1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2023 Linaro Limited 4 * 5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org> 6 * 7 * Thermal subsystem debug support 8 */ 9 #include <linux/debugfs.h> 10 #include <linux/ktime.h> 11 #include <linux/list.h> 12 #include <linux/minmax.h> 13 #include <linux/mutex.h> 14 #include <linux/thermal.h> 15 16 #include "thermal_core.h" 17 18 static struct dentry *d_root; 19 static struct dentry *d_cdev; 20 static struct dentry *d_tz; 21 22 /* 23 * Length of the string containing the thermal zone id or the cooling 24 * device id, including the ending nul character. We can reasonably 25 * assume there won't be more than 256 thermal zones as the maximum 26 * observed today is around 32. 27 */ 28 #define IDSLENGTH 4 29 30 /* 31 * The cooling device transition list is stored in a hash table where 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices 33 * have dozen of states but some can have much more, so a hash table 34 * is more adequate in this case, because the cost of browsing the entire 35 * list when storing the transitions may not be negligible. 36 */ 37 #define CDEVSTATS_HASH_SIZE 16 38 39 /** 40 * struct cdev_debugfs - per cooling device statistics structure 41 * A cooling device can have a high number of states. Showing the 42 * transitions on a matrix based representation can be overkill given 43 * most of the transitions won't happen and we end up with a matrix 44 * filled with zero. Instead, we show the transitions which actually 45 * happened. 46 * 47 * Every transition updates the current_state and the timestamp. The 48 * transitions and the durations are stored in lists. 49 * 50 * @total: the number of transitions for this cooling device 51 * @current_state: the current cooling device state 52 * @timestamp: the state change timestamp 53 * @transitions: an array of lists containing the state transitions 54 * @durations: an array of lists containing the residencies of each state 55 */ 56 struct cdev_debugfs { 57 u32 total; 58 int current_state; 59 ktime_t timestamp; 60 struct list_head transitions[CDEVSTATS_HASH_SIZE]; 61 struct list_head durations[CDEVSTATS_HASH_SIZE]; 62 }; 63 64 /** 65 * struct cdev_record - Common structure for cooling device entry 66 * 67 * The following common structure allows to store the information 68 * related to the transitions and to the state residencies. They are 69 * identified with a id which is associated to a value. It is used as 70 * nodes for the "transitions" and "durations" above. 71 * 72 * @node: node to insert the structure in a list 73 * @id: identifier of the value which can be a state or a transition 74 * @residency: a ktime_t representing a state residency duration 75 * @count: a number of occurrences 76 */ 77 struct cdev_record { 78 struct list_head node; 79 int id; 80 union { 81 ktime_t residency; 82 u64 count; 83 }; 84 }; 85 86 /** 87 * struct trip_stats - Thermal trip statistics 88 * 89 * The trip_stats structure has the relevant information to show the 90 * statistics related to temperature going above a trip point. 91 * 92 * @timestamp: the trip crossing timestamp 93 * @duration: total time when the zone temperature was above the trip point 94 * @count: the number of times the zone temperature was above the trip point 95 * @max: maximum recorded temperature above the trip point 96 * @min: minimum recorded temperature above the trip point 97 * @avg: average temperature above the trip point 98 */ 99 struct trip_stats { 100 ktime_t timestamp; 101 ktime_t duration; 102 int count; 103 int max; 104 int min; 105 int avg; 106 }; 107 108 /** 109 * struct tz_episode - A mitigation episode information 110 * 111 * The tz_episode structure describes a mitigation episode. A 112 * mitigation episode begins the trip point with the lower temperature 113 * is crossed the way up and ends when it is crossed the way 114 * down. During this episode we can have multiple trip points crossed 115 * the way up and down if there are multiple trip described in the 116 * firmware after the lowest temperature trip point. 117 * 118 * @timestamp: first trip point crossed the way up 119 * @duration: total duration of the mitigation episode 120 * @node: a list element to be added to the list of tz events 121 * @trip_stats: per trip point statistics, flexible array 122 */ 123 struct tz_episode { 124 ktime_t timestamp; 125 ktime_t duration; 126 struct list_head node; 127 struct trip_stats trip_stats[]; 128 }; 129 130 /** 131 * struct tz_debugfs - Store all mitigation episodes for a thermal zone 132 * 133 * The tz_debugfs structure contains the list of the mitigation 134 * episodes and has to track which trip point has been crossed in 135 * order to handle correctly nested trip point mitigation episodes. 136 * 137 * We keep the history of the trip point crossed in an array and as we 138 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, 139 * we keep track of the current position in the history array. 140 * 141 * @tz_episodes: a list of thermal mitigation episodes 142 * @trips_crossed: an array of trip points crossed by id 143 * @nr_trips: the number of trip points currently being crossed 144 */ 145 struct tz_debugfs { 146 struct list_head tz_episodes; 147 int *trips_crossed; 148 int nr_trips; 149 }; 150 151 /** 152 * struct thermal_debugfs - High level structure for a thermal object in debugfs 153 * 154 * The thermal_debugfs structure is the common structure used by the 155 * cooling device or the thermal zone to store the statistics. 156 * 157 * @d_top: top directory of the thermal object directory 158 * @lock: per object lock to protect the internals 159 * 160 * @cdev_dbg: a cooling device debug structure 161 * @tz_dbg: a thermal zone debug structure 162 */ 163 struct thermal_debugfs { 164 struct dentry *d_top; 165 struct mutex lock; 166 union { 167 struct cdev_debugfs cdev_dbg; 168 struct tz_debugfs tz_dbg; 169 }; 170 }; 171 172 void thermal_debug_init(void) 173 { 174 d_root = debugfs_create_dir("thermal", NULL); 175 if (!d_root) 176 return; 177 178 d_cdev = debugfs_create_dir("cooling_devices", d_root); 179 if (!d_cdev) 180 return; 181 182 d_tz = debugfs_create_dir("thermal_zones", d_root); 183 } 184 185 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) 186 { 187 struct thermal_debugfs *thermal_dbg; 188 char ids[IDSLENGTH]; 189 190 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); 191 if (!thermal_dbg) 192 return NULL; 193 194 mutex_init(&thermal_dbg->lock); 195 196 snprintf(ids, IDSLENGTH, "%d", id); 197 198 thermal_dbg->d_top = debugfs_create_dir(ids, d); 199 if (!thermal_dbg->d_top) { 200 kfree(thermal_dbg); 201 return NULL; 202 } 203 204 return thermal_dbg; 205 } 206 207 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) 208 { 209 if (!thermal_dbg) 210 return; 211 212 debugfs_remove(thermal_dbg->d_top); 213 214 kfree(thermal_dbg); 215 } 216 217 static struct cdev_record * 218 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, 219 struct list_head *lists, int id) 220 { 221 struct cdev_record *cdev_record; 222 223 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); 224 if (!cdev_record) 225 return NULL; 226 227 cdev_record->id = id; 228 INIT_LIST_HEAD(&cdev_record->node); 229 list_add_tail(&cdev_record->node, 230 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); 231 232 return cdev_record; 233 } 234 235 static struct cdev_record * 236 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, 237 struct list_head *lists, int id) 238 { 239 struct cdev_record *entry; 240 241 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) 242 if (entry->id == id) 243 return entry; 244 245 return NULL; 246 } 247 248 static struct cdev_record * 249 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, 250 struct list_head *lists, int id) 251 { 252 struct cdev_record *cdev_record; 253 254 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); 255 if (cdev_record) 256 return cdev_record; 257 258 