1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2023 Linaro Limited 4 * 5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org> 6 * 7 * Thermal subsystem debug support 8 */ 9 #include <linux/debugfs.h> 10 #include <linux/ktime.h> 11 #include <linux/list.h> 12 #include <linux/minmax.h> 13 #include <linux/mutex.h> 14 #include <linux/thermal.h> 15 16 #include "thermal_core.h" 17 18 static struct dentry *d_root; 19 static struct dentry *d_cdev; 20 static struct dentry *d_tz; 21 22 /* 23 * Length of the string containing the thermal zone id or the cooling 24 * device id, including the ending nul character. We can reasonably 25 * assume there won't be more than 256 thermal zones as the maximum 26 * observed today is around 32. 27 */ 28 #define IDSLENGTH 4 29 30 /* 31 * The cooling device transition list is stored in a hash table where 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices 33 * have dozen of states but some can have much more, so a hash table 34 * is more adequate in this case, because the cost of browsing the entire 35 * list when storing the transitions may not be negligible. 36 */ 37 #define CDEVSTATS_HASH_SIZE 16 38 39 /** 40 * struct cdev_debugfs - per cooling device statistics structure 41 * A cooling device can have a high number of states. Showing the 42 * transitions on a matrix based representation can be overkill given 43 * most of the transitions won't happen and we end up with a matrix 44 * filled with zero. Instead, we show the transitions which actually 45 * happened. 46 * 47 * Every transition updates the current_state and the timestamp. The 48 * transitions and the durations are stored in lists. 49 * 50 * @total: the number of transitions for this cooling device 51 * @current_state: the current cooling device state 52 * @timestamp: the state change timestamp 53 * @transitions: an array of lists containing the state transitions 54 * @durations: an array of lists containing the residencies of each state 55 */ 56 struct cdev_debugfs { 57 u32 total; 58 int current_state; 59 ktime_t timestamp; 60 struct list_head transitions[CDEVSTATS_HASH_SIZE]; 61 struct list_head durations[CDEVSTATS_HASH_SIZE]; 62 }; 63 64 /** 65 * struct cdev_record - Common structure for cooling device entry 66 * 67 * The following common structure allows to store the information 68 * related to the transitions and to the state residencies. They are 69 * identified with a id which is associated to a value. It is used as 70 * nodes for the "transitions" and "durations" above. 71 * 72 * @node: node to insert the structure in a list 73 * @id: identifier of the value which can be a state or a transition 74 * @residency: a ktime_t representing a state residency duration 75 * @count: a number of occurrences 76 */ 77 struct cdev_record { 78 struct list_head node; 79 int id; 80 union { 81 ktime_t residency; 82 u64 count; 83 }; 84 }; 85 86 /** 87 * struct trip_stats - Thermal trip statistics 88 * 89 * The trip_stats structure has the relevant information to show the 90 * statistics related to temperature going above a trip point. 91 * 92 * @timestamp: the trip crossing timestamp 93 * @duration: total time when the zone temperature was above the trip point 94 * @count: the number of times the zone temperature was above the trip point 95 * @max: maximum recorded temperature above the trip point 96 * @min: minimum recorded temperature above the trip point 97 * @avg: average temperature above the trip point 98 */ 99 struct trip_stats { 100 ktime_t timestamp; 101 ktime_t duration; 102 int count; 103 int max; 104 int min; 105 int avg; 106 }; 107 108 /** 109 * struct tz_episode - A mitigation episode information 110 * 111 * The tz_episode structure describes a mitigation episode. A 112 * mitigation episode begins the trip point with the lower temperature 113 * is crossed the way up and ends when it is crossed the way 114 * down. During this episode we can have multiple trip points crossed 115 * the way up and down if there are multiple trip described in the 116 * firmware after the lowest temperature trip point. 