xref: /linux/drivers/thunderbolt/ctl.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Thunderbolt driver - control channel and configuration commands
4  *
5  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6  * Copyright (C) 2018, Intel Corporation
7  */
8 
9 #include <linux/crc32.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/pci.h>
13 #include <linux/dmapool.h>
14 #include <linux/workqueue.h>
15 
16 #include "ctl.h"
17 
18 
19 #define TB_CTL_RX_PKG_COUNT	10
20 #define TB_CTL_RETRIES		4
21 
22 /**
23  * struct tb_ctl - Thunderbolt control channel
24  * @nhi: Pointer to the NHI structure
25  * @tx: Transmit ring
26  * @rx: Receive ring
27  * @frame_pool: DMA pool for control messages
28  * @rx_packets: Received control messages
29  * @request_queue_lock: Lock protecting @request_queue
30  * @request_queue: List of outstanding requests
31  * @running: Is the control channel running at the moment
32  * @timeout_msec: Default timeout for non-raw control messages
33  * @callback: Callback called when hotplug message is received
34  * @callback_data: Data passed to @callback
35  */
36 struct tb_ctl {
37 	struct tb_nhi *nhi;
38 	struct tb_ring *tx;
39 	struct tb_ring *rx;
40 
41 	struct dma_pool *frame_pool;
42 	struct ctl_pkg *rx_packets[TB_CTL_RX_PKG_COUNT];
43 	struct mutex request_queue_lock;
44 	struct list_head request_queue;
45 	bool running;
46 
47 	int timeout_msec;
48 	event_cb callback;
49 	void *callback_data;
50 };
51 
52 
53 #define tb_ctl_WARN(ctl, format, arg...) \
54 	dev_WARN(&(ctl)->nhi->pdev->dev, format, ## arg)
55 
56 #define tb_ctl_err(ctl, format, arg...) \
57 	dev_err(&(ctl)->nhi->pdev->dev, format, ## arg)
58 
59 #define tb_ctl_warn(ctl, format, arg...) \
60 	dev_warn(&(ctl)->nhi->pdev->dev, format, ## arg)
61 
62 #define tb_ctl_info(ctl, format, arg...) \
63 	dev_info(&(ctl)->nhi->pdev->dev, format, ## arg)
64 
65 #define tb_ctl_dbg(ctl, format, arg...) \
66 	dev_dbg(&(ctl)->nhi->pdev->dev, format, ## arg)
67 
68 static DECLARE_WAIT_QUEUE_HEAD(tb_cfg_request_cancel_queue);
69 /* Serializes access to request kref_get/put */
70 static DEFINE_MUTEX(tb_cfg_request_lock);
71 
72 /**
73  * tb_cfg_request_alloc() - Allocates a new config request
74  *
75  * This is refcounted object so when you are done with this, call
76  * tb_cfg_request_put() to it.
77  */
78 struct tb_cfg_request *tb_cfg_request_alloc(void)
79 {
80 	struct tb_cfg_request *req;
81 
82 	req = kzalloc(sizeof(*req), GFP_KERNEL);
83 	if (!req)
84 		return NULL;
85 
86 	kref_init(&req->kref);
87 
88 	return req;
89 }
90 
91 /**
92  * tb_cfg_request_get() - Increase refcount of a request
93  * @req: Request whose refcount is increased
94  */
95 void tb_cfg_request_get(struct tb_cfg_request *req)
96 {
97 	mutex_lock(&tb_cfg_request_lock);
98 	kref_get(&req->kref);
99 	mutex_unlock(&tb_cfg_request_lock);
100 }
101 
102 static void tb_cfg_request_destroy(struct kref *kref)
103 {
104 	struct tb_cfg_request *req = container_of(kref, typeof(*req), kref);
105 
106 	kfree(req);
107 }
108 
109 /**
110  * tb_cfg_request_put() - Decrease refcount and possibly release the request
111  * @req: Request whose refcount is decreased
112  *
113  * Call this function when you are done with the request. When refcount
114  * goes to %0 the object is released.
