1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Bandgap temperature sensor driver 4 * 5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ 6 * Author: J Keerthy <j-keerthy@ti.com> 7 * Author: Moiz Sonasath <m-sonasath@ti.com> 8 * Couple of fixes, DT and MFD adaptation: 9 * Eduardo Valentin <eduardo.valentin@ti.com> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/export.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/interrupt.h> 17 #include <linux/clk.h> 18 #include <linux/gpio.h> 19 #include <linux/platform_device.h> 20 #include <linux/err.h> 21 #include <linux/types.h> 22 #include <linux/spinlock.h> 23 #include <linux/reboot.h> 24 #include <linux/of_device.h> 25 #include <linux/of_platform.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_gpio.h> 28 #include <linux/io.h> 29 30 #include "ti-bandgap.h" 31 32 static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id); 33 34 /*** Helper functions to access registers and their bitfields ***/ 35 36 /** 37 * ti_bandgap_readl() - simple read helper function 38 * @bgp: pointer to ti_bandgap structure 39 * @reg: desired register (offset) to be read 40 * 41 * Helper function to read bandgap registers. It uses the io remapped area. 42 * Return: the register value. 43 */ 44 static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) 45 { 46 return readl(bgp->base + reg); 47 } 48 49 /** 50 * ti_bandgap_writel() - simple write helper function 51 * @bgp: pointer to ti_bandgap structure 52 * @val: desired register value to be written 53 * @reg: desired register (offset) to be written 54 * 55 * Helper function to write bandgap registers. It uses the io remapped area. 56 */ 57 static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) 58 { 59 writel(val, bgp->base + reg); 60 } 61 62 /** 63 * DOC: macro to update bits. 64 * 65 * RMW_BITS() - used to read, modify and update bandgap bitfields. 66 * The value passed will be shifted. 67 */ 68 #define RMW_BITS(bgp, id, reg, mask, val) \ 69 do { \ 70 struct temp_sensor_registers *t; \ 71 u32 r; \ 72 \ 73 t = bgp->conf->sensors[(id)].registers; \ 74 r = ti_bandgap_readl(bgp, t->reg); \ 75 r &= ~t->mask; \ 76 r |= (val) << __ffs(t->mask); \ 77 ti_bandgap_writel(bgp, r, t->reg); \ 78 } while (0) 79 80 /*** Basic helper functions ***/ 81 82 /** 83 * ti_bandgap_power() - controls the power state of a bandgap device 84 * @bgp: pointer to ti_bandgap structure 85 * @on: desired power state (1 - on, 0 - off) 86 * 87 * Used to power on/off a bandgap device instance. Only used on those 88 * that features tempsoff bit. 89 * 90 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. 91 */ 92 static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) 93 { 94 int i; 95 96 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) 97 return -ENOTSUPP; 98 99 for (i = 0; i < bgp->conf->sensor_count; i++) 100 /* active on 0 */ 101 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); 102 return 0; 103 } 104 105 /** 106 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature 107 * @bgp: pointer to ti_bandgap structure 108 * @reg: desired register (offset) to be read 109 * 110 * Function to read dra7 bandgap sensor temperature. This is done separately 111 * so as to workaround the errata "Bandgap Temperature read Dtemp can be 112 * corrupted" - Errata ID: i814". 113 * Read accesses to registers listed below can be corrupted due to incorrect 114 * resynchronization between clock domains. 115 * Read access to registers below can be corrupted : 116 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4) 117 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n 118 * 119 * Return: the register value. 120 */ 121 static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg) 122 { 123 u32 val1, val2; 124 125 val1 = ti_bandgap_readl(bgp, reg); 126 val2 = ti_bandgap_readl(bgp, reg); 127 128 /* If both times we read the same value then that is right */ 129 if (val1 == val2) 130 return val1; 131 132 /* if val1 and val2 are different read it third time */ 133 return ti_bandgap_readl(bgp, reg); 134 } 135 136 /** 137 * ti_bandgap_read_temp() - helper function to read sensor temperature 138 * @bgp: pointer to ti_bandgap structure 139 * @id: bandgap sensor id 140 * 141 * Function to concentrate the steps to read sensor temperature register. 142 * This function is desired because, depending on bandgap device version, 143 * it might be needed to freeze the bandgap state machine, before fetching 144 * the register value. 