117 * 118 * @timestamp: first trip point crossed the way up 119 * @duration: total duration of the mitigation episode 120 * @node: a list element to be added to the list of tz events 121 * @trip_stats: per trip point statistics, flexible array 122 */ 123 struct tz_episode { 124 ktime_t timestamp; 125 ktime_t duration; 126 struct list_head node; 127 struct trip_stats trip_stats[]; 128 }; 129 130 /** 131 * struct tz_debugfs - Store all mitigation episodes for a thermal zone 132 * 133 * The tz_debugfs structure contains the list of the mitigation 134 * episodes and has to track which trip point has been crossed in 135 * order to handle correctly nested trip point mitigation episodes. 136 * 137 * We keep the history of the trip point crossed in an array and as we 138 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, 139 * we keep track of the current position in the history array. 140 * 141 * @tz_episodes: a list of thermal mitigation episodes 142 * @tz: thermal zone this object belongs to 143 * @trips_crossed: an array of trip points crossed by id 144 * @nr_trips: the number of trip points currently being crossed 145 */ 146 struct tz_debugfs { 147 struct list_head tz_episodes; 148 struct thermal_zone_device *tz; 149 int *trips_crossed; 150 int nr_trips; 151 }; 152 153 /** 154 * struct thermal_debugfs - High level structure for a thermal object in debugfs 155 * 156 * The thermal_debugfs structure is the common structure used by the 157 * cooling device or the thermal zone to store the statistics. 158 * 159 * @d_top: top directory of the thermal object directory 160 * @lock: per object lock to protect the internals 161 * 162 * @cdev_dbg: a cooling device debug structure 163 * @tz_dbg: a thermal zone debug structure 164 */ 165 struct thermal_debugfs { 166 struct dentry *d_top; 167 struct mutex lock; 168 union { 169 struct cdev_debugfs cdev_dbg; 170 struct tz_debugfs tz_dbg; 171 }; 172 }; 173 174 void thermal_debug_init(void) 175 { 176 d_root = debugfs_create_dir("thermal", NULL); 177 if (!d_root) 178 return; 179 180 d_cdev = debugfs_create_dir("cooling_devices", d_root); 181 if (!d_cdev) 182 return; 183 184 d_tz = debugfs_create_dir("thermal_zones", d_root); 185 } 186 187 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) 188 { 189 struct thermal_debugfs *thermal_dbg; 190 char ids[IDSLENGTH]; 191 192 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); 193 if (!thermal_dbg) 194 return NULL; 195 196 mutex_init(&thermal_dbg->lock); 197 198 snprintf(ids, IDSLENGTH, "%d", id); 199 200 thermal_dbg->d_top = debugfs_create_dir(ids, d); 201 if (!thermal_dbg->d_top) { 202 kfree(thermal_dbg); 203 return NULL; 204 } 205 206 return thermal_dbg; 207 } 208 209 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) 210 { 211 if (!thermal_dbg) 212 return; 213 214 debugfs_remove(thermal_dbg->d_top); 215 216 kfree(thermal_dbg); 217 } 218 219 static struct cdev_record * 220 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, 221 struct list_head *lists, int id) 222 { 223 struct cdev_record *cdev_record; 224 225 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); 226 if (!cdev_record) 227 return NULL; 228 229 cdev_record->id = id; 230 INIT_LIST_HEAD(&cdev_record->node); 231 list_add_tail(&cdev_record->node, 232 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); 233 234 return cdev_record; 235 } 236 237 static struct cdev_record * 238 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, 239 struct list_head *lists, int id) 240 { 241 struct cdev_record *entry; 242 243 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) 244 if (entry->id == id) 245 return entry; 246 247 return NULL; 248 } 249 250 static struct cdev_record * 251 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, 252 struct list_head *lists, int id) 253 { 254 struct cdev_record *cdev_record; 255 256 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); 257 if (cdev_record) 258 return cdev_record; 259 260 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); 261 } 262 263 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) 264 { 265 int i; 