115  */
116 void tb_cfg_request_put(struct tb_cfg_request *req)
117 {
118 	mutex_lock(&tb_cfg_request_lock);
119 	kref_put(&req->kref, tb_cfg_request_destroy);
120 	mutex_unlock(&tb_cfg_request_lock);
121 }
122 
123 static int tb_cfg_request_enqueue(struct tb_ctl *ctl,
124 				  struct tb_cfg_request *req)
125 {
126 	WARN_ON(test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags));
127 	WARN_ON(req->ctl);
128 
129 	mutex_lock(&ctl->request_queue_lock);
130 	if (!ctl->running) {
131 		mutex_unlock(&ctl->request_queue_lock);
132 		return -ENOTCONN;
133 	}
134 	req->ctl = ctl;
135 	list_add_tail(&req->list, &ctl->request_queue);
136 	set_bit(TB_CFG_REQUEST_ACTIVE, &req->flags);
137 	mutex_unlock(&ctl->request_queue_lock);
138 	return 0;
139 }
140 
141 static void tb_cfg_request_dequeue(struct tb_cfg_request *req)
142 {
143 	struct tb_ctl *ctl = req->ctl;
144 
145 	mutex_lock(&ctl->request_queue_lock);
146 	list_del(&req->list);
147 	clear_bit(TB_CFG_REQUEST_ACTIVE, &req->flags);
148 	if (test_bit(TB_CFG_REQUEST_CANCELED, &req->flags))
149 		wake_up(&tb_cfg_request_cancel_queue);
150 	mutex_unlock(&ctl->request_queue_lock);
151 }
152 
153 static bool tb_cfg_request_is_active(struct tb_cfg_request *req)
154 {
155 	return test_bit(TB_CFG_REQUEST_ACTIVE, &req->flags);
156 }
157 
158 static struct tb_cfg_request *
159 tb_cfg_request_find(struct tb_ctl *ctl, struct ctl_pkg *pkg)
160 {
161 	struct tb_cfg_request *req;
162 	bool found = false;
163 
164 	mutex_lock(&pkg->ctl->request_queue_lock);
165 	list_for_each_entry(req, &pkg->ctl->request_queue, list) {
166 		tb_cfg_request_get(req);
167 		if (req->match(req, pkg)) {
168 			found = true;
169 			break;
170 		}
171 		tb_cfg_request_put(req);
172 	}
173 	mutex_unlock(&pkg->ctl->request_queue_lock);
174 
175 	return found ? req : NULL;
176 }
177 
178 /* utility functions */
179 
180 
181 static int check_header(const struct ctl_pkg *pkg, u32 len,
182 			enum tb_cfg_pkg_type type, u64 route)
183 {
184 	struct tb_cfg_header *header = pkg->buffer;
185 
186 	/* check frame, TODO: frame flags */
187 	if (WARN(len != pkg->frame.size,
188 			"wrong framesize (expected %#x, got %#x)\n",
189 			len, pkg->frame.size))
190 		return -EIO;
191 	if (WARN(type != pkg->frame.eof, "wrong eof (expected %#x, got %#x)\n",
192 			type, pkg->frame.eof))
193 		return -EIO;
194 	if (WARN(pkg->frame.sof, "wrong sof (expected 0x0, got %#x)\n",
195 			pkg->frame.sof))
196 		return -EIO;
197 
198 	/* check header */
199 	if (WARN(header->unknown != 1 << 9,
200 			"header->unknown is %#x\n", header->unknown))
201 		return -EIO;
202 	if (WARN(route != tb_cfg_get_route(header),
203 			"wrong route (expected %llx, got %llx)",
204 			route, tb_cfg_get_route(header)))
205 		return -EIO;
206 	return 0;
207 }
208 
209 static int check_config_address(struct tb_cfg_address addr,
210 				enum tb_cfg_space space, u32 offset,
211 				u32 length)
212 {
213 	if (WARN(addr.zero, "addr.zero is %#x\n", addr.zero))
214 		return -EIO;
215 	if (WARN(space != addr.space, "wrong space (expected %x, got %x\n)",
216 			space, addr.space))
217 		return -EIO;
218 	if (WARN(offset != addr.offset, "wrong offset (expected %x, got %x\n)",
219 			offset, addr.offset))
220 		return -EIO;
221 	if (WARN(length != addr.length, "wrong space (expected %x, got %x\n)",
222 			length, addr.length))
223 		return -EIO;
224 	/*
225 	 * We cannot check addr->port as it is set to the upstream port of the
226 	 * sender.
227 	 */
228 	return 0;
229 }
230 
231 static struct tb_cfg_result decode_error(const struct ctl_pkg *response)
232 {
233 	struct cfg_error_pkg *pkg = response->buffer;
234 	struct tb_ctl *ctl = response->ctl;
235 	struct tb_cfg_result res = { 0 };
236 	res.response_route = tb_cfg_get_route(&pkg->header);
237 	res.response_port = 0;
238 	res.err = check_header(response, sizeof(*pkg), TB_CFG_PKG_ERROR,
239 			       tb_cfg_get_route(&pkg->header));
240 	if (res.err)
241 		return res;
242 
243 	if (pkg->zero1)
244 		tb_ctl_warn(ctl, "pkg->zero1 is %#x\n", pkg->zero1);
245 	if (pkg->zero2)
246 		tb_ctl_warn(ctl, "pkg->zero2 is %#x\n", pkg->zero2);
247 	if (pkg->zero3)
248 		tb_ctl_warn(ctl, "pkg->zero3 is %#x\n", pkg->zero3);
249 
250 	res.err = 1;
251 	res.tb_error = pkg->error;
252 	res.response_port = pkg->port;
253 	return res;
254 
255 }
256 
257 static struct tb_cfg_result parse_header(const struct ctl_pkg *pkg, u32 len,
258 					 enum tb_cfg_pkg_type type, u64 route)
259 {
260 	struct tb_cfg_header *header = pkg->buffer;
261 	struct tb_cfg_result res = { 0 };
262 
263 	if (pkg->frame.eof == TB_CFG_PKG_ERROR)
264 		return decode_error(pkg);
265 
266 	res.response_port = 0; /* will be updated later for cfg_read/write */
267 	res.response_route = tb_cfg_get_route(header);
268 	res.err = check_header(pkg, len, type, route);
269 	return res;
270 }
271 
272 static void tb_cfg_print_error(struct tb_ctl *ctl,
273 			       const struct tb_cfg_result *res)
274 {
275 	WARN_ON(res->err != 1);
276 	switch (res->tb_error) {
277 	case TB_CFG_ERROR_PORT_NOT_CONNECTED:
278 		/* Port is not connected. This can happen during surprise
279 		 * removal. Do not warn. */
280 		return;
281 	case TB_CFG_ERROR_INVALID_CONFIG_SPACE:
282 		/*
283 		 * Invalid cfg_space/offset/length combination in
284 		 * cfg_read/cfg_write.
285 		 */
286 		tb_ctl_dbg(ctl, "%llx:%x: invalid config space or offset\n",
287 			   res->response_route, res->response_port);
288 		return;
289 	case TB_CFG_ERROR_NO_SUCH_PORT:
290 		/*
291 		 * - The route contains a non-existent port.
292 		 * - The route contains a non-PHY port (e.g. PCIe).
293 		 * - The port in cfg_read/cfg_write does not exist.
294 		 */
295 		tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Invalid port\n",
296 			res->response_route, res->response_port);
297 		return;
298 	case TB_CFG_ERROR_LOOP:
299 		tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Route contains a loop\n",
300 			res->response_route, res->response_port);
301 		return;
302 	case TB_CFG_ERROR_LOCK:
303 		tb_ctl_warn(ctl, "%llx:%x: downstream port is locked\n",
304 			    res->response_route, res->response_port);
305 		return;
306 	default:
307 		/* 5,6,7,9 and 11 are also valid error codes */
308 		tb_ctl_WARN(ctl, "CFG_ERROR(%llx:%x): Unknown error\n",
309 			res->response_route, res->response_port);
310 		return;
311 	}
312 }
313 
314 static __be32 tb_crc(const void *data, size_t len)
315 {
316 	return cpu_to_be32(~__crc32c_le(~0, data, len));
317 }
318 
319 static void tb_ctl_pkg_free(struct ctl_pkg *pkg)
320 {
321 	if (pkg) {
322 		dma_pool_free(pkg->ctl->frame_pool,
323 			      pkg->buffer, pkg->frame.buffer_phy);
324 		kfree(pkg);
325 	}
326 }
327 
328 static struct ctl_pkg *tb_ctl_pkg_alloc(struct tb_ctl *ctl)
329 {
330 	struct ctl_pkg *pkg = kzalloc(sizeof(*pkg), GFP_KERNEL);
331 	if (!pkg)
332 		return NULL;
333 	pkg->ctl = ctl;
334 	pkg->buffer = dma_pool_alloc(ctl->frame_pool, GFP_KERNEL,
335 				     &pkg->frame.buffer_phy);
336 	if (!pkg->buffer) {
337 		kfree(pkg);
338 		return NULL;
339 	}
340 	return pkg;
341 }
342 
343 
344 /* RX/TX handling */
345 
346 static void tb_ctl_tx_callback(struct tb_ring *ring, struct ring_frame *frame,
347 			       bool canceled)
348 {
349 	struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame);
350 	tb_ctl_pkg_free(pkg);
351 }
352 
353 /*
354  * tb_cfg_tx() - transmit a packet on the control channel
355  *
356  * len must be a multiple of four.
357  *
358  * Return: Returns 0 on success or an error code on failure.
359  */
360 static int tb_ctl_tx(struct tb_ctl *ctl, const void *data, size_t len,
361 		     enum tb_cfg_pkg_type type)
362 {
363 	int res;
364 	struct ctl_pkg *pkg;
365 	if (len % 4 != 0) { /* required for le->be conversion */
366 		tb_ctl_WARN(ctl, "TX: invalid size: %zu\n", len);
367 		return -EINVAL;
368 	}
369 	if (len > TB_FRAME_SIZE - 4) { /* checksum is 4 bytes */
370 		tb_ctl_WARN(ctl, "TX: packet too large: %zu/%d\n",
371 			    len, TB_FRAME_SIZE - 4);
372 		return -EINVAL;
373 	}
374 	pkg = tb_ctl_pkg_alloc(ctl);
375 	if (!pkg)
376 		return -ENOMEM;
377 	pkg->frame.callback = tb_ctl_tx_callback;
378 	pkg->frame.size = len + 4;
379 	pkg->frame.sof = type;
380 	pkg->frame.eof = type;
381 	cpu_to_be32_array(pkg->buffer, data, len / 4);
382 	*(__be32 *) (pkg->buffer + len) = tb_crc(pkg->buffer, len);
383 
384 	res = tb_ring_tx(ctl->tx, &pkg->frame);
385 	if (res) /* ring is stopped */
386 		tb_ctl_pkg_free(pkg);
387 	return res;
388 }
389 
390 /*
391  * tb_ctl_handle_event() - acknowledge a plug event, invoke ctl->callback
392  */
393 static bool tb_ctl_handle_event(struct tb_ctl *ctl, enum tb_cfg_pkg_type type,
394 				struct ctl_pkg *pkg, size_t size)
395 {
396 	return ctl->callback(ctl->callback_data, type, pkg->buffer, size);
397 }
398 
399 static void tb_ctl_rx_submit(struct ctl_pkg *pkg)
400 {
401 	tb_ring_rx(pkg->ctl->rx, &pkg->frame); /*
402 					     * We ignore failures during stop.