145 * 146 * Return: temperature in ADC values. 147 */ 148 static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) 149 { 150 struct temp_sensor_registers *tsr; 151 u32 temp, reg; 152 153 tsr = bgp->conf->sensors[id].registers; 154 reg = tsr->temp_sensor_ctrl; 155 156 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 157 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 158 /* 159 * In case we cannot read from cur_dtemp / dtemp_0, 160 * then we read from the last valid temp read 161 */ 162 reg = tsr->ctrl_dtemp_1; 163 } 164 165 /* read temperature */ 166 if (TI_BANDGAP_HAS(bgp, ERRATA_814)) 167 temp = ti_errata814_bandgap_read_temp(bgp, reg); 168 else 169 temp = ti_bandgap_readl(bgp, reg); 170 171 temp &= tsr->bgap_dtemp_mask; 172 173 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) 174 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 175 176 return temp; 177 } 178 179 /*** IRQ handlers ***/ 180 181 /** 182 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs 183 * @irq: IRQ number 184 * @data: private data (struct ti_bandgap *) 185 * 186 * This is the Talert handler. Use it only if bandgap device features 187 * HAS(TALERT). This handler goes over all sensors and checks their 188 * conditions and acts accordingly. In case there are events pending, 189 * it will reset the event mask to wait for the opposite event (next event). 190 * Every time there is a new event, it will be reported to thermal layer. 191 * 192 * Return: IRQ_HANDLED 193 */ 194 static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) 195 { 196 struct ti_bandgap *bgp = data; 197 struct temp_sensor_registers *tsr; 198 u32 t_hot = 0, t_cold = 0, ctrl; 199 int i; 200 201 spin_lock(&bgp->lock); 202 for (i = 0; i < bgp->conf->sensor_count; i++) { 203 tsr = bgp->conf->sensors[i].registers; 204 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); 205 206 /* Read the status of t_hot */ 207 t_hot = ctrl & tsr->status_hot_mask; 208 209 /* Read the status of t_cold */ 210 t_cold = ctrl & tsr->status_cold_mask; 211 212 if (!t_cold && !t_hot) 213 continue; 214 215 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 216 /* 217 * One TALERT interrupt: Two sources 218 * If the interrupt is due to t_hot then mask t_hot and 219 * and unmask t_cold else mask t_cold and unmask t_hot 220 */ 221 if (t_hot) { 222 ctrl &= ~tsr->mask_hot_mask; 223 ctrl |= tsr->mask_cold_mask; 224 } else if (t_cold) { 225 ctrl &= ~tsr->mask_cold_mask; 226 ctrl |= tsr->mask_hot_mask; 227 } 228 229 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); 230 231 dev_dbg(bgp->dev, 232 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", 233 __func__, bgp->conf->sensors[i].domain, 234 t_hot, t_cold); 235 236 /* report temperature to whom may concern */ 237 if (bgp->conf->report_temperature) 238 bgp->conf->report_temperature(bgp, i); 239 } 240 spin_unlock(&bgp->lock); 241 242 return IRQ_HANDLED; 243 } 244 245 /** 246 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal 247 * @irq: IRQ number 248 * @data: private data (unused) 249 * 250 * This is the Tshut handler. Use it only if bandgap device features 251 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown 252 * the system. 253 * 254 * Return: IRQ_HANDLED 255 */ 256 static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) 257 { 258 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", 259 __func__); 260 261 orderly_poweroff(true); 262 263 return IRQ_HANDLED; 264 } 265 266 /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ 267 268 /** 269 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale 270 * @bgp: struct ti_bandgap pointer 271 * @adc_val: value in ADC representation 272 * @t: address where to write the resulting temperature in mCelsius 273 * 274 * Simple conversion from ADC representation to mCelsius. In case the ADC value 275 * is out of the ADC conv table range, it returns -ERANGE, 0 on success. 276 * The conversion table is indexed by the ADC values. 277 * 278 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val 279 * argument is out of the ADC conv table range. 280 */ 281 static 282 int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) 283 { 284 const struct ti_bandgap_data *conf = bgp->conf; 285 286 /* look up for temperature in the table and return the temperature */ 287 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) 288 return -ERANGE; 289 290 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; 291 return 0; 292 } 293 294 /** 295 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap 296 * @bgp: struct ti_bandgap pointer 297 * @id: bandgap sensor id 298 * 299 * Checks if the bandgap pointer is valid and if the sensor id is also 300 * applicable. 