266 struct cdev_record *entry, *tmp; 267 268 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 269 270 list_for_each_entry_safe(entry, tmp, 271 &cdev_dbg->transitions[i], node) { 272 list_del(&entry->node); 273 kfree(entry); 274 } 275 276 list_for_each_entry_safe(entry, tmp, 277 &cdev_dbg->durations[i], node) { 278 list_del(&entry->node); 279 kfree(entry); 280 } 281 } 282 283 cdev_dbg->total = 0; 284 } 285 286 static void *cdev_seq_start(struct seq_file *s, loff_t *pos) 287 { 288 struct thermal_debugfs *thermal_dbg = s->private; 289 290 mutex_lock(&thermal_dbg->lock); 291 292 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 293 } 294 295 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) 296 { 297 (*pos)++; 298 299 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 300 } 301 302 static void cdev_seq_stop(struct seq_file *s, void *v) 303 { 304 struct thermal_debugfs *thermal_dbg = s->private; 305 306 mutex_unlock(&thermal_dbg->lock); 307 } 308 309 static int cdev_tt_seq_show(struct seq_file *s, void *v) 310 { 311 struct thermal_debugfs *thermal_dbg = s->private; 312 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 313 struct list_head *transitions = cdev_dbg->transitions; 314 struct cdev_record *entry; 315 int i = *(loff_t *)v; 316 317 if (!i) 318 seq_puts(s, "Transition\tOccurences\n"); 319 320 list_for_each_entry(entry, &transitions[i], node) { 321 /* 322 * Assuming maximum cdev states is 1024, the longer 323 * string for a transition would be "1024->1024\0" 324 */ 325 char buffer[11]; 326 327 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", 328 entry->id >> 16, entry->id & 0xFFFF); 329 330 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); 331 } 332 333 return 0; 334 } 335 336 static const struct seq_operations tt_sops = { 337 .start = cdev_seq_start, 338 .next = cdev_seq_next, 339 .stop = cdev_seq_stop, 340 .show = cdev_tt_seq_show, 341 }; 342 343 DEFINE_SEQ_ATTRIBUTE(tt); 344 345 static int cdev_dt_seq_show(struct seq_file *s, void *v) 346 { 347 struct thermal_debugfs *thermal_dbg = s->private; 348 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 349 struct list_head *durations = cdev_dbg->durations; 350 struct cdev_record *entry; 351 int i = *(loff_t *)v; 352 353 if (!i) 354 seq_puts(s, "State\tResidency\n"); 355 356 list_for_each_entry(entry, &durations[i], node) { 357 s64 duration = ktime_to_ms(entry->residency); 358 359 if (entry->id == cdev_dbg->current_state) 360 duration += ktime_ms_delta(ktime_get(), 361 cdev_dbg->timestamp); 362 363 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); 364 } 365 366 return 0; 367 } 368 369 static const struct seq_operations dt_sops = { 370 .start = cdev_seq_start, 371 .next = cdev_seq_next, 372 .stop = cdev_seq_stop, 373 .show = cdev_dt_seq_show, 374 }; 375 376 DEFINE_SEQ_ATTRIBUTE(dt); 377 378 static int cdev_clear_set(void *data, u64 val) 379 { 380 struct thermal_debugfs *thermal_dbg = data; 381 382 if (!val) 383 return -EINVAL; 384 385 mutex_lock(&thermal_dbg->lock); 386 387 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 388 389 mutex_unlock(&thermal_dbg->lock); 390 391 return 0; 392 } 393 394 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); 395 396 /** 397 * thermal_debug_cdev_state_update - Update a cooling device state change 398 * 399 * Computes a transition and the duration of the previous state residency. 400 * 401 * @cdev : a pointer to a cooling device 402 * @new_state: an integer corresponding to the new cooling device state 403 */ 404 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, 405 int new_state) 406 { 407 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 408 struct cdev_debugfs *cdev_dbg; 409 struct cdev_record *cdev_record; 410 int transition, old_state; 411 412 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) 413 return; 414 415 mutex_lock(&thermal_dbg->lock); 416 417 cdev_dbg = &thermal_dbg->cdev_dbg; 418 419 old_state = cdev_dbg->current_state; 420 421 /* 422 * Get the old state information in the durations list. If 423 * this one does not exist, a new allocated one will be 424 * returned. Recompute the total duration in the old state and 425 * get a new timestamp for the new state. 