1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2023 Linaro Limited 4 * 5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org> 6 * 7 * Thermal subsystem debug support 8 */ 9 #include <linux/debugfs.h> 10 #include <linux/ktime.h> 11 #include <linux/list.h> 12 #include <linux/minmax.h> 13 #include <linux/mutex.h> 14 #include <linux/thermal.h> 15 16 #include "thermal_core.h" 17 18 static struct dentry *d_root; 19 static struct dentry *d_cdev; 20 static struct dentry *d_tz; 21 22 /* 23 * Length of the string containing the thermal zone id or the cooling 24 * device id, including the ending nul character. We can reasonably 25 * assume there won't be more than 256 thermal zones as the maximum 26 * observed today is around 32. 27 */ 28 #define IDSLENGTH 4 29 30 /* 31 * The cooling device transition list is stored in a hash table where 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices 33 * have dozen of states but some can have much more, so a hash table 34 * is more adequate in this case, because the cost of browsing the entire 35 * list when storing the transitions may not be negligible. 36 */ 37 #define CDEVSTATS_HASH_SIZE 16 38 39 /** 40 * struct cdev_debugfs - per cooling device statistics structure 41 * A cooling device can have a high number of states. Showing the 42 * transitions on a matrix based representation can be overkill given 43 * most of the transitions won't happen and we end up with a matrix 44 * filled with zero. Instead, we show the transitions which actually 45 * happened. 46 * 47 * Every transition updates the current_state and the timestamp. The 48 * transitions and the durations are stored in lists. 49 * 50 * @total: the number of transitions for this cooling device 51 * @current_state: the current cooling device state 52 * @timestamp: the state change timestamp 53 * @transitions: an array of lists containing the state transitions 54 * @durations: an array of lists containing the residencies of each state 55 */ 56 struct cdev_debugfs { 57 u32 total; 58 int current_state; 59 ktime_t timestamp; 60 struct list_head transitions[CDEVSTATS_HASH_SIZE]; 61 struct list_head durations[CDEVSTATS_HASH_SIZE]; 62 }; 63 64 /** 65 * struct cdev_record - Common structure for cooling device entry 66 * 67 * The following common structure allows to store the information 68 * related to the transitions and to the state residencies. They are 69 * identified with a id which is associated to a value. It is used as 70 * nodes for the "transitions" and "durations" above. 71 * 72 * @node: node to insert the structure in a list 73 * @id: identifier of the value which can be a state or a transition 74 * @residency: a ktime_t representing a state residency duration 75 * @count: a number of occurrences 76 */ 77 struct cdev_record { 78 struct list_head node; 79 int id; 80 union { 81 ktime_t residency; 82 u64 count; 83 }; 84 }; 85 86 /** 87 * struct trip_stats - Thermal trip statistics 88 * 89 * The trip_stats structure has the relevant information to show the 90 * statistics related to temperature going above a trip point. 91 * 92 * @timestamp: the trip crossing timestamp 93 * @duration: total time when the zone temperature was above the trip point 94 * @trip_temp: trip temperature at mitigation start 95 * @trip_hyst: trip hysteresis at mitigation start 96 * @count: the number of times the zone temperature was above the trip point 97 * @min: minimum recorded temperature above the trip point 98 * @avg: average temperature above the trip point 99 */ 100 struct trip_stats { 101 ktime_t timestamp; 102 ktime_t duration; 103 int trip_temp; 104 int trip_hyst; 105 int count; 106 int min; 107 int avg; 108 }; 109 110 /** 111 * struct tz_episode - A mitigation episode information 112 * 113 * The tz_episode structure describes a mitigation episode. A 114 * mitigation episode begins the trip point with the lower temperature 115 * is crossed the way up and ends when it is crossed the way 116 * down. During this episode we can have multiple trip points crossed 117 * the way up and down if there are multiple trip described in the 118 * firmware after the lowest temperature trip point. 119 * 120 * @timestamp: first trip point crossed the way up 121 * @duration: total duration of the mitigation episode 122 * @node: a list element to be added to the list of tz events 123 * @max_temp: maximum zone temperature during this episode 124 * @trip_stats: per trip point statistics, flexible array 125 */ 126 struct tz_episode { 127 ktime_t timestamp; 128 ktime_t duration; 129 struct list_head node; 130 int max_temp; 131 struct trip_stats trip_stats[]; 132 }; 133 134 /** 135 * struct tz_debugfs - Store all mitigation episodes for a thermal zone 136 * 137 * The tz_debugfs structure contains the list of the mitigation 138 * episodes and has to track which trip point has been crossed in 139 * order to handle correctly nested trip point mitigation episodes. 140 * 141 * We keep the history of the trip point crossed in an array and as we 142 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, 143 * we keep track of the current position in the history array. 144 * 145 * @tz_episodes: a list of thermal mitigation episodes 146 * @tz: thermal zone this object belongs to 147 * @trips_crossed: an array of trip points crossed by id 148 * @nr_trips: the number of trip points currently being crossed 149 */ 150 struct tz_debugfs { 151 struct list_head tz_episodes; 152 struct thermal_zone_device *tz; 153 int *trips_crossed; 154 int nr_trips; 155 }; 156 157 /** 158 * struct thermal_debugfs - High level structure for a thermal object in debugfs 159 * 160 * The thermal_debugfs structure is the common structure used by the 161 * cooling device or the thermal zone to store the statistics. 162 * 163 * @d_top: top directory of the thermal object directory 164 * @lock: per object lock to protect the internals 165 * 166 * @cdev_dbg: a cooling device debug structure 167 * @tz_dbg: a thermal zone debug structure 168 */ 169 struct thermal_debugfs { 170 struct dentry *d_top; 171 struct mutex lock; 172 union { 173 struct cdev_debugfs cdev_dbg; 174 struct tz_debugfs tz_dbg; 175 }; 176 }; 177 178 void thermal_debug_init(void) 179 { 180 d_root = debugfs_create_dir("thermal", NULL); 181 if (IS_ERR(d_root)) 182 return; 183 184 d_cdev = debugfs_create_dir("cooling_devices", d_root); 185 if (IS_ERR(d_cdev)) 186 return; 187 188 d_tz = debugfs_create_dir("thermal_zones", d_root); 189 } 190 191 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) 192 { 193 struct thermal_debugfs *thermal_dbg; 194 char ids[IDSLENGTH]; 195 196 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); 197 if (!thermal_dbg) 198 return NULL; 199 200 mutex_init(&thermal_dbg->lock); 201 202 snprintf(ids, IDSLENGTH, "%d", id); 203 204 thermal_dbg->d_top = debugfs_create_dir(ids, d); 205 if (IS_ERR(thermal_dbg->d_top)) { 206 kfree(thermal_dbg); 207 return NULL; 208 } 209 210 return thermal_dbg; 211 } 212 213 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) 214 { 215 if (!thermal_dbg) 216 return; 217 218 debugfs_remove(thermal_dbg->d_top); 219 220 kfree(thermal_dbg); 221 } 222 223 static struct cdev_record * 224 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, 225 struct list_head *lists, int id) 226 { 227 struct cdev_record *cdev_record; 228 229 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); 230 if (!cdev_record) 231 return NULL; 232 233 cdev_record->id = id; 234 INIT_LIST_HEAD(&cdev_record->node); 235 list_add_tail(&cdev_record->node, 236 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); 237 238 return cdev_record; 239 } 240 241 static struct cdev_record * 242 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, 243 struct list_head *lists, int id) 244 { 245 struct cdev_record *entry; 246 247 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) 248 if (entry->id == id) 249 return entry; 250 251 return NULL; 252 } 253 254 static struct cdev_record * 255 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, 256 struct list_head *lists, int id) 257 { 258 struct cdev_record *cdev_record; 259 260 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); 261 if (cdev_record) 262 return cdev_record; 263 264 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); 265 } 266 267 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) 268 { 269 int i; 270 struct cdev_record *entry, *tmp; 271 272 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 273 274 list_for_each_entry_safe(entry, tmp, 275 &cdev_dbg->transitions[i], node) { 276 list_del(&entry->node); 277 kfree(entry); 278 } 279 280 list_for_each_entry_safe(entry, tmp, 281 &cdev_dbg->durations[i], node) { 282 list_del(&entry->node); 283 kfree(entry); 284 } 285 } 286 287 cdev_dbg->total = 0; 288 } 289 290 static void *cdev_seq_start(struct seq_file *s, loff_t *pos) 291 { 292 struct thermal_debugfs *thermal_dbg = s->private; 293 294 mutex_lock(&thermal_dbg->lock); 295 296 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 297 } 298 299 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) 300 { 301 (*pos)++; 302 303 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 304 } 305 306 static void cdev_seq_stop(struct seq_file *s, void *v) 307 { 308 struct thermal_debugfs *thermal_dbg = s->private; 309 310 mutex_unlock(&thermal_dbg->lock); 311 } 312 313 static int cdev_tt_seq_show(struct seq_file *s, void *v) 314 { 315 struct thermal_debugfs *thermal_dbg = s->private; 316 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 317 struct list_head *transitions = cdev_dbg->transitions; 318 struct cdev_record *entry; 319 int i = *(loff_t *)v; 320 321 if (!i) 322 seq_puts(s, "Transition\tOccurences\n"); 323 324 list_for_each_entry(entry, &transitions[i], node) { 325 /* 326 * Assuming maximum cdev states is 1024, the longer 327 * string for a transition would be "1024->1024\0" 328 */ 329 char buffer[11]; 330 331 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", 332 entry->id >> 16, entry->id & 0xFFFF); 333 334 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); 335 } 336 337 return 0; 338 } 339 340 static const struct seq_operations tt_sops = { 341 .start = cdev_seq_start, 342 .next = cdev_seq_next, 343 .stop = cdev_seq_stop, 344 .show = cdev_tt_seq_show, 345 }; 346 347 DEFINE_SEQ_ATTRIBUTE(tt); 348 349 static int cdev_dt_seq_show(struct seq_file *s, void *v) 350 { 351 struct thermal_debugfs *thermal_dbg = s->private; 352 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 353 struct list_head *durations = cdev_dbg->durations; 354 struct cdev_record *entry; 355 int i = *(loff_t *)v; 356 357 if (!i) 358 seq_puts(s, "State\tResidency\n"); 359 360 list_for_each_entry(entry, &durations[i], node) { 361 s64 duration = ktime_to_ms(entry->residency); 362 363 if (entry->id == cdev_dbg->current_state) 364 duration += ktime_ms_delta(ktime_get(), 365 cdev_dbg->timestamp); 366 367 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); 368 } 369 370 return 0; 371 } 372 373 static const struct seq_operations dt_sops = { 374 .start = cdev_seq_start, 375 .next = cdev_seq_next, 376 .stop = cdev_seq_stop, 377 .show = cdev_dt_seq_show, 378 }; 379 380 DEFINE_SEQ_ATTRIBUTE(dt); 381 382 static int cdev_clear_set(void *data, u64 val) 383 { 384 struct thermal_debugfs *thermal_dbg = data; 385 386 if (!val) 387 return -EINVAL; 388 389 mutex_lock(&thermal_dbg->lock); 390 391 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 392 393 mutex_unlock(&thermal_dbg->lock); 394 395 return 0; 396 } 397 398 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); 399 400 /** 401 * thermal_debug_cdev_state_update - Update a cooling device state change 402 * 403 * Computes a transition and the duration of the previous state residency. 404 * 405 * @cdev : a pointer to a cooling device 406 * @new_state: an integer corresponding to the new cooling device state 407 */ 408 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, 409 int new_state) 410 { 411 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 412 struct cdev_debugfs *cdev_dbg; 413 struct cdev_record *cdev_record; 414 int transition, old_state; 415 416 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) 417 return; 418 419 mutex_lock(&thermal_dbg->lock); 420 421 cdev_dbg = &thermal_dbg->cdev_dbg; 422 423 old_state = cdev_dbg->current_state; 424 425 /* 426 * Get the old state information in the durations list. If 427 * this one does not exist, a new allocated one will be 428 * returned. Recompute the total duration in the old state and 429 * get a new timestamp for the new state. 430 */ 431 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 432 cdev_dbg->durations, 433 old_state); 434 if (cdev_record) { 435 ktime_t now = ktime_get(); 436 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); 437 cdev_record->residency = ktime_add(cdev_record->residency, delta); 438 cdev_dbg->timestamp = now; 439 } 440 441 cdev_dbg->current_state = new_state; 442 443 /* 444 * Create a record for the new state if it is not there, so its 445 * duration will be printed by cdev_dt_seq_show() as expected if it 446 * runs before the next state transition. 447 */ 448 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state); 449 450 transition = (old_state << 16) | new_state; 451 452 /* 453 * Get the transition in the transitions list. If this one 454 * does not exist, a new allocated one will be returned. 455 * Increment the occurrence of this transition which is stored 456 * in the value field. 457 */ 458 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 459 cdev_dbg->transitions, 460 transition); 461 if (cdev_record) 462 cdev_record->count++; 463 464 cdev_dbg->total++; 465 466 mutex_unlock(&thermal_dbg->lock); 467 } 468 469 /** 470 * thermal_debug_cdev_add - Add a cooling device debugfs entry 471 * 472 * Allocates a cooling device object for debug, initializes the 473 * statistics and create the entries in sysfs. 474 * @cdev: a pointer to a cooling device 475 * @state: current state of the cooling device 476 */ 477 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state) 478 { 479 struct thermal_debugfs *thermal_dbg; 480 struct cdev_debugfs *cdev_dbg; 481 int i; 482 483 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); 484 if (!thermal_dbg) 485 return; 486 487 cdev_dbg = &thermal_dbg->cdev_dbg; 488 489 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 490 INIT_LIST_HEAD(&cdev_dbg->transitions[i]); 491 INIT_LIST_HEAD(&cdev_dbg->durations[i]); 492 } 493 494 cdev_dbg->current_state = state; 495 cdev_dbg->timestamp = ktime_get(); 496 497 /* 498 * Create a record for the initial cooling device state, so its 499 * duration will be printed by cdev_dt_seq_show() as expected if it 500 * runs before the first state transition. 501 */ 502 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state); 503 504 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, 505 thermal_dbg, &tt_fops); 506 507 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, 508 thermal_dbg, &dt_fops); 509 510 debugfs_create_file("clear", 0200, thermal_dbg->d_top, 511 thermal_dbg, &cdev_clear_fops); 512 513 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, 514 &cdev_dbg->total); 515 516 cdev->debugfs = thermal_dbg; 517 } 518 519 static struct thermal_debugfs *thermal_debug_cdev_clear(struct thermal_cooling_device *cdev) 520 { 521 struct thermal_debugfs *thermal_dbg; 522 523 guard(cooling_dev)(cdev); 524 525 thermal_dbg = cdev->debugfs; 526 if (thermal_dbg) 527 cdev->debugfs = NULL; 528 529 return thermal_dbg; 530 } 531 532 /** 533 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry 534 * 535 * Frees the statistics memory data and remove the debugfs entry 536 * 537 * @cdev: a pointer to a cooling device 538 */ 539 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) 540 { 541 struct thermal_debugfs *thermal_dbg; 542 543 thermal_dbg = thermal_debug_cdev_clear(cdev); 544 if (!thermal_dbg) 545 return; 546 547 mutex_lock(&thermal_dbg->lock); 548 549 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 550 551 mutex_unlock(&thermal_dbg->lock); 552 553 thermal_debugfs_remove_id(thermal_dbg); 554 } 555 556 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, 557 ktime_t now) 558 { 559 struct tz_episode *tze; 560 int i; 561 562 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); 563 if (!tze) 564 return NULL; 565 566 INIT_LIST_HEAD(&tze->node); 567 tze->timestamp = now; 568 tze->duration = KTIME_MIN; 569 tze->max_temp = INT_MIN; 570 571 for (i = 0; i < tz->num_trips; i++) { 572 tze->trip_stats[i].trip_temp = THERMAL_TEMP_INVALID; 573 tze->trip_stats[i].min = INT_MAX; 574 } 575 576 return tze; 577 } 578 579 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, 580 const struct thermal_trip *trip) 581 { 582 struct thermal_debugfs *thermal_dbg = tz->debugfs; 583 int trip_id = thermal_zone_trip_id(tz, trip); 584 ktime_t now = ktime_get(); 585 struct trip_stats *trip_stats; 586 struct tz_debugfs *tz_dbg; 587 struct tz_episode *tze; 588 589 if (!thermal_dbg) 590 return; 591 592 tz_dbg = &thermal_dbg->tz_dbg; 593 594 mutex_lock(&thermal_dbg->lock); 595 596 /* 597 * The mitigation is starting. A mitigation can contain 598 * several episodes where each of them is related to a 599 * temperature crossing a trip point. The episodes are 600 * nested. That means when the temperature is crossing the 601 * first trip point, the duration begins to be measured. If 602 * the temperature continues to increase and reaches the 603 * second trip point, the duration of the first trip must be 604 * also accumulated. 605 * 606 * eg. 607 * 608 * temp 609 * ^ 610 * | -------- 611 * trip 2 / \ ------ 612 * | /| |\ /| |\ 613 * trip 1 / | | `---- | | \ 614 * | /| | | | | |\ 615 * trip 0 / | | | | | | \ 616 * | /| | | | | | | |\ 617 * | / | | | | | | | | `-- 618 * | / | | | | | | | | 619 * |----- | | | | | | | | 620 * | | | | | | | | | 621 * --------|-|-|--------|--------|------|-|-|------------------> time 622 * | | |<--t2-->| |<-t2'>| | | 623 * | | | | 624 * | |<------------t1------------>| | 625 * | | 626 * |<-------------t0--------------->| 627 * 628 */ 629 if (!tz_dbg->nr_trips) { 630 tze = thermal_debugfs_tz_event_alloc(tz, now); 631 if (!tze) 632 goto unlock; 633 634 list_add(&tze->node, &tz_dbg->tz_episodes); 635 } 636 637 /* 638 * Each time a trip point is crossed the way up, the trip_id 639 * is stored in the trip_crossed array and the nr_trips is 640 * incremented. A nr_trips equal to zero means we are entering 641 * a mitigation episode. 642 * 643 * The trip ids may not be in the ascending order but the 644 * result in the array trips_crossed will be in the ascending 645 * temperature order. The function detecting when a trip point 646 * is crossed the way down will handle the very rare case when 647 * the trip points may have been reordered during this 648 * mitigation episode. 649 */ 650 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; 651 652 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 653 trip_stats = &tze->trip_stats[trip_id]; 654 trip_stats->trip_temp = trip->temperature; 655 trip_stats->trip_hyst = trip->hysteresis; 656 trip_stats->timestamp = now; 657 658 unlock: 659 mutex_unlock(&thermal_dbg->lock); 660 } 661 662 static void tz_episode_close_trip(struct tz_episode *tze, int trip_id, ktime_t now) 663 { 664 struct trip_stats *trip_stats = &tze->trip_stats[trip_id]; 665 ktime_t delta = ktime_sub(now, trip_stats->timestamp); 666 667 trip_stats->duration = ktime_add(delta, trip_stats->duration); 668 /* Mark the end of mitigation