301 * 302 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if 303 * @id cannot index @bgp sensors. 304 */ 305 static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) 306 { 307 if (!bgp || IS_ERR(bgp)) { 308 pr_err("%s: invalid bandgap pointer\n", __func__); 309 return -EINVAL; 310 } 311 312 if ((id < 0) || (id >= bgp->conf->sensor_count)) { 313 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", 314 __func__, id); 315 return -ERANGE; 316 } 317 318 return 0; 319 } 320 321 /** 322 * ti_bandgap_read_counter() - read the sensor counter 323 * @bgp: pointer to bandgap instance 324 * @id: sensor id 325 * @interval: resulting update interval in miliseconds 326 */ 327 static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, 328 int *interval) 329 { 330 struct temp_sensor_registers *tsr; 331 int time; 332 333 tsr = bgp->conf->sensors[id].registers; 334 time = ti_bandgap_readl(bgp, tsr->bgap_counter); 335 time = (time & tsr->counter_mask) >> 336 __ffs(tsr->counter_mask); 337 time = time * 1000 / bgp->clk_rate; 338 *interval = time; 339 } 340 341 /** 342 * ti_bandgap_read_counter_delay() - read the sensor counter delay 343 * @bgp: pointer to bandgap instance 344 * @id: sensor id 345 * @interval: resulting update interval in miliseconds 346 */ 347 static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, 348 int *interval) 349 { 350 struct temp_sensor_registers *tsr; 351 int reg_val; 352 353 tsr = bgp->conf->sensors[id].registers; 354 355 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); 356 reg_val = (reg_val & tsr->mask_counter_delay_mask) >> 357 __ffs(tsr->mask_counter_delay_mask); 358 switch (reg_val) { 359 case 0: 360 *interval = 0; 361 break; 362 case 1: 363 *interval = 1; 364 break; 365 case 2: 366 *interval = 10; 367 break; 368 case 3: 369 *interval = 100; 370 break; 371 case 4: 372 *interval = 250; 373 break; 374 case 5: 375 *interval = 500; 376 break; 377 default: 378 dev_warn(bgp->dev, "Wrong counter delay value read from register %X", 379 reg_val); 380 } 381 } 382 383 /** 384 * ti_bandgap_read_update_interval() - read the sensor update interval 385 * @bgp: pointer to bandgap instance 386 * @id: sensor id 387 * @interval: resulting update interval in miliseconds 388 * 389 * Return: 0 on success or the proper error code 390 */ 391 int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, 392 int *interval) 393 { 394 int ret = 0; 395 396 ret = ti_bandgap_validate(bgp, id); 397 if (ret) 398 goto exit; 399 400 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 401 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 402 ret = -ENOTSUPP; 403 goto exit; 404 } 405 406 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 407 ti_bandgap_read_counter(bgp, id, interval); 408 goto exit; 409 } 410 411 ti_bandgap_read_counter_delay(bgp, id, interval); 412 exit: 413 return ret; 414 } 415 416 /** 417 * ti_bandgap_write_counter_delay() - set the counter_delay 418 * @bgp: pointer to bandgap instance 419 * @id: sensor id 420 * @interval: desired update interval in miliseconds 421 * 422 * Return: 0 on success or the proper error code 423 */ 424 static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, 425 u32 interval) 426 { 427 int rval; 428 429 switch (interval) { 430 case 0: /* Immediate conversion */ 431 rval = 0x0; 432 break; 433 case 1: /* Conversion after ever 1ms */ 434 rval = 0x1; 435 break; 436 case 10: /* Conversion after ever 10ms */ 437 rval = 0x2; 438 break; 439 case 100: /* Conversion after ever 100ms */ 440 rval = 0x3; 441 break; 442 case 250: /* Conversion after ever 250ms */ 443 rval = 0x4; 444 break; 445 case 500: /* Conversion after ever 500ms */ 446 rval = 0x5; 447 break; 448 default: 449 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); 450 return -EINVAL; 451 } 452 453 spin_lock(&bgp->lock); 454 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); 455 spin_unlock(&bgp->lock); 456 457 return 0; 458 } 459 460 /** 461 * ti_bandgap_write_counter() - set the bandgap sensor counter 462 * @bgp: pointer to bandgap instance 463 * @id: sensor id 464 * @interval: desired update interval in miliseconds 465 */ 466 static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, 467 u32 interval) 468 { 469 interval = interval * bgp->clk_rate / 1000; 470 spin_lock(&bgp->lock); 471 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); 472 spin_unlock(&bgp->lock); 473 } 474 475 /** 476 * ti_bandgap_write_update_interval() - set the update interval 477 * @bgp: pointer to bandgap instance 478 * @id: sensor id 479 * @interval: desired update interval in miliseconds 480 * 481 * Return: 0 on success or the proper error code 482 */ 483 int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, 484 int id, u32 interval) 485 { 486 int ret = ti_bandgap_validate(bgp, id); 487 if (ret) 488 goto exit; 489 490 if (!TI_BANDGAP_HAS(bgp, COUNTER) && 491 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { 492 ret = -ENOTSUPP; 493 goto exit; 494 } 495 496 if (TI_BANDGAP_HAS(bgp, COUNTER)) { 497 ti_bandgap_write_counter(bgp, id, interval); 498 goto exit; 499 } 500 501 ret = ti_bandgap_write_counter_delay(bgp, id, interval); 502 exit: 503 return ret; 504 } 505 506 /** 507 * ti_bandgap_read_temperature() - report current temperature 508 * @bgp: pointer to bandgap instance 509 * @id: sensor id 510 * @temperature: resulting temperature 511 * 512 * Return: 0 on success or the proper error code 513 */ 514 int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, 515 int *temperature) 516 { 517 u32 temp; 518 int ret; 519 520 ret = ti_bandgap_validate(bgp, id); 521 if (ret) 522 return ret; 523 524 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) { 525 ret = ti_bandgap_force_single_read(bgp, id); 526 if (ret) 527 return ret; 528 } 529 530 spin_lock(&bgp->lock); 531 temp = ti_bandgap_read_temp(bgp, id); 532 spin_unlock(&bgp->lock); 533 534 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); 535 if (ret) 536 return -EIO; 537 538 *temperature = temp; 539 540 return 0; 541 } 542 543 /** 544 * ti_bandgap_set_sensor_data() - helper function to store thermal 545 * framework related data. 546 * @bgp: pointer to bandgap instance 547 * @id: sensor id 548 * @data: thermal framework related data to be stored 549 * 550 * Return: 0 on success or the proper error code 551 */ 552 int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) 553 { 554 int ret = ti_bandgap_validate(bgp, id); 555 if (ret) 556 return ret; 557 558 bgp->regval[id].data = data; 559 560 return 0; 561 } 562 563 /** 564 * ti_bandgap_get_sensor_data() - helper function to get thermal 565 * framework related data. 566 * @bgp: pointer to bandgap instance 567 * @id: sensor id 568 * 569 * Return: data stored by set function with sensor id on success or NULL 570 */ 571 void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) 572 { 573 int ret = ti_bandgap_validate(bgp, id); 574 if (ret) 575 return ERR_PTR(ret); 576 577 return bgp->regval[id].data; 578 } 579 580 /*** Helper functions used during device initialization ***/ 581 582 /** 583 * ti_bandgap_force_single_read() - executes 1 single ADC conversion 584 * @bgp: pointer to struct ti_bandgap 585 * @id: sensor id which it is desired to read 1 temperature 586 * 587 * Used to initialize the conversion state machine and set it to a valid 588 * state. Called during device initialization and context restore events. 589 * 590 * Return: 0 591 */ 592 static int 593 ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) 594 { 595 u32 counter = 1000; 596 struct temp_sensor_registers *tsr; 597 598 /* Select single conversion mode */ 599 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 600 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); 601 602 /* Start of Conversion = 1 */ 603 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); 604 605 /* Wait for EOCZ going up */ 606 tsr = bgp->conf->sensors[id].registers; 607 608 while (--counter) { 609 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 610 tsr->bgap_eocz_mask) 611 break; 612 } 613 614 /* Start of Conversion = 0 */ 615 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); 616 617 /* Wait for EOCZ going down */ 618 counter = 1000; 619 while (--counter) { 620 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) & 621 tsr->bgap_eocz_mask)) 622 break; 623 } 624 625 return 0; 626 } 627 628 /** 629 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode 630 * @bgp: pointer to struct ti_bandgap 631 * 632 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may 633 * be used for junction temperature monitoring, it is desirable that the 634 * sensors are operational all the time, so that alerts are generated 635 * properly. 