1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2023 Linaro Limited 4 * 5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org> 6 * 7 * Thermal subsystem debug support 8 */ 9 #include <linux/debugfs.h> 10 #include <linux/ktime.h> 11 #include <linux/list.h> 12 #include <linux/minmax.h> 13 #include <linux/mutex.h> 14 #include <linux/thermal.h> 15 16 #include "thermal_core.h" 17 18 static struct dentry *d_root; 19 static struct dentry *d_cdev; 20 static struct dentry *d_tz; 21 22 /* 23 * Length of the string containing the thermal zone id or the cooling 24 * device id, including the ending nul character. We can reasonably 25 * assume there won't be more than 256 thermal zones as the maximum 26 * observed today is around 32. 27 */ 28 #define IDSLENGTH 4 29 30 /* 31 * The cooling device transition list is stored in a hash table where 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices 33 * have dozen of states but some can have much more, so a hash table 34 * is more adequate in this case, because the cost of browsing the entire 35 * list when storing the transitions may not be negligible. 36 */ 37 #define CDEVSTATS_HASH_SIZE 16 38 39 /** 40 * struct cdev_debugfs - per cooling device statistics structure 41 * A cooling device can have a high number of states. Showing the 42 * transitions on a matrix based representation can be overkill given 43 * most of the transitions won't happen and we end up with a matrix 44 * filled with zero. Instead, we show the transitions which actually 45 * happened. 46 * 47 * Every transition updates the current_state and the timestamp. The 48 * transitions and the durations are stored in lists. 49 * 50 * @total: the number of transitions for this cooling device 51 * @current_state: the current cooling device state 52 * @timestamp: the state change timestamp 53 * @transitions: an array of lists containing the state transitions 54 * @durations: an array of lists containing the residencies of each state 55 */ 56 struct cdev_debugfs { 57 u32 total; 58 int current_state; 59 ktime_t timestamp; 60 struct list_head transitions[CDEVSTATS_HASH_SIZE]; 61 struct list_head durations[CDEVSTATS_HASH_SIZE]; 62 }; 63 64 /** 65 * struct cdev_record - Common structure for cooling device entry 66 * 67 * The following common structure allows to store the information 68 * related to the transitions and to the state residencies. They are 69 * identified with a id which is associated to a value. It is used as 70 * nodes for the "transitions" and "durations" above. 71 * 72 * @node: node to insert the structure in a list 73 * @id: identifier of the value which can be a state or a transition 74 * @residency: a ktime_t representing a state residency duration 75 * @count: a number of occurrences 76 */ 77 struct cdev_record { 78 struct list_head node; 79 int id; 80 union { 81 ktime_t residency; 82 u64 count; 83 }; 84 }; 85 86 /** 87 * struct trip_stats - Thermal trip statistics 88 * 89 * The trip_stats structure has the relevant information to show the 90 * statistics related to temperature going above a trip point. 91 * 92 * @timestamp: the trip crossing timestamp 93 * @duration: total time when the zone temperature was above the trip point 94 * @count: the number of times the zone temperature was above the trip point 95 * @max: maximum recorded temperature above the trip point 96 * @min: minimum recorded temperature above the trip point 97 * @avg: average temperature above the trip point 98 */ 99 struct trip_stats { 100 ktime_t timestamp; 101 ktime_t duration; 102 int count; 103 int max; 104 int min; 105 int avg; 106 }; 107 108 /** 109 * struct tz_episode - A mitigation episode information 110 * 111 * The tz_episode structure describes a mitigation episode. A 112 * mitigation episode begins the trip point with the lower temperature 113 * is crossed the way up and ends when it is crossed the way 114 * down. During this episode we can have multiple trip points crossed 115 * the way up and down if there are multiple trip described in the 116 * firmware after the lowest temperature trip point. 117 * 118 * @timestamp: first trip point crossed the way up 119 * @duration: total duration of the mitigation episode 120 * @node: a list element to be added to the list of tz events 121 * @trip_stats: per trip point statistics, flexible array 122 */ 123 struct tz_episode { 124 ktime_t timestamp; 125 ktime_t duration; 126 struct list_head node; 127 struct trip_stats trip_stats[]; 128 }; 129 130 /** 131 * struct tz_debugfs - Store all mitigation episodes for a thermal zone 132 * 133 * The tz_debugfs structure contains the list of the mitigation 134 * episodes and has to track which trip point has been crossed in 135 * order to handle correctly nested trip point mitigation episodes. 136 * 137 * We keep the history of the trip point crossed in an array and as we 138 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, 139 * we keep track of the current position in the history array. 140 * 141 * @tz_episodes: a list of thermal mitigation episodes 142 * @tz: thermal zone this object belongs to 143 * @trips_crossed: an array of trip points crossed by id 144 * @nr_trips: the number of trip points currently being crossed 145 */ 146 struct tz_debugfs { 147 struct list_head tz_episodes; 148 struct thermal_zone_device *tz; 149 int *trips_crossed; 150 int nr_trips; 151 }; 152 153 /** 154 * struct thermal_debugfs - High level structure for a thermal object in debugfs 155 * 156 * The thermal_debugfs structure is the common structure used by the 157 * cooling device or the thermal zone to store the statistics. 158 * 159 * @d_top: top directory of the thermal object directory 160 * @lock: per object lock to protect the internals 161 * 162 * @cdev_dbg: a cooling device debug structure 163 * @tz_dbg: a thermal zone debug structure 164 */ 165 struct thermal_debugfs { 166 struct dentry *d_top; 167 struct mutex lock; 168 union { 169 struct cdev_debugfs cdev_dbg; 170 struct tz_debugfs tz_dbg; 171 }; 172 }; 173 174 void thermal_debug_init(void) 175 { 176 d_root = debugfs_create_dir("thermal", NULL); 177 if (!d_root) 178 return; 179 180 d_cdev = debugfs_create_dir("cooling_devices", d_root); 181 if (!d_cdev) 182 return; 183 184 d_tz = debugