb_cfg_write_raw(ctl, buffer, route, port, 1036 space, offset, length, TB_CFG_DEFAULT_TIMEOUT); 1037 switch (res.err) { 1038 case 0: 1039 /* Success */ 1040 break; 1041 1042 case 1: 1043 /* Thunderbolt error, tb_error holds the actual number */ 1044 return tb_cfg_get_error(ctl, space, &res); 1045 1046 case -ETIMEDOUT: 1047 tb_ctl_warn(ctl, "%llx: timeout writing config space %u to %#x\n", 1048 route, space, offset); 1049 break; 1050 1051 default: 1052 WARN(1, "tb_cfg_write: %d\n", res.err); 1053 break; 1054 } 1055 return res.err; 1056 } 1057 1058 /** 1059 * tb_cfg_get_upstream_port() - get upstream port number of switch at route 1060 * @ctl: Pointer to the control channel 1061 * @route: Route string of the router 1062 * 1063 * Reads the first dword from the switches TB_CFG_SWITCH config area and 1064 * returns the port number from which the reply originated. 1065 * 1066 * Return: Returns the upstream port number on success or an error code on 1067 * failure. 1068 */ 1069 int tb_cfg_get_upstream_port(struct tb_ctl *ctl, u64 route) 1070 { 1071 u32 dummy; 1072 struct tb_cfg_result res = tb_cfg_read_raw(ctl, &dummy, route, 0, 1073 TB_CFG_SWITCH, 0, 1, 1074 TB_CFG_DEFAULT_TIMEOUT); 1075 if (res.err == 1) 1076 return -EIO; 1077 if (res.err) 1078 return res.err; 1079 return res.response_port; 1080 } 1081