636 * 637 * Return: 0 638 */ 639 static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) 640 { 641 int i; 642 643 for (i = 0; i < bgp->conf->sensor_count; i++) { 644 /* Perform a single read just before enabling continuous */ 645 ti_bandgap_force_single_read(bgp, i); 646 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); 647 } 648 649 return 0; 650 } 651 652 /** 653 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor 654 * @bgp: pointer to struct ti_bandgap 655 * @id: id of the individual sensor 656 * @trend: Pointer to trend. 657 * 658 * This function needs to be called to fetch the temperature trend of a 659 * Particular sensor. The function computes the difference in temperature 660 * w.r.t time. For the bandgaps with built in history buffer the temperatures 661 * are read from the buffer and for those without the Buffer -ENOTSUPP is 662 * returned. 663 * 664 * Return: 0 if no error, else return corresponding error. If no 665 * error then the trend value is passed on to trend parameter 666 */ 667 int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) 668 { 669 struct temp_sensor_registers *tsr; 670 u32 temp1, temp2, reg1, reg2; 671 int t1, t2, interval, ret = 0; 672 673 ret = ti_bandgap_validate(bgp, id); 674 if (ret) 675 goto exit; 676 677 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || 678 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { 679 ret = -ENOTSUPP; 680 goto exit; 681 } 682 683 spin_lock(&bgp->lock); 684 685 tsr = bgp->conf->sensors[id].registers; 686 687 /* Freeze and read the last 2 valid readings */ 688 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); 689 reg1 = tsr->ctrl_dtemp_1; 690 reg2 = tsr->ctrl_dtemp_2; 691 692 /* read temperature from history buffer */ 693 temp1 = ti_bandgap_readl(bgp, reg1); 694 temp1 &= tsr->bgap_dtemp_mask; 695 696 temp2 = ti_bandgap_readl(bgp, reg2); 697 temp2 &= tsr->bgap_dtemp_mask; 698 699 /* Convert from adc values to mCelsius temperature */ 700 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); 701 if (ret) 702 goto unfreeze; 703 704 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); 705 if (ret) 706 goto unfreeze; 707 708 /* Fetch the update interval */ 709 ret = ti_bandgap_read_update_interval(bgp, id, &interval); 710 if (ret) 711 goto unfreeze; 712 713 /* Set the interval to 1 ms if bandgap counter delay is not set */ 714 if (interval == 0) 715 interval = 1; 716 717 *trend = (t1 - t2) / interval; 718 719 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", 720 t1, t2, *trend); 721 722 unfreeze: 723 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); 724 spin_unlock(&bgp->lock); 725 exit: 726 return ret; 727 } 728 729 /** 730 * ti_bandgap_tshut_init() - setup and initialize tshut handling 731 * @bgp: pointer to struct ti_bandgap 732 * @pdev: pointer to device struct platform_device 733 * 734 * Call this function only in case the bandgap features HAS(TSHUT). 735 * In this case, the driver needs to handle the TSHUT signal as an IRQ. 736 * The IRQ is wired as a GPIO, and for this purpose, it is required 737 * to specify which GPIO line is used. TSHUT IRQ is fired anytime 738 * one of the bandgap sensors violates the TSHUT high/hot threshold. 739 * And in that case, the system must go off. 740 * 741 * Return: 0 if no error, else error status 742 */ 743 static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, 744 struct platform_device *pdev) 745 { 746 int gpio_nr = bgp->tshut_gpio; 747 int status; 748 749 /* Request for gpio_86 line */ 750 status = gpio_request(gpio_nr, "tshut"); 751 if (status < 0) { 752 dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86); 753 return status; 754 } 755 status = gpio_direction_input(gpio_nr); 756 if (status) { 757 dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr); 758 return status; 759 } 760 761 status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler, 762 IRQF_TRIGGER_RISING, "tshut", NULL); 763 if (status) { 764 gpio_free(gpio_nr); 765 dev_err(bgp->dev, "request irq failed for TSHUT"); 766 } 767 768 return 0; 769 } 770 771 /** 772 * ti_bandgap_alert_init() - setup and initialize talert handling 773 * @bgp: pointer to struct ti_bandgap 774 * @pdev: pointer to device struct platform_device 775 * 776 * Call this function only in case the bandgap features HAS(TALERT). 777 * In this case, the driver needs to handle the TALERT signals as an IRQs. 778 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) 779 * are violated. In these situation, the driver must reprogram the thresholds, 780 * accordingly to specified policy. 781 * 782 * Return: 0 if no error, else return corresponding error. 