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); 259 } 260 261 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) 262 { 263 int i; 264 struct cdev_record *entry, *tmp; 265 266 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 267 268 list_for_each_entry_safe(entry, tmp, 269 &cdev_dbg->transitions[i], node) { 270 list_del(&entry->node); 271 kfree(entry); 272 } 273 274 list_for_each_entry_safe(entry, tmp, 275 &cdev_dbg->durations[i], node) { 276 list_del(&entry->node); 277 kfree(entry); 278 } 279 } 280 281 cdev_dbg->total = 0; 282 } 283 284 static void *cdev_seq_start(struct seq_file *s, loff_t *pos) 285 { 286 struct thermal_debugfs *thermal_dbg = s->private; 287 288 mutex_lock(&thermal_dbg->lock); 289 290 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 291 } 292 293 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) 294 { 295 (*pos)++; 296 297 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 298 } 299 300 static void cdev_seq_stop(struct seq_file *s, void *v) 301 { 302 struct thermal_debugfs *thermal_dbg = s->private; 303 304 mutex_unlock(&thermal_dbg->lock); 305 } 306 307 static int cdev_tt_seq_show(struct seq_file *s, void *v) 308 { 309 struct thermal_debugfs *thermal_dbg = s->private; 310 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 311 struct list_head *transitions = cdev_dbg->transitions; 312 struct cdev_record *entry; 313 int i = *(loff_t *)v; 314 315 if (!i) 316 seq_puts(s, "Transition\tOccurences\n"); 317 318 list_for_each_entry(entry, &transitions[i], node) { 319 /* 320 * Assuming maximum cdev states is 1024, the longer 321 * string for a transition would be "1024->1024\0" 322 */ 323 char buffer[11]; 324 325 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", 326 entry->id >> 16, entry->id & 0xFFFF); 327 328 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); 329 } 330 331 return 0; 332 } 333 334 static const struct seq_operations tt_sops = { 335 .start = cdev_seq_start, 336 .next = cdev_seq_next, 337 .stop = cdev_seq_stop, 338 .show = cdev_tt_seq_show, 339 }; 340 341 DEFINE_SEQ_ATTRIBUTE(tt); 342 343 static int cdev_dt_seq_show(struct seq_file *s, void *v) 344 { 345 struct thermal_debugfs *thermal_dbg = s->private; 346 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 347 struct list_head *durations = cdev_dbg->durations; 348 struct cdev_record *entry; 349 int i = *(loff_t *)v; 350 351 if (!i) 352 seq_puts(s, "State\tResidency\n"); 353 354 list_for_each_entry(entry, &durations[i], node) { 355 s64 duration = ktime_to_ms(entry->residency); 356 357 if (entry->id == cdev_dbg->current_state) 358 duration += ktime_ms_delta(ktime_get(), 359 cdev_dbg->timestamp); 360 361 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); 362 } 363 364 return 0; 365 } 366 367 static const struct seq_operations dt_sops = { 368 .start = cdev_seq_start, 369 .next = cdev_seq_next, 370 .stop = cdev_seq_stop, 371 .show = cdev_dt_seq_show, 372 }; 373 374 DEFINE_SEQ_ATTRIBUTE(dt); 375 376 static int cdev_clear_set(void *data, u64 val) 377 { 378 struct thermal_debugfs *thermal_dbg = data; 379 380 if (!val) 381 return -EINVAL; 382 383 mutex_lock(&thermal_dbg->lock); 384 385 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 386 387 mutex_unlock(&thermal_dbg->lock); 388 389 return 0; 390 } 391 392 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); 393 394 /** 395 * thermal_debug_cdev_state_update - Update a cooling device state change 396 * 397 * Computes a transition and the duration of the previous state residency. 398 * 399 * @cdev : a pointer to a cooling device 400 * @new_state: an integer corresponding to the new cooling device state 401 */ 402 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, 403 int new_state) 404 { 405 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 406 struct cdev_debugfs *cdev_dbg; 407 struct cdev_record *cdev_record; 408 int transition, old_state; 409 410 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) 411 return; 412 413 mutex_lock(&thermal_dbg->lock); 414 415 cdev_dbg = &thermal_dbg->cdev_dbg; 416 417 old_state = cdev_dbg->current_state; 418 419 /* 420 * Get the old state information in the durations list. If 421 * this one does not exist, a new allocated one will be 422 * returned. Recompute the total duration in the old state and 423 * get a new timestamp for the new state. 