426 */ 427 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 428 cdev_dbg->durations, 429 old_state); 430 if (cdev_record) { 431 ktime_t now = ktime_get(); 432 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); 433 cdev_record->residency = ktime_add(cdev_record->residency, delta); 434 cdev_dbg->timestamp = now; 435 } 436 437 cdev_dbg->current_state = new_state; 438 transition = (old_state << 16) | new_state; 439 440 /* 441 * Get the transition in the transitions list. If this one 442 * does not exist, a new allocated one will be returned. 443 * Increment the occurrence of this transition which is stored 444 * in the value field. 445 */ 446 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 447 cdev_dbg->transitions, 448 transition); 449 if (cdev_record) 450 cdev_record->count++; 451 452 cdev_dbg->total++; 453 454 mutex_unlock(&thermal_dbg->lock); 455 } 456 457 /** 458 * thermal_debug_cdev_add - Add a cooling device debugfs entry 459 * 460 * Allocates a cooling device object for debug, initializes the 461 * statistics and create the entries in sysfs. 462 * @cdev: a pointer to a cooling device 463 */ 464 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev) 465 { 466 struct thermal_debugfs *thermal_dbg; 467 struct cdev_debugfs *cdev_dbg; 468 int i; 469 470 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); 471 if (!thermal_dbg) 472 return; 473 474 cdev_dbg = &thermal_dbg->cdev_dbg; 475 476 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 477 INIT_LIST_HEAD(&cdev_dbg->transitions[i]); 478 INIT_LIST_HEAD(&cdev_dbg->durations[i]); 479 } 480 481 cdev_dbg->current_state = 0; 482 cdev_dbg->timestamp = ktime_get(); 483 484 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, 485 thermal_dbg, &tt_fops); 486 487 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, 488 thermal_dbg, &dt_fops); 489 490 debugfs_create_file("clear", 0200, thermal_dbg->d_top, 491 thermal_dbg, &cdev_clear_fops); 492 493 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, 494 &cdev_dbg->total); 495 496 cdev->debugfs = thermal_dbg; 497 } 498 499 /** 500 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry 501 * 502 * Frees the statistics memory data and remove the debugfs entry 503 * 504 * @cdev: a pointer to a cooling device 505 */ 506 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) 507 { 508 struct thermal_debugfs *thermal_dbg; 509 510 mutex_lock(&cdev->lock); 511 512 thermal_dbg = cdev->debugfs; 513 if (!thermal_dbg) { 514 mutex_unlock(&cdev->lock); 515 return; 516 } 517 518 cdev->debugfs = NULL; 519 520 mutex_unlock(&cdev->lock); 521 522 mutex_lock(&thermal_dbg->lock); 523 524 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 525 526 mutex_unlock(&thermal_dbg->lock); 527 528 thermal_debugfs_remove_id(thermal_dbg); 529 } 530 531 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, 532 ktime_t now) 533 { 534 struct tz_episode *tze; 535 int i; 536 537 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); 538 if (!tze) 539 return NULL; 540 541 INIT_LIST_HEAD(&tze->node); 542 tze->timestamp = now; 543 544 for (i = 0; i < tz->num_trips; i++) { 545 tze->trip_stats[i].min = INT_MAX; 546 tze->trip_stats[i].max = INT_MIN; 547 } 548 549 return tze; 550 } 551 552 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, 553 const struct thermal_trip *trip) 554 { 555 struct tz_episode *tze; 556 struct tz_debugfs *tz_dbg; 557 struct thermal_debugfs *thermal_dbg = tz->debugfs; 558 int temperature = tz->temperature; 559 int trip_id = thermal_zone_trip_id(tz, trip); 560 ktime_t now = ktime_get(); 561 562 if (!thermal_dbg) 563 return; 564 565 mutex_lock(&thermal_dbg->lock); 566 567 tz_dbg = &thermal_dbg->tz_dbg; 568 569 /* 570 * The mitigation is starting. A mitigation can contain 571 * several episodes where each of them is related to a 572 * temperature crossing a trip point. The episodes are 573 * nested. That means when the temperature is crossing the 574 * first trip point, the duration begins to be measured. If 575 * the temperature continues to increase and reaches the 576 * second trip point, the duration of the first trip must be 577 * also accumulated. 