783 */ 784 static int ti_bandgap_talert_init(struct ti_bandgap *bgp, 785 struct platform_device *pdev) 786 { 787 int ret; 788 789 bgp->irq = platform_get_irq(pdev, 0); 790 if (bgp->irq < 0) { 791 dev_err(&pdev->dev, "get_irq failed\n"); 792 return bgp->irq; 793 } 794 ret = request_threaded_irq(bgp->irq, NULL, 795 ti_bandgap_talert_irq_handler, 796 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 797 "talert", bgp); 798 if (ret) { 799 dev_err(&pdev->dev, "Request threaded irq failed.\n"); 800 return ret; 801 } 802 803 return 0; 804 } 805 806 static const struct of_device_id of_ti_bandgap_match[]; 807 /** 808 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap 809 * @pdev: pointer to device struct platform_device 810 * 811 * Used to read the device tree properties accordingly to the bandgap 812 * matching version. Based on bandgap version and its capabilities it 813 * will build a struct ti_bandgap out of the required DT entries. 814 * 815 * Return: valid bandgap structure if successful, else returns ERR_PTR 816 * return value must be verified with IS_ERR. 817 */ 818 static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) 819 { 820 struct device_node *node = pdev->dev.of_node; 821 const struct of_device_id *of_id; 822 struct ti_bandgap *bgp; 823 struct resource *res; 824 int i; 825 826 /* just for the sake */ 827 if (!node) { 828 dev_err(&pdev->dev, "no platform information available\n"); 829 return ERR_PTR(-EINVAL); 830 } 831 832 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); 833 if (!bgp) 834 return ERR_PTR(-ENOMEM); 835 836 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); 837 if (of_id) 838 bgp->conf = of_id->data; 839 840 /* register shadow for context save and restore */ 841 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count, 842 sizeof(*bgp->regval), GFP_KERNEL); 843 if (!bgp->regval) 844 return ERR_PTR(-ENOMEM); 845 846 i = 0; 847 do { 848 void __iomem *chunk; 849 850 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 851 if (!res) 852 break; 853 chunk = devm_ioremap_resource(&pdev->dev, res); 854 if (i == 0) 855 bgp->base = chunk; 856 if (IS_ERR(chunk)) 857 return ERR_CAST(chunk); 858 859 i++; 860 } while (res); 861 862 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 863 bgp->tshut_gpio = of_get_gpio(node, 0); 864 if (!gpio_is_valid(bgp->tshut_gpio)) { 865 dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n", 866 bgp->tshut_gpio); 867 return ERR_PTR(-EINVAL); 868 } 869 } 870 871 return bgp; 872 } 873 874 /*** Device driver call backs ***/ 875 876 static 877 int ti_bandgap_probe(struct platform_device *pdev) 878 { 879 struct ti_bandgap *bgp; 880 int clk_rate, ret, i; 881 882 bgp = ti_bandgap_build(pdev); 883 if (IS_ERR(bgp)) { 884 dev_err(&pdev->dev, "failed to fetch platform data\n"); 885 return PTR_ERR(bgp); 886 } 887 bgp->dev = &pdev->dev; 888 889 if (TI_BANDGAP_HAS(bgp, UNRELIABLE)) 890 dev_warn(&pdev->dev, 891 "This OMAP thermal sensor is unreliable. You've been warned\n"); 892 893 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 894 ret = ti_bandgap_tshut_init(bgp, pdev); 895 if (ret) { 896 dev_err(&pdev->dev, 897 "failed to initialize system tshut IRQ\n"); 898 return ret; 899 } 900 } 901 902 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); 903 if (IS_ERR(bgp->fclock)) { 904 dev_err(&pdev->dev, "failed to request fclock reference\n"); 905 ret = PTR_ERR(bgp->fclock); 906 goto free_irqs; 907 } 908 909 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); 910 if (IS_ERR(bgp->div_clk)) { 911 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n"); 912 ret = PTR_ERR(bgp->div_clk); 913 goto put_fclock; 914 } 915 916 for (i = 0; i < bgp->conf->sensor_count; i++) { 917 struct temp_sensor_registers *tsr; 918 u32 val; 919 920 tsr = bgp->conf->sensors[i].registers; 921 /* 922 * check if the efuse has a non-zero value if not 923 * it is an untrimmed sample and the temperatures 924 * may not be accurate 925 */ 926 val = ti_bandgap_readl(bgp, tsr->bgap_efuse); 927 if (!val) 928 dev_info(&pdev->dev, 929 "Non-trimmed BGAP, Temp not accurate\n"); 930 } 931 932 clk_rate = clk_round_rate(bgp->div_clk, 933 bgp->conf->sensors[0].ts_data->max_freq); 934 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || 935 clk_rate <= 0) { 936 ret = -ENODEV; 937 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); 938 goto put_clks; 939 } 940 941 ret = clk_set_rate(bgp->div_clk, clk_rate); 942 if (ret) 943 