403 					     * All rx packets are referenced
404 					     * from ctl->rx_packets, so we do
405 					     * not loose them.
406 					     */
407 }
408 
409 static int tb_async_error(const struct ctl_pkg *pkg)
410 {
411 	const struct cfg_error_pkg *error = (const struct cfg_error_pkg *)pkg;
412 
413 	if (pkg->frame.eof != TB_CFG_PKG_ERROR)
414 		return false;
415 
416 	switch (error->error) {
417 	case TB_CFG_ERROR_LINK_ERROR:
418 	case TB_CFG_ERROR_HEC_ERROR_DETECTED:
419 	case TB_CFG_ERROR_FLOW_CONTROL_ERROR:
420 		return true;
421 
422 	default:
423 		return false;
424 	}
425 }
426 
427 static void tb_ctl_rx_callback(struct tb_ring *ring, struct ring_frame *frame,
428 			       bool canceled)
429 {
430 	struct ctl_pkg *pkg = container_of(frame, typeof(*pkg), frame);
431 	struct tb_cfg_request *req;
432 	__be32 crc32;
433 
434 	if (canceled)
435 		return; /*
436 			 * ring is stopped, packet is referenced from
437 			 * ctl->rx_packets.
438 			 */
439 
440 	if (frame->size < 4 || frame->size % 4 != 0) {
441 		tb_ctl_err(pkg->ctl, "RX: invalid size %#x, dropping packet\n",
442 			   frame->size);
443 		goto rx;
444 	}
445 
446 	frame->size -= 4; /* remove checksum */
447 	crc32 = tb_crc(pkg->buffer, frame->size);
448 	be32_to_cpu_array(pkg->buffer, pkg->buffer, frame->size / 4);
449 
450 	switch (frame->eof) {
451 	case TB_CFG_PKG_READ:
452 	case TB_CFG_PKG_WRITE:
453 	case TB_CFG_PKG_ERROR:
454 	case TB_CFG_PKG_OVERRIDE:
455 	case TB_CFG_PKG_RESET:
456 		if (*(__be32 *)(pkg->buffer + frame->size) != crc32) {
457 			tb_ctl_err(pkg->ctl,
458 				   "RX: checksum mismatch, dropping packet\n");
459 			goto rx;
460 		}
461 		if (tb_async_error(pkg)) {
462 			tb_ctl_handle_event(pkg->ctl, frame->eof,
463 					    pkg, frame->size);
464 			goto rx;
465 		}
466 		break;
467 
468 	case TB_CFG_PKG_EVENT:
469 	case TB_CFG_PKG_XDOMAIN_RESP:
470 	case TB_CFG_PKG_XDOMAIN_REQ:
471 		if (*(__be32 *)(pkg->buffer + frame->size) != crc32) {
472 			tb_ctl_err(pkg->ctl,
473 				   "RX: checksum mismatch, dropping packet\n");
474 			goto rx;
475 		}
476 		fallthrough;
477 	case TB_CFG_PKG_ICM_EVENT:
478 		if (tb_ctl_handle_event(pkg->ctl, frame->eof, pkg, frame->size))
479 			goto rx;
480 		break;
481 
482 	default:
483 		break;
484 	}
485 
486 	/*
487 	 * The received packet will be processed only if there is an
488 	 * active request and that the packet is what is expected. This
489 	 * prevents packets such as replies coming after timeout has
490 	 * triggered from messing with the active requests.
491 	 */
492 	req = tb_cfg_request_find(pkg->ctl, pkg);
493 	if (req) {
494 		if (req->copy(req, pkg))
495 			schedule_work(&req->work);
496 		tb_cfg_request_put(req);
497 	}
498 
499 rx:
500 	tb_ctl_rx_submit(pkg);
501 }
502 
503 static void tb_cfg_request_work(struct work_struct *work)
504 {
505 	struct tb_cfg_request *req = container_of(work, typeof(*req), work);
506 
507 	if (!test_bit(TB_CFG_REQUEST_CANCELED, &req->flags))
508 		req->callback(req->callback_data);
509 
510 	tb_cfg_request_dequeue(req);
511 	tb_cfg_request_put(req);
512 }
513 
514 /**
515  * tb_cfg_request() - Start control request not waiting for it to complete
516  * @ctl: Control channel to use
517  * @req: Request to start
518  * @callback: Callback called when the request is completed
519  * @callback_data: Data to be passed to @callback
520  *
521  * This queues @req on the given control channel without waiting for it
522  * to complete. When the request completes @callback is called.