578 * 579 * eg. 580 * 581 * temp 582 * ^ 583 * | -------- 584 * trip 2 / \ ------ 585 * | /| |\ /| |\ 586 * trip 1 / | | `---- | | \ 587 * | /| | | | | |\ 588 * trip 0 / | | | | | | \ 589 * | /| | | | | | | |\ 590 * | / | | | | | | | | `-- 591 * | / | | | | | | | | 592 * |----- | | | | | | | | 593 * | | | | | | | | | 594 * --------|-|-|--------|--------|------|-|-|------------------> time 595 * | | |<--t2-->| |<-t2'>| | | 596 * | | | | 597 * | |<------------t1------------>| | 598 * | | 599 * |<-------------t0--------------->| 600 * 601 */ 602 if (!tz_dbg->nr_trips) { 603 tze = thermal_debugfs_tz_event_alloc(tz, now); 604 if (!tze) 605 goto unlock; 606 607 list_add(&tze->node, &tz_dbg->tz_episodes); 608 } 609 610 /* 611 * Each time a trip point is crossed the way up, the trip_id 612 * is stored in the trip_crossed array and the nr_trips is 613 * incremented. A nr_trips equal to zero means we are entering 614 * a mitigation episode. 615 * 616 * The trip ids may not be in the ascending order but the 617 * result in the array trips_crossed will be in the ascending 618 * temperature order. The function detecting when a trip point 619 * is crossed the way down will handle the very rare case when 620 * the trip points may have been reordered during this 621 * mitigation episode. 622 */ 623 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; 624 625 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 626 tze->trip_stats[trip_id].timestamp = now; 627 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, temperature); 628 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, temperature); 629 tze->trip_stats[trip_id].count++; 630 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg + 631 (temperature - tze->trip_stats[trip_id].avg) / 632 tze->trip_stats[trip_id].count; 633 634 unlock: 635 mutex_unlock(&thermal_dbg->lock); 636 } 637 638 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, 639 const struct thermal_trip *trip) 640 { 641 struct thermal_debugfs *thermal_dbg = tz->debugfs; 642 struct tz_episode *tze; 643 struct tz_debugfs *tz_dbg; 644 ktime_t delta, now = ktime_get(); 645 int trip_id = thermal_zone_trip_id(tz, trip); 646 int i; 647 648 if (!thermal_dbg) 649 return; 650 651 mutex_lock(&thermal_dbg->lock); 652 653 tz_dbg = &thermal_dbg->tz_dbg; 654 655 /* 656 * The temperature crosses the way down but there was not 657 * mitigation detected before. That may happen when the 658 * temperature is greater than a trip point when registering a 659 * thermal zone, which is a common use case as the kernel has 660 * no mitigation mechanism yet at boot time. 661 */ 662 if (!tz_dbg->nr_trips) 663 goto out; 664 665 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { 666 if (tz_dbg->trips_crossed[i] == trip_id) 667 break; 668 } 669 670 if (i < 0) 671 goto out; 672 673 tz_dbg->nr_trips--; 674 675 if (i < tz_dbg->nr_trips) 676 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; 677 678 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 679 680 delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp); 681 682 tze->trip_stats[trip_id].duration = 683 ktime_add(delta, tze->trip_stats[trip_id].duration); 684 685 /* 686 * This event closes the mitigation as we are crossing the 687 * last trip point the way down. 688 */ 689 if (!tz_dbg->nr_trips) 690 tze->duration = ktime_sub(now, tze->timestamp); 691 692 out: 693 mutex_unlock(&thermal_dbg->lock); 694 } 695 696 void thermal_debug_update_temp(struct thermal_zone_device *tz) 697 { 698 struct thermal_debugfs *thermal_dbg = tz->debugfs; 699 struct tz_episode *tze; 700 struct tz_debugfs *tz_dbg; 701 int trip_id, i; 702 703 if (!thermal_dbg) 704 return; 705 706 mutex_lock(&thermal_dbg->lock); 707 708 tz_dbg = &thermal_dbg->tz_dbg; 709 710 if (!tz_dbg->nr_trips) 711 goto out; 712 713 for (i = 0; i < tz_dbg->nr_trips; i++) { 714 trip_id = tz_dbg->trips_crossed[i]; 715 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 