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); 944 945 bgp->clk_rate = clk_rate; 946 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 947 clk_prepare_enable(bgp->fclock); 948 949 950 spin_lock_init(&bgp->lock); 951 bgp->dev = &pdev->dev; 952 platform_set_drvdata(pdev, bgp); 953 954 ti_bandgap_power(bgp, true); 955 956 /* Set default counter to 1 for now */ 957 if (TI_BANDGAP_HAS(bgp, COUNTER)) 958 for (i = 0; i < bgp->conf->sensor_count; i++) 959 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); 960 961 /* Set default thresholds for alert and shutdown */ 962 for (i = 0; i < bgp->conf->sensor_count; i++) { 963 struct temp_sensor_data *ts_data; 964 965 ts_data = bgp->conf->sensors[i].ts_data; 966 967 if (TI_BANDGAP_HAS(bgp, TALERT)) { 968 /* Set initial Talert thresholds */ 969 RMW_BITS(bgp, i, bgap_threshold, 970 threshold_tcold_mask, ts_data->t_cold); 971 RMW_BITS(bgp, i, bgap_threshold, 972 threshold_thot_mask, ts_data->t_hot); 973 /* Enable the alert events */ 974 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); 975 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); 976 } 977 978 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { 979 /* Set initial Tshut thresholds */ 980 RMW_BITS(bgp, i, tshut_threshold, 981 tshut_hot_mask, ts_data->tshut_hot); 982 RMW_BITS(bgp, i, tshut_threshold, 983 tshut_cold_mask, ts_data->tshut_cold); 984 } 985 } 986 987 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 988 ti_bandgap_set_continuous_mode(bgp); 989 990 /* Set .250 seconds time as default counter */ 991 if (TI_BANDGAP_HAS(bgp, COUNTER)) 992 for (i = 0; i < bgp->conf->sensor_count; i++) 993 RMW_BITS(bgp, i, bgap_counter, counter_mask, 994 bgp->clk_rate / 4); 995 996 /* Every thing is good? Then expose the sensors */ 997 for (i = 0; i < bgp->conf->sensor_count; i++) { 998 char *domain; 999 1000 if (bgp->conf->sensors[i].register_cooling) { 1001 ret = bgp->conf->sensors[i].register_cooling(bgp, i); 1002 if (ret) 1003 goto remove_sensors; 1004 } 1005 1006 if (bgp->conf->expose_sensor) { 1007 domain = bgp->conf->sensors[i].domain; 1008 ret = bgp->conf->expose_sensor(bgp, i, domain); 1009 if (ret) 1010 goto remove_last_cooling; 1011 } 1012 } 1013 1014 /* 1015 * Enable the Interrupts once everything is set. Otherwise irq handler 1016 * might be called as soon as it is enabled where as rest of framework 1017 * is still getting initialised. 1018 */ 1019 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1020 ret = ti_bandgap_talert_init(bgp, pdev); 1021 if (ret) { 1022 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); 1023 i = bgp->conf->sensor_count; 1024 goto disable_clk; 1025 } 1026 } 1027 1028 return 0; 1029 1030 remove_last_cooling: 1031 if (bgp->conf->sensors[i].unregister_cooling) 1032 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1033 remove_sensors: 1034 for (i--; i >= 0; i--) { 1035 if (bgp->conf->sensors[i].unregister_cooling) 1036 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1037 if (bgp->conf->remove_sensor) 1038 bgp->conf->remove_sensor(bgp, i); 1039 } 1040 ti_bandgap_power(bgp, false); 1041 disable_clk: 1042 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1043 clk_disable_unprepare(bgp->fclock); 1044 put_clks: 1045 clk_put(bgp->div_clk); 1046 put_fclock: 1047 clk_put(bgp->fclock); 1048 free_irqs: 1049 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 1050 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL); 1051 gpio_free(bgp->tshut_gpio); 1052 } 1053 1054 return ret; 1055 } 1056 1057 static 1058 int ti_bandgap_remove(struct platform_device *pdev) 1059 { 1060 struct ti_bandgap *bgp = platform_get_drvdata(pdev); 1061 int i; 1062 1063 /* First thing is to remove sensor interfaces */ 1064 for (i = 0; i < bgp->conf->sensor_count; i++) { 1065 if (bgp->conf->sensors[i].unregister_cooling) 1066 bgp->conf->sensors[i].unregister_cooling(bgp, i); 1067 1068 if (bgp->conf->remove_sensor) 1069 bgp->conf->remove_sensor(bgp, i); 1070 } 1071 1072 ti_bandgap_power(bgp, false); 1073 1074 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1075 clk_disable_unprepare(bgp->fclock); 1076 clk_put(bgp->fclock); 1077 clk_put(bgp->div_clk); 1078 1079 if (TI_BANDGAP_HAS(bgp, TALERT)) 1080 free_irq(bgp->irq, bgp); 1081 1082 if (TI_BANDGAP_HAS(bgp, TSHUT)) { 1083 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL); 1084 gpio_free(bgp->tshut_gpio); 1085 } 1086 1087 return 0; 1088 } 1089 1090 #ifdef CONFIG_PM_SLEEP 1091 static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) 