424 */ 425 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 426 cdev_dbg->durations, 427 old_state); 428 if (cdev_record) { 429 ktime_t now = ktime_get(); 430 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); 431 cdev_record->residency = ktime_add(cdev_record->residency, delta); 432 cdev_dbg->timestamp = now; 433 } 434 435 cdev_dbg->current_state = new_state; 436 transition = (old_state << 16) | new_state; 437 438 /* 439 * Get the transition in the transitions list. If this one 440 * does not exist, a new allocated one will be returned. 441 * Increment the occurrence of this transition which is stored 442 * in the value field. 443 */ 444 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 445 cdev_dbg->transitions, 446 transition); 447 if (cdev_record) 448 cdev_record->count++; 449 450 cdev_dbg->total++; 451 452 mutex_unlock(&thermal_dbg->lock); 453 } 454 455 /** 456 * thermal_debug_cdev_add - Add a cooling device debugfs entry 457 * 458 * Allocates a cooling device object for debug, initializes the 459 * statistics and create the entries in sysfs. 460 * @cdev: a pointer to a cooling device 461 */ 462 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev) 463 { 464 struct thermal_debugfs *thermal_dbg; 465 struct cdev_debugfs *cdev_dbg; 466 int i; 467 468 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); 469 if (!thermal_dbg) 470 return; 471 472 cdev_dbg = &thermal_dbg->cdev_dbg; 473 474 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 475 INIT_LIST_HEAD(&cdev_dbg->transitions[i]); 476 INIT_LIST_HEAD(&cdev_dbg->durations[i]); 477 } 478 479 cdev_dbg->current_state = 0; 480 cdev_dbg->timestamp = ktime_get(); 481 482 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, 483 thermal_dbg, &tt_fops); 484 485 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, 486 thermal_dbg, &dt_fops); 487 488 debugfs_create_file("clear", 0200, thermal_dbg->d_top, 489 thermal_dbg, &cdev_clear_fops); 490 491 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, 492 &cdev_dbg->total); 493 494 cdev->debugfs = thermal_dbg; 495 } 496 497 /** 498 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry 499 * 500 * Frees the statistics memory data and remove the debugfs entry 501 * 502 * @cdev: a pointer to a cooling device 503 */ 504 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) 505 { 506 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 507 508 if (!thermal_dbg) 509 return; 510 511 mutex_lock(&thermal_dbg->lock); 512 513 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 514 cdev->debugfs = NULL; 515 516 mutex_unlock(&thermal_dbg->lock); 517 518 thermal_debugfs_remove_id(thermal_dbg); 519 } 520 521 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, 522 ktime_t now) 523 { 524 struct tz_episode *tze; 525 int i; 526 527 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); 528 if (!tze) 529 return NULL; 530 531 INIT_LIST_HEAD(&tze->node); 532 tze->timestamp = now; 533 534 for (i = 0; i < tz->num_trips; i++) { 535 tze->trip_stats[i].min = INT_MAX; 536 tze->trip_stats[i].max = INT_MIN; 537 } 538 539 return tze; 540 } 541 542 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, 543 const struct thermal_trip *trip) 544 { 545 struct tz_episode *tze; 546 struct tz_debugfs *tz_dbg; 547 struct thermal_debugfs *thermal_dbg = tz->debugfs; 548 int temperature = tz->temperature; 549 int trip_id = thermal_zone_trip_id(tz, trip); 550 ktime_t now = ktime_get(); 551 552 if (!thermal_dbg) 553 return; 554 555 mutex_lock(&thermal_dbg->lock); 556 557 tz_dbg = &thermal_dbg->tz_dbg; 558 559 /* 560 * The mitigation is starting. A mitigation can contain 561 * several episodes where each of them is related to a 562 * temperature crossing a trip point. The episodes are 563 * nested. That means when the temperature is crossing the 564 * first trip point, the duration begins to be measured. If 565 * the temperature continues to increase and reaches the 566 * second trip point, the duration of the first trip must be 567 * also accumulated. 