523  */
524 int tb_cfg_request(struct tb_ctl *ctl, struct tb_cfg_request *req,
525 		   void (*callback)(void *), void *callback_data)
526 {
527 	int ret;
528 
529 	req->flags = 0;
530 	req->callback = callback;
531 	req->callback_data = callback_data;
532 	INIT_WORK(&req->work, tb_cfg_request_work);
533 	INIT_LIST_HEAD(&req->list);
534 
535 	tb_cfg_request_get(req);
536 	ret = tb_cfg_request_enqueue(ctl, req);
537 	if (ret)
538 		goto err_put;
539 
540 	ret = tb_ctl_tx(ctl, req->request, req->request_size,
541 			req->request_type);
542 	if (ret)
543 		goto err_dequeue;
544 
545 	if (!req->response)
546 		schedule_work(&req->work);
547 
548 	return 0;
549 
550 err_dequeue:
551 	tb_cfg_request_dequeue(req);
552 err_put:
553 	tb_cfg_request_put(req);
554 
555 	return ret;
556 }
557 
558 /**
559  * tb_cfg_request_cancel() - Cancel a control request
560  * @req: Request to cancel
561  * @err: Error to assign to the request
562  *
563  * This function can be used to cancel ongoing request. It will wait
564  * until the request is not active anymore.
565  */
566 void tb_cfg_request_cancel(struct tb_cfg_request *req, int err)
567 {
568 	set_bit(TB_CFG_REQUEST_CANCELED, &req->flags);
569 	schedule_work(&req->work);
570 	wait_event(tb_cfg_request_cancel_queue, !tb_cfg_request_is_active(req));
571 	req->result.err = err;
572 }
573 
574 static void tb_cfg_request_complete(void *data)
575 {
576 	complete(data);
577 }
578 
579 /**
580  * tb_cfg_request_sync() - Start control request and wait until it completes
581  * @ctl: Control channel to use
582  * @req: Request to start
583  * @timeout_msec: Timeout how long to wait @req to complete
584  *
585  * Starts a control request and waits until it completes. If timeout
586  * triggers the request is canceled before function returns. Note the
587  * caller needs to make sure only one message for given switch is active
588  * at a time.
589  */
590 struct tb_cfg_result tb_cfg_request_sync(struct tb_ctl *ctl,
591 					 struct tb_cfg_request *req,
592 					 int timeout_msec)
593 {
594 	unsigned long timeout = msecs_to_jiffies(timeout_msec);
595 	struct tb_cfg_result res = { 0 };
596 	DECLARE_COMPLETION_ONSTACK(done);
597 	int ret;
598 
599 	ret = tb_cfg_request(ctl, req, tb_cfg_request_complete, &done);
600 	if (ret) {
601 		res.err = ret;
602 		return res;
603 	}
604 
605 	if (!wait_for_completion_timeout(&done, timeout))
606 		tb_cfg_request_cancel(req, -ETIMEDOUT);
607 
608 	flush_work(&req->work);
609 
610 	return req->result;
611 }
612 
613 /* public interface, alloc/start/stop/free */
614 
615 /**
616  * tb_ctl_alloc() - allocate a control channel
617  * @nhi: Pointer to NHI
618  * @timeout_msec: Default timeout used with non-raw control messages
619  * @cb: Callback called for plug events
620  * @cb_data: Data passed to @cb
621  *
622  * cb will be invoked once for every hot plug event.
623  *
624  * Return: Returns a pointer on success or NULL on failure.
625  */
626 struct tb_ctl *tb_ctl_alloc(struct tb_nhi *nhi, int timeout_msec, event_cb cb,
627 			    void *cb_data)
628 {
629 	int i;
630 	struct tb_ctl *ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
631 	if (!ctl)
632 		return NULL;
633 	ctl->nhi = nhi;
634 	ctl->timeout_msec = timeout_msec;
635 	ctl->callback = cb;
636 	ctl->callback_data = cb_data;
637 
638 	mutex_init(&ctl->request_queue_lock);
639 	INIT_LIST_HEAD(&ctl->request_queue);
640 	ctl->frame_pool = dma_pool_create("thunderbolt_ctl", &nhi->pdev->dev,
641 					 TB_FRAME_SIZE, 4, 0);
642 	if (!ctl->frame_pool)
643 		goto err;
644 
645 	ctl->tx = tb_ring_alloc_tx(nhi, 0, 10, RING_FLAG_NO_SUSPEND);
646 	if (!ctl->tx)
647 		goto err;
648 
649 	ctl->rx = tb_ring_alloc_rx(nhi, 0, 10, RING_FLAG_NO_SUSPEND, 0, 0xffff,
650 				   0xffff, NULL, NULL);
651 	if (!ctl->rx)
652 		goto err;
653 
654 	for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++) {
655 		ctl->rx_packets[i] = tb_ctl_pkg_alloc(ctl);
656 		if (!ctl->rx_packets[i])
657 			goto err;
658 		ctl->rx_packets[i]->frame.callback = tb_ctl_rx_callback;
659 	}
660 
661 	tb_ctl_dbg(ctl, "control channel created\n");
662 	return ctl;
663 err:
664 	tb_ctl_free(ctl);
665 	return NULL;
666 }
667 
668 /**
669  * tb_ctl_free() - free a control channel
670  * @ctl: Control channel to free
671  *
672  * Must be called after tb_ctl_stop.