1092 { 1093 int i; 1094 1095 for (i = 0; i < bgp->conf->sensor_count; i++) { 1096 struct temp_sensor_registers *tsr; 1097 struct temp_sensor_regval *rval; 1098 1099 rval = &bgp->regval[i]; 1100 tsr = bgp->conf->sensors[i].registers; 1101 1102 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1103 rval->bg_mode_ctrl = ti_bandgap_readl(bgp, 1104 tsr->bgap_mode_ctrl); 1105 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1106 rval->bg_counter = ti_bandgap_readl(bgp, 1107 tsr->bgap_counter); 1108 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1109 rval->bg_threshold = ti_bandgap_readl(bgp, 1110 tsr->bgap_threshold); 1111 rval->bg_ctrl = ti_bandgap_readl(bgp, 1112 tsr->bgap_mask_ctrl); 1113 } 1114 1115 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1116 rval->tshut_threshold = ti_bandgap_readl(bgp, 1117 tsr->tshut_threshold); 1118 } 1119 1120 return 0; 1121 } 1122 1123 static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) 1124 { 1125 int i; 1126 1127 for (i = 0; i < bgp->conf->sensor_count; i++) { 1128 struct temp_sensor_registers *tsr; 1129 struct temp_sensor_regval *rval; 1130 u32 val = 0; 1131 1132 rval = &bgp->regval[i]; 1133 tsr = bgp->conf->sensors[i].registers; 1134 1135 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1136 val = ti_bandgap_readl(bgp, tsr->bgap_counter); 1137 1138 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) 1139 ti_bandgap_writel(bgp, rval->tshut_threshold, 1140 tsr->tshut_threshold); 1141 /* Force immediate temperature measurement and update 1142 * of the DTEMP field 1143 */ 1144 ti_bandgap_force_single_read(bgp, i); 1145 1146 if (TI_BANDGAP_HAS(bgp, COUNTER)) 1147 ti_bandgap_writel(bgp, rval->bg_counter, 1148 tsr->bgap_counter); 1149 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) 1150 ti_bandgap_writel(bgp, rval->bg_mode_ctrl, 1151 tsr->bgap_mode_ctrl); 1152 if (TI_BANDGAP_HAS(bgp, TALERT)) { 1153 ti_bandgap_writel(bgp, rval->bg_threshold, 1154 tsr->bgap_threshold); 1155 ti_bandgap_writel(bgp, rval->bg_ctrl, 1156 tsr->bgap_mask_ctrl); 1157 } 1158 } 1159 1160 return 0; 1161 } 1162 1163 static int ti_bandgap_suspend(struct device *dev) 1164 { 1165 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1166 int err; 1167 1168 err = ti_bandgap_save_ctxt(bgp); 1169 ti_bandgap_power(bgp, false); 1170 1171 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1172 clk_disable_unprepare(bgp->fclock); 1173 1174 return err; 1175 } 1176 1177 static int ti_bandgap_resume(struct device *dev) 1178 { 1179 struct ti_bandgap *bgp = dev_get_drvdata(dev); 1180 1181 if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) 1182 clk_prepare_enable(bgp->fclock); 1183 1184 ti_bandgap_power(bgp, true); 1185 1186 return ti_bandgap_restore_ctxt(bgp); 1187 } 1188 static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, 1189 ti_bandgap_resume); 1190 1191 #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) 1192 #else 1193 #define DEV_PM_OPS NULL 1194 #endif 1195 1196 static const struct of_device_id of_ti_bandgap_match[] = { 1197 #ifdef CONFIG_OMAP3_THERMAL 1198 { 1199 .compatible = "ti,omap34xx-bandgap", 1200 .data = (void *)&omap34xx_data, 1201 }, 1202 { 1203 .compatible = "ti,omap36xx-bandgap", 1204 .data = (void *)&omap36xx_data, 1205 }, 1206 #endif 1207 #ifdef CONFIG_OMAP4_THERMAL 1208 { 1209 .compatible = "ti,omap4430-bandgap", 1210 .data = (void *)&omap4430_data, 1211 }, 1212 { 1213 .compatible = "ti,omap4460-bandgap", 1214 .data = (void *)&omap4460_data, 1215 }, 1216 { 1217 .compatible = "ti,omap4470-bandgap", 1218 .data = (void *)&omap4470_data, 1219 }, 1220 #endif 1221 #ifdef CONFIG_OMAP5_THERMAL 1222 { 1223 .compatible = "ti,omap5430-bandgap", 1224 .data = (void *)&omap5430_data, 1225 }, 1226 #endif 1227 #ifdef CONFIG_DRA752_THERMAL 1228 { 1229 .compatible = "ti,dra752-bandgap", 1230 .data = (void *)&dra752_data, 1231 }, 1232 #endif 1233 /* Sentinel */ 1234 { }, 1235 }; 1236 MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); 1237 1238 static struct platform_driver ti_bandgap_sensor_driver = { 1239 .probe = ti_bandgap_probe, 1240 .remove = ti_bandgap_remove, 1241 .driver = { 1242 .name = "ti-soc-thermal", 1243 .pm = DEV_PM_OPS, 1244 .of_match_table = of_ti_bandgap_match, 1245 }, 1246 }; 1247 1248 module_platform_driver(ti_bandgap_sensor_driver); 1249 1250 MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); 1251 MODULE_LICENSE("GPL v2"); 1252 MODULE_ALIAS("platform:ti-soc-thermal"); 1253 MODULE_AUTHOR("Texas Instrument Inc."); 1254