for this trip point. */ 669 trip_stats->timestamp = KTIME_MAX; 670 } 671 672 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, 673 const struct thermal_trip *trip) 674 { 675 struct thermal_debugfs *thermal_dbg = tz->debugfs; 676 int trip_id = thermal_zone_trip_id(tz, trip); 677 ktime_t now = ktime_get(); 678 struct tz_episode *tze; 679 struct tz_debugfs *tz_dbg; 680 int i; 681 682 if (!thermal_dbg) 683 return; 684 685 tz_dbg = &thermal_dbg->tz_dbg; 686 687 mutex_lock(&thermal_dbg->lock); 688 689 /* 690 * The temperature crosses the way down but there was not 691 * mitigation detected before. That may happen when the 692 * temperature is greater than a trip point when registering a 693 * thermal zone, which is a common use case as the kernel has 694 * no mitigation mechanism yet at boot time. 695 */ 696 if (!tz_dbg->nr_trips) 697 goto out; 698 699 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { 700 if (tz_dbg->trips_crossed[i] == trip_id) 701 break; 702 } 703 704 if (i < 0) 705 goto out; 706 707 tz_dbg->nr_trips--; 708 709 if (i < tz_dbg->nr_trips) 710 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; 711 712 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 713 714 tz_episode_close_trip(tze, trip_id, now); 715 716 /* 717 * This event closes the mitigation as we are crossing the 718 * last trip point the way down. 719 */ 720 if (!tz_dbg->nr_trips) 721 tze->duration = ktime_sub(now, tze->timestamp); 722 723 out: 724 mutex_unlock(&thermal_dbg->lock); 725 } 726 727 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz) 728 { 729 struct thermal_debugfs *thermal_dbg = tz->debugfs; 730 struct tz_debugfs *tz_dbg; 731 struct tz_episode *tze; 732 int i; 733 734 if (!thermal_dbg) 735 return; 736 737 tz_dbg = &thermal_dbg->tz_dbg; 738 739 mutex_lock(&thermal_dbg->lock); 740 741 if (!tz_dbg->nr_trips) 742 goto out; 743 744 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 745 746 if (tz->temperature > tze->max_temp) 747 tze->max_temp = tz->temperature; 748 749 for (i = 0; i < tz_dbg->nr_trips; i++) { 750 int trip_id = tz_dbg->trips_crossed[i]; 751 struct trip_stats *trip_stats = &tze->trip_stats[trip_id]; 752 753 trip_stats->min = min(trip_stats->min, tz->temperature); 754 trip_stats->avg += (tz->temperature - trip_stats->avg) / 755 ++trip_stats->count; 756 } 757 out: 758 mutex_unlock(&thermal_dbg->lock); 759 } 760 761 static void *tze_seq_start(struct seq_file *s, loff_t *pos) 762 { 763 struct thermal_debugfs *thermal_dbg = s->private; 764 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 765 766 mutex_lock(&thermal_dbg->lock); 767 768 return seq_list_start(&tz_dbg->tz_episodes, *pos); 769 } 770 771 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) 772 { 773 struct thermal_debugfs *thermal_dbg = s->private; 774 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 775 776 return seq_list_next(v, &tz_dbg->tz_episodes, pos); 777 } 778 779 static void tze_seq_stop(struct seq_file *s, void *v) 780 { 781 struct thermal_debugfs *thermal_dbg = s->private; 782 783 mutex_unlock(&thermal_dbg->lock); 784 } 785 786 static int tze_seq_show(struct seq_file *s, void *v) 787 { 788 struct thermal_debugfs *thermal_dbg = s->private; 789 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz; 790 struct thermal_trip_desc *td; 791 struct tz_episode *tze; 792 u64 duration_ms; 793 int trip_id; 794 char c; 795 796 tze = list_entry((struct list_head *)v, struct tz_episode, node); 797 798 if (tze->duration == KTIME_MIN) { 799 /* Mitigation in progress. */ 800 duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp)); 801 c = '>'; 802 } else { 803 duration_ms = ktime_to_ms(tze->duration); 804 c = '='; 805 } 806 807 seq_printf(s, ",-Mitigation at %llums, duration%c%llums, max. temp=%dm°C\n", 808 ktime_to_ms(tze->timestamp), c, duration_ms, tze->max_temp); 809 810 seq_printf(s, "| trip | type | temp(m°C) | hyst(m°C) | duration(ms) | avg(m°C) | min(m°C) |\n"); 