673  *
674  * Must NOT be called from ctl->callback.
675  */
676 void tb_ctl_free(struct tb_ctl *ctl)
677 {
678 	int i;
679 
680 	if (!ctl)
681 		return;
682 
683 	if (ctl->rx)
684 		tb_ring_free(ctl->rx);
685 	if (ctl->tx)
686 		tb_ring_free(ctl->tx);
687 
688 	/* free RX packets */
689 	for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++)
690 		tb_ctl_pkg_free(ctl->rx_packets[i]);
691 
692 
693 	dma_pool_destroy(ctl->frame_pool);
694 	kfree(ctl);
695 }
696 
697 /**
698  * tb_cfg_start() - start/resume the control channel
699  * @ctl: Control channel to start
700  */
701 void tb_ctl_start(struct tb_ctl *ctl)
702 {
703 	int i;
704 	tb_ctl_dbg(ctl, "control channel starting...\n");
705 	tb_ring_start(ctl->tx); /* is used to ack hotplug packets, start first */
706 	tb_ring_start(ctl->rx);
707 	for (i = 0; i < TB_CTL_RX_PKG_COUNT; i++)
708 		tb_ctl_rx_submit(ctl->rx_packets[i]);
709 
710 	ctl->running = true;
711 }
712 
713 /**
714  * tb_ctrl_stop() - pause the control channel
715  * @ctl: Control channel to stop
716  *
717  * All invocations of ctl->callback will have finished after this method
718  * returns.
719  *
720  * Must NOT be called from ctl->callback.
721  */
722 void tb_ctl_stop(struct tb_ctl *ctl)
723 {
724 	mutex_lock(&ctl->request_queue_lock);
725 	ctl->running = false;
726 	mutex_unlock(&ctl->request_queue_lock);
727 
728 	tb_ring_stop(ctl->rx);
729 	tb_ring_stop(ctl->tx);
730 
731 	if (!list_empty(&ctl->request_queue))
732 		tb_ctl_WARN(ctl, "dangling request in request_queue\n");
733 	INIT_LIST_HEAD(&ctl->request_queue);
734 	tb_ctl_dbg(ctl, "control channel stopped\n");
735 }
736 
737 /* public interface, commands */
738 
739 /**
740  * tb_cfg_ack_plug() - Ack hot plug/unplug event
741  * @ctl: Control channel to use
742  * @route: Router that originated the event
743  * @port: Port where the hot plug/unplug happened
744  * @unplug: Ack hot plug or unplug
745  *
746  * Call this as response for hot plug/unplug event to ack it.
747  * Returns %0 on success or an error code on failure.
748  */
749 int tb_cfg_ack_plug(struct tb_ctl *ctl, u64 route, u32 port, bool unplug)
750 {
751 	struct cfg_error_pkg pkg = {
752 		.header = tb_cfg_make_header(route),
753 		.port = port,
754 		.error = TB_CFG_ERROR_ACK_PLUG_EVENT,
755 		.pg = unplug ? TB_CFG_ERROR_PG_HOT_UNPLUG
756 			     : TB_CFG_ERROR_PG_HOT_PLUG,
757 	};
758 	tb_ctl_dbg(ctl, "acking hot %splug event on %llx:%x\n",
759 		   unplug ? "un" : "", route, port);
760 	return tb_ctl_tx(ctl, &pkg, sizeof(pkg), TB_CFG_PKG_ERROR);
761 }
762 
763 static bool tb_cfg_match(const struct tb_cfg_request *req,
764 			 const struct ctl_pkg *pkg)
765 {
766 	u64 route = tb_cfg_get_route(pkg->buffer) & ~BIT_ULL(63);
767 
768 	if (pkg->frame.eof == TB_CFG_PKG_ERROR)
769 		return true;
770 
771 	if (pkg->frame.eof != req->response_type)
772 		return false;
773 	if (route != tb_cfg_get_route(req->request))
774 		return false;
775 	if (pkg->frame.size != req->response_size)
776 		return false;
777 
778 	if (pkg->frame.eof == TB_CFG_PKG_READ ||
779 	    pkg->frame.eof == TB_CFG_PKG_WRITE) {
780 		const struct cfg_read_pkg *req_hdr = req->request;
781 		const struct cfg_read_pkg *res_hdr = pkg->buffer;
782 
783 		if (req_hdr->addr.seq != res_hdr->addr.seq)
784 			return false;
785 	}
786 
787 	return true;
788 }
789 
790 static bool tb_cfg_copy(struct tb_cfg_request *req, const struct ctl_pkg *pkg)
791 {
792 	struct tb_cfg_result res;
793 
794 	/* Now make sure it is in expected format */
795 	res = parse_header(pkg, req->response_size, req->response_type,
796 			   tb_cfg_get_route(req->request));
797 	if (!res.err)
798 		memcpy(req->response, pkg->buffer, req->response_size);
799 
800 	req->result = res;
801 
802 	/* Always complete when first response is received */
803 	return true;
804 }
805 
806 /**
807  * tb_cfg_reset() - send a reset packet and wait for a response
808  * @ctl: Control channel pointer
809  * @route: Router string for the router to send reset
810  *
811  * If the switch at route is incorrectly configured then we will not receive a
812  * reply (even though the switch will reset). The caller should check for
813  * -ETIMEDOUT and attempt to reconfigure the switch.