716 tze->trip_stats[trip_id].count++; 717 tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature); 718 tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature); 719 tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg + 720 (tz->temperature - tze->trip_stats[trip_id].avg) / 721 tze->trip_stats[trip_id].count; 722 } 723 out: 724 mutex_unlock(&thermal_dbg->lock); 725 } 726 727 static void *tze_seq_start(struct seq_file *s, loff_t *pos) 728 { 729 struct thermal_debugfs *thermal_dbg = s->private; 730 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 731 732 mutex_lock(&thermal_dbg->lock); 733 734 return seq_list_start(&tz_dbg->tz_episodes, *pos); 735 } 736 737 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) 738 { 739 struct thermal_debugfs *thermal_dbg = s->private; 740 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 741 742 return seq_list_next(v, &tz_dbg->tz_episodes, pos); 743 } 744 745 static void tze_seq_stop(struct seq_file *s, void *v) 746 { 747 struct thermal_debugfs *thermal_dbg = s->private; 748 749 mutex_unlock(&thermal_dbg->lock); 750 } 751 752 static int tze_seq_show(struct seq_file *s, void *v) 753 { 754 struct thermal_debugfs *thermal_dbg = s->private; 755 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz; 756 struct thermal_trip *trip; 757 struct tz_episode *tze; 758 const char *type; 759 int trip_id; 760 761 tze = list_entry((struct list_head *)v, struct tz_episode, node); 762 763 seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n", 764 ktime_to_us(tze->timestamp), 765 ktime_to_ms(tze->duration)); 766 767 seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n"); 768 769 for_each_trip(tz, trip) { 770 /* 771 * There is no possible mitigation happening at the 772 * critical trip point, so the stats will be always 773 * zero, skip this trip point 774 */ 775 if (trip->type == THERMAL_TRIP_CRITICAL) 776 continue; 777 778 if (trip->type == THERMAL_TRIP_PASSIVE) 779 type = "passive"; 780 else if (trip->type == THERMAL_TRIP_ACTIVE) 781 type = "active"; 782 else 783 type = "hot"; 784 785 trip_id = thermal_zone_trip_id(tz, trip); 786 787 seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n", 788 4 , trip_id, 789 8, type, 790 9, trip->temperature, 791 9, trip->hysteresis, 792 10, ktime_to_ms(tze->trip_stats[trip_id].duration), 793 9, tze->trip_stats[trip_id].avg, 794 9, tze->trip_stats[trip_id].min, 795 9, tze->trip_stats[trip_id].max); 796 } 797 798 return 0; 799 } 800 801 static const struct seq_operations tze_sops = { 802 .start = tze_seq_start, 803 .next = tze_seq_next, 804 .stop = tze_seq_stop, 805 .show = tze_seq_show, 806 }; 807 808 DEFINE_SEQ_ATTRIBUTE(tze); 809 810 void thermal_debug_tz_add(struct thermal_zone_device *tz) 811 { 812 struct thermal_debugfs *thermal_dbg; 813 struct tz_debugfs *tz_dbg; 814 815 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); 816 if (!thermal_dbg) 817 return; 818 819 tz_dbg = &thermal_dbg->tz_dbg; 820 821 tz_dbg->tz = tz; 822 823 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); 824 if (!tz_dbg->trips_crossed) { 825 thermal_debugfs_remove_id(thermal_dbg); 826 return; 827 } 828 829 INIT_LIST_HEAD(&tz_dbg->tz_episodes); 830 831 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, 832 thermal_dbg, &tze_fops); 833 834 tz->debugfs = thermal_dbg; 835 } 836 837 void thermal_debug_tz_remove(struct thermal_zone_device *tz) 838 { 839 struct thermal_debugfs *thermal_dbg; 840 struct tz_episode *tze, *tmp; 841 struct tz_debugfs *tz_dbg; 842 int *trips_crossed; 843 844 mutex_lock(&tz->lock); 845 846 thermal_dbg = tz->debugfs; 847 if (!thermal_dbg) { 848 mutex_unlock(&tz->lock); 849 return; 850 } 851 852 tz->debugfs = NULL; 853 854 mutex_unlock(&tz->lock); 855 856 tz_dbg = &thermal_dbg->tz_dbg; 857 858 mutex_lock(&thermal_dbg->lock); 859 860 trips_crossed = tz_dbg->trips_crossed; 861 862 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) { 863 list_del(&tze->node); 864 kfree(tze); 865 } 866 867 mutex_unlock(&thermal_dbg->lock); 868 869 thermal_debugfs_remove_id(thermal_dbg); 870 kfree(trips_crossed); 871 } 872