811 812 for_each_trip_desc(tz, td) { 813 const struct thermal_trip *trip = &td->trip; 814 struct trip_stats *trip_stats; 815 816 /* 817 * There is no possible mitigation happening at the 818 * critical trip point, so the stats will be always 819 * zero, skip this trip point 820 */ 821 if (trip->type == THERMAL_TRIP_CRITICAL) 822 continue; 823 824 trip_id = thermal_zone_trip_id(tz, trip); 825 trip_stats = &tze->trip_stats[trip_id]; 826 827 /* Skip trips without any stats. */ 828 if (trip_stats->trip_temp == THERMAL_TEMP_INVALID) 829 continue; 830 831 if (trip_stats->timestamp != KTIME_MAX) { 832 /* Mitigation in progress. */ 833 ktime_t delta = ktime_sub(ktime_get(), 834 trip_stats->timestamp); 835 836 delta = ktime_add(delta, trip_stats->duration); 837 duration_ms = ktime_to_ms(delta); 838 c = '>'; 839 } else { 840 duration_ms = ktime_to_ms(trip_stats->duration); 841 c = ' '; 842 } 843 844 seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d |\n", 845 4 , trip_id, 846 8, thermal_trip_type_name(trip->type), 847 9, trip_stats->trip_temp, 848 9, trip_stats->trip_hyst, 849 c, 11, duration_ms, 850 9, trip_stats->avg, 851 9, trip_stats->min); 852 } 853 854 return 0; 855 } 856 857 static const struct seq_operations tze_sops = { 858 .start = tze_seq_start, 859 .next = tze_seq_next, 860 .stop = tze_seq_stop, 861 .show = tze_seq_show, 862 }; 863 864 DEFINE_SEQ_ATTRIBUTE(tze); 865 866 void thermal_debug_tz_add(struct thermal_zone_device *tz) 867 { 868 struct thermal_debugfs *thermal_dbg; 869 struct tz_debugfs *tz_dbg; 870 871 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); 872 if (!thermal_dbg) 873 return; 874 875 tz_dbg = &thermal_dbg->tz_dbg; 876 877 tz_dbg->tz = tz; 878 879 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); 880 if (!tz_dbg->trips_crossed) { 881 thermal_debugfs_remove_id(thermal_dbg); 882 return; 883 } 884 885 INIT_LIST_HEAD(&tz_dbg->tz_episodes); 886 887 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, 888 thermal_dbg, &tze_fops); 889 890 tz->debugfs = thermal_dbg; 891 } 892 893 static struct thermal_debugfs *thermal_debug_tz_clear(struct thermal_zone_device *tz) 894 { 895 struct thermal_debugfs *thermal_dbg; 896 897 guard(thermal_zone)(tz); 898 899 thermal_dbg = tz->debugfs; 900 if (thermal_dbg) 901 tz->debugfs = NULL; 902 903 return thermal_dbg; 904 } 905 906 void thermal_debug_tz_remove(struct thermal_zone_device *tz) 907 { 908 struct thermal_debugfs *thermal_dbg; 909 struct tz_episode *tze, *tmp; 910 struct tz_debugfs *tz_dbg; 911 int *trips_crossed; 912 913 thermal_dbg = thermal_debug_tz_clear(tz); 914 if (!thermal_dbg) 915 return; 916 917 tz_dbg = &thermal_dbg->tz_dbg; 918 919 mutex_lock(&thermal_dbg->lock); 920 921 trips_crossed = tz_dbg->trips_crossed; 922 923 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) { 924 list_del(&tze->node); 925 kfree(tze); 926 } 927 928 mutex_unlock(&thermal_dbg->lock); 929 930 thermal_debugfs_remove_id(thermal_dbg); 931 kfree(trips_crossed); 932 } 933 934 void thermal_debug_tz_resume(struct thermal_zone_device *tz) 935 { 936 struct thermal_debugfs *thermal_dbg = tz->debugfs; 937 ktime_t now = ktime_get(); 938 struct tz_debugfs *tz_dbg; 939 struct tz_episode *tze; 940 int i; 941 942 if (!thermal_dbg) 943 return; 944 945 mutex_lock(&thermal_dbg->lock); 946 947 tz_dbg = &thermal_dbg->tz_dbg; 948 949 if (!tz_dbg->nr_trips) 950 goto out; 951 952 /* 953 * A mitigation episode was in progress before the preceding system 954 * suspend transition, so close it because the zone handling is starting 955 * over from scratch. 956 */ 957 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 958 959 for (i = 0; i < tz_dbg->nr_trips; i++) 960 tz_episode_close_trip(tze, tz_dbg->trips_crossed[i], now); 961 962 tze->duration = ktime_sub(now, tze->timestamp); 963 964 tz_dbg->nr_trips = 0; 965 966 out: 967 mutex_unlock(&thermal_dbg->lock); 968 } 969