814  */
815 struct tb_cfg_result tb_cfg_reset(struct tb_ctl *ctl, u64 route)
816 {
817 	struct cfg_reset_pkg request = { .header = tb_cfg_make_header(route) };
818 	struct tb_cfg_result res = { 0 };
819 	struct tb_cfg_header reply;
820 	struct tb_cfg_request *req;
821 
822 	req = tb_cfg_request_alloc();
823 	if (!req) {
824 		res.err = -ENOMEM;
825 		return res;
826 	}
827 
828 	req->match = tb_cfg_match;
829 	req->copy = tb_cfg_copy;
830 	req->request = &request;
831 	req->request_size = sizeof(request);
832 	req->request_type = TB_CFG_PKG_RESET;
833 	req->response = &reply;
834 	req->response_size = sizeof(reply);
835 	req->response_type = TB_CFG_PKG_RESET;
836 
837 	res = tb_cfg_request_sync(ctl, req, ctl->timeout_msec);
838 
839 	tb_cfg_request_put(req);
840 
841 	return res;
842 }
843 
844 /**
845  * tb_cfg_read_raw() - read from config space into buffer
846  * @ctl: Pointer to the control channel
847  * @buffer: Buffer where the data is read
848  * @route: Route string of the router
849  * @port: Port number when reading from %TB_CFG_PORT, %0 otherwise
850  * @space: Config space selector
851  * @offset: Dword word offset of the register to start reading
852  * @length: Number of dwords to read
853  * @timeout_msec: Timeout in ms how long to wait for the response
854  *
855  * Reads from router config space without translating the possible error.
856  */
857 struct tb_cfg_result tb_cfg_read_raw(struct tb_ctl *ctl, void *buffer,
858 		u64 route, u32 port, enum tb_cfg_space space,
859 		u32 offset, u32 length, int timeout_msec)
860 {
861 	struct tb_cfg_result res = { 0 };
862 	struct cfg_read_pkg request = {
863 		.header = tb_cfg_make_header(route),
864 		.addr = {
865 			.port = port,
866 			.space = space,
867 			.offset = offset,
868 			.length = length,
869 		},
870 	};
871 	struct cfg_write_pkg reply;
872 	int retries = 0;
873 
874 	while (retries < TB_CTL_RETRIES) {
875 		struct tb_cfg_request *req;
876 
877 		req = tb_cfg_request_alloc();
878 		if (!req) {
879 			res.err = -ENOMEM;
880 			return res;
881 		}
882 
883 		request.addr.seq = retries++;
884 
885 		req->match = tb_cfg_match;
886 		req->copy = tb_cfg_copy;
887 		req->request = &request;
888 		req->request_size = sizeof(request);
889 		req->request_type = TB_CFG_PKG_READ;
890 		req->response = &reply;
891 		req->response_size = 12 + 4 * length;
892 		req->response_type = TB_CFG_PKG_READ;
893 
894 		res = tb_cfg_request_sync(ctl, req, timeout_msec);
895 
896 		tb_cfg_request_put(req);
897 
898 		if (res.err != -ETIMEDOUT)
899 			break;
900 
901 		/* Wait a bit (arbitrary time) until we send a retry */
902 		usleep_range(10, 100);
903 	}
904 
905 	if (res.err)
906 		return res;
907 
908 	res.response_port = reply.addr.port;
909 	res.err = check_config_address(reply.addr, space, offset, length);
910 	if (!res.err)
911 		memcpy(buffer, &reply.data, 4 * length);
912 	return res;
913 }
914 
915 /**
916  * tb_cfg_write() - write from buffer into config space
917  * @ctl: Pointer to the control channel
918  * @buffer: Data to write
919  * @route: Route string of the router
920  * @port: Port number when writing to %TB_CFG_PORT, %0 otherwise
921  * @space: Config space selector
922  * @offset: Dword word offset of the register to start writing
923  * @length: Number of dwords to write
924  * @timeout_msec: Timeout in ms how long to wait for the response
925  *
926  * Writes to router config space without translating the possible error.