568 * 569 * eg. 570 * 571 * temp 572 * ^ 573 * | -------- 574 * trip 2 / \ ------ 575 * | /| |\ /| |\ 576 * trip 1 / | | `---- | | \ 577 * | /| | | | | |\ 578 * trip 0 / | | | | | | \ 579 * | /| | | | | | | |\ 580 * | / | | | | | | | | `-- 581 * | / | | | | | | | | 582 * |----- | | | | | | | | 583 * | | | | | | | | | 584 * --------|-|-|--------|--------|------|-|-|------------------> time 585 * | | |<--t2-->| |<-t2'>| | | 586 * | | | | 587 * | |<------------t1------------>| | 588 * | | 589 * |<-------------t0--------------->| 590 * 591 */ 592 if (!tz_dbg->nr_trips) { 593 tze = thermal_debugfs_tz_event_alloc(tz, now); 594 if (!tze) 595 goto unlock; 596 597 list_add(&tze->node, &tz_dbg->tz_episodes); 598 } 599 600 /* 601 * Each time a trip point is crossed the way up, the trip_id 602 * is stored in the trip_crossed array and the nr_trips is 603 * incremented. A nr_trips equal to zero means we are entering 604 * a mitigation episode. 605 * 606 * The trip ids may not be in the ascending order but the 607 * result in the array trips_crossed will be in the ascending 608 * temperature order. The function detecting when a trip point 609 * is crossed the way down will handle the very rare case when 610 * the trip points may have been reordered during this 611 * mitigation episode. 612 */ 613 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; 614 615 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 616 tze->trip_stats[trip_id].timestamp = now; 617 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, temperature); 618 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, temperature); 619 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg + 620 (temperature - tze->trip_stats[trip_id].avg) / 621 tze->trip_stats[trip_id].count; 622 623 unlock: 624 mutex_unlock(&thermal_dbg->lock); 625 } 626 627 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, 628 const struct thermal_trip *trip) 629 { 630 struct thermal_debugfs *thermal_dbg = tz->debugfs; 631 struct tz_episode *tze; 632 struct tz_debugfs *tz_dbg; 633 ktime_t delta, now = ktime_get(); 634 int trip_id = thermal_zone_trip_id(tz, trip); 635 int i; 636 637 if (!thermal_dbg) 638 return; 639 640 mutex_lock(&thermal_dbg->lock); 641 642 tz_dbg = &thermal_dbg->tz_dbg; 643 644 /* 645 * The temperature crosses the way down but there was not 646 * mitigation detected before. That may happen when the 647 * temperature is greater than a trip point when registering a 648 * thermal zone, which is a common use case as the kernel has 649 * no mitigation mechanism yet at boot time. 650 */ 651 if (!tz_dbg->nr_trips) 652 goto out; 653 654 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { 655 if (tz_dbg->trips_crossed[i] == trip_id) 656 break; 657 } 658 659 if (i < 0) 660 goto out; 661 662 tz_dbg->nr_trips--; 663 664 if (i < tz_dbg->nr_trips) 665 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; 666 667 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 668 669 delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp); 670 671 tze->trip_stats[trip_id].duration = 672 ktime_add(delta, tze->trip_stats[trip_id].duration); 673 674 /* 675 * This event closes the mitigation as we are crossing the 676 * last trip point the way down. 677 */ 678 if (!tz_dbg->nr_trips) 679 tze->duration = ktime_sub(now, tze->timestamp); 680 681 out: 682 mutex_unlock(&thermal_dbg->lock); 683 } 684 685 void thermal_debug_update_temp(struct thermal_zone_device *tz) 686 { 687 struct thermal_debugfs *thermal_dbg = tz->debugfs; 688 struct tz_episode *tze; 689 struct tz_debugfs *tz_dbg; 690 int trip_id, i; 691 692 if (!thermal_dbg) 693 return; 694 695 mutex_lock(&thermal_dbg->lock); 696 697 tz_dbg = &thermal_dbg->tz_dbg; 698 699 if (!tz_dbg->nr_trips) 700 goto out; 701 702 for (i = 0; i < tz_dbg->nr_trips; i++) { 703 trip_id = tz_dbg->trips_crossed[i]; 704 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 705 tze->trip_stats[trip_id].count++; 706 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature); 707 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature); 708 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg + 709 (tz->temperature - tze->trip_stats[trip_id].avg) / 710 tze->trip_stats[trip_id].count; 711 } 712 out: 713 mutex_unlock(&thermal_dbg->lock); 714 } 715 716 static void *tze_seq_start(struct seq_file *s, loff_t *pos) 717 { 718 struct thermal_zone_device *tz = s->private; 719 struct thermal_debugfs *thermal_dbg = tz->debugfs; 720 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 721 722 mutex_lock(&thermal_dbg->lock); 723 724 return seq_list_start(&tz_dbg->tz_episodes, *pos); 725 } 726 727 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) 728 { 729 struct thermal_zone_device *tz = s->private; 730 struct thermal_debugfs *thermal_dbg = tz->debugfs; 731 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 732 733 return seq_list_next(v, &tz_dbg->tz_episodes, pos); 734 } 735 736 static void tze_seq_stop(struct seq_file *s, void *v) 737 { 738 struct thermal_zone_device *tz = s->private; 739 struct thermal_debugfs *thermal_dbg = tz->debugfs; 740 741 mutex_unlock(&thermal_dbg->lock); 742 } 743 744 static int tze_seq_show(struct seq_file *s, void *v) 745 { 746 struct thermal_zone_device *tz = s->private; 747 struct thermal_trip *trip; 748 struct tz_episode *tze; 749 const char *type; 750 int trip_id; 751 752 tze = list_entry((struct list_head *)v, struct tz_episode, node); 753 754 seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n", 755 ktime_to_us(tze->timestamp), 756 ktime_to_ms(tze->duration)); 757 758 seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n"); 759 760 for_each_trip(tz, trip) { 761 /* 762 * There is no possible mitigation happening at the 763 * critical trip point, so the stats will be always 764 * zero, skip this trip point 765 */ 766 if (trip->type == THERMAL_TRIP_CRITICAL) 767 continue; 768 769 if (trip->type == THERMAL_TRIP_PASSIVE) 770 type = "passive"; 771 else if (trip->type == THERMAL_TRIP_ACTIVE) 772 type = "active"; 773 else 774 type = "hot"; 775 776 trip_id = thermal_zone_trip_id(tz, trip); 777 778 seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n", 779 4 , trip_id, 780 8, type, 781 9, trip->temperature, 782 9, trip->hysteresis, 783 10, ktime_to_ms(tze->trip_stats[trip_id].duration), 784 9, tze->trip_stats[trip_id].avg, 785 9, tze->trip_stats[trip_id].min, 786 9, tze->trip_stats[trip_id].max); 787 } 788 789 return 0; 790 } 791 792 static const struct seq_operations tze_sops = { 793 .start = tze_seq_start, 794 .next = tze_seq_next, 795 .stop = tze_seq_stop, 796 .show = tze_seq_show, 797 }; 798 799 DEFINE_SEQ_ATTRIBUTE(tze); 800 801 void thermal_debug_tz_add(struct thermal_zone_device *tz) 802 { 803 struct thermal_debugfs *thermal_dbg; 804 struct tz_debugfs *tz_dbg; 805 806 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); 807 if (!thermal_dbg) 808 return; 809 810 tz_dbg = &thermal_dbg->tz_dbg; 811 812 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); 813 if (!tz_dbg->trips_crossed) { 814 thermal_debugfs_remove_id(thermal_dbg); 815 return; 816 } 817 818 INIT_LIST_HEAD(&tz_dbg->tz_episodes); 819 820 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, tz, &tze_fops); 821 822 tz->debugfs = thermal_dbg; 823 } 824 825 void thermal_debug_tz_remove(struct thermal_zone_device *tz) 826 { 827 struct thermal_debugfs *thermal_dbg = tz->debugfs; 828 829 if (!thermal_dbg) 830 return; 831 832 mutex_lock(&thermal_dbg->lock); 833 834 tz->debugfs = NULL; 835 836 mutex_unlock(&thermal_dbg->lock); 837 838 thermal_debugfs_remove_id(thermal_dbg); 839 } 840