927  */
928 struct tb_cfg_result tb_cfg_write_raw(struct tb_ctl *ctl, const void *buffer,
929 		u64 route, u32 port, enum tb_cfg_space space,
930 		u32 offset, u32 length, int timeout_msec)
931 {
932 	struct tb_cfg_result res = { 0 };
933 	struct cfg_write_pkg request = {
934 		.header = tb_cfg_make_header(route),
935 		.addr = {
936 			.port = port,
937 			.space = space,
938 			.offset = offset,
939 			.length = length,
940 		},
941 	};
942 	struct cfg_read_pkg reply;
943 	int retries = 0;
944 
945 	memcpy(&request.data, buffer, length * 4);
946 
947 	while (retries < TB_CTL_RETRIES) {
948 		struct tb_cfg_request *req;
949 
950 		req = tb_cfg_request_alloc();
951 		if (!req) {
952 			res.err = -ENOMEM;
953 			return res;
954 		}
955 
956 		request.addr.seq = retries++;
957 
958 		req->match = tb_cfg_match;
959 		req->copy = tb_cfg_copy;
960 		req->request = &request;
961 		req->request_size = 12 + 4 * length;
962 		req->request_type = TB_CFG_PKG_WRITE;
963 		req->response = &reply;
964 		req->response_size = sizeof(reply);
965 		req->response_type = TB_CFG_PKG_WRITE;
966 
967 		res = tb_cfg_request_sync(ctl, req, timeout_msec);
968 
969 		tb_cfg_request_put(req);
970 
971 		if (res.err != -ETIMEDOUT)
972 			break;
973 
974 		/* Wait a bit (arbitrary time) until we send a retry */
975 		usleep_range(10, 100);
976 	}
977 
978 	if (res.err)
979 		return res;
980 
981 	res.response_port = reply.addr.port;
982 	res.err = check_config_address(reply.addr, space, offset, length);
983 	return res;
984 }
985 
986 static int tb_cfg_get_error(struct tb_ctl *ctl, enum tb_cfg_space space,
987 			    const struct tb_cfg_result *res)
988 {
989 	/*
990 	 * For unimplemented ports access to port config space may return
991 	 * TB_CFG_ERROR_INVALID_CONFIG_SPACE (alternatively their type is
992 	 * set to TB_TYPE_INACTIVE). In the former case return -ENODEV so
993 	 * that the caller can mark the port as disabled.
994 	 */
995 	if (space == TB_CFG_PORT &&
996 	    res->tb_error == TB_CFG_ERROR_INVALID_CONFIG_SPACE)
997 		return -ENODEV;
998 
999 	tb_cfg_print_error(ctl, res);
1000 
1001 	if (res->tb_error == TB_CFG_ERROR_LOCK)
1002 		return -EACCES;
1003 	else if (res->tb_error == TB_CFG_ERROR_PORT_NOT_CONNECTED)
1004 		return -ENOTCONN;
1005 
1006 	return -EIO;
1007 }
1008 
1009 int tb_cfg_read(struct tb_ctl *ctl, void *buffer, u64 route, u32 port,
1010 		enum tb_cfg_space space, u32 offset, u32 length)
1011 {
1012 	struct tb_cfg_result res = tb_cfg_read_raw(ctl, buffer, route, port,
1013 			space, offset, length, ctl->timeout_msec);
1014 	switch (res.err) {
1015 	case 0:
1016 		/* Success */
1017 		break;
1018 
1019 	case 1:
1020 		/* Thunderbolt error, tb_error holds the actual number */
1021 		return tb_cfg_get_error(ctl, space, &res);
1022 
1023 	case -ETIMEDOUT:
1024 		tb_ctl_warn(ctl, "%llx: timeout reading config space %u from %#x\n",
1025 			    route, space, offset);
1026 		break;
1027 
1028 	default:
1029 		WARN(1, "tb_cfg_read: %d\n", res.err);
1030 		break;
1031 	}
1032 	return res.err;
1033 }
1034 
1035 int tb_cfg_write(struct tb_ctl *ctl, const void *buffer, u64 route, u32 port,
1036 		 enum tb_cfg_space space, u32 offset, u32 length)
1037 {
1038 	struct tb_cfg_result res = tb_cfg_write_raw(ctl, buffer, route, port,
1039 			space, offset, length, ctl->timeout_msec);
1040 	switch (res.err) {
1041 	case 0:
1042 		/* Success */
1043 		break;
1044 
1045 	case 1:
1046 		/* Thunderbolt error, tb_error holds the actual number */
1047 		return tb_cfg_get_error(ctl, space, &res);
1048 
1049 	case -ETIMEDOUT:
1050 		tb_ctl_warn(ctl, "%llx: timeout writing config space %u to %#x\n",
1051 			    route, space, offset);
1052 		break;
1053 
1054 	default:
1055 		WARN(1, "tb_cfg_write: %d\n", res.err);
1056 		break;
1057 	}
1058 	return res.err;
1059 }
1060 
1061 /**
1062  * tb_cfg_get_upstream_port() - get upstream port number of switch at route
1063  * @ctl: Pointer to the control channel
1064  * @route: Route string of the router
1065  *
1066  * Reads the first dword from the switches TB_CFG_SWITCH config area and
1067  * returns the port number from which the reply originated.
1068  *
1069  * Return: Returns the upstream port number on success or an error code on
1070  * failure.
1071  */
1072 int tb_cfg_get_upstream_port(struct tb_ctl *ctl, u64 route)
1073 {
1074 	u32 dummy;
1075 	struct tb_cfg_result res = tb_cfg_read_raw(ctl, &dummy, route, 0,
1076 						   TB_CFG_SWITCH, 0, 1,
1077 						   ctl->timeout_msec);
1078 	if (res.err == 1)
1079 		return -EIO;
1080 	if (res.err)
1081 		return res.err;
1082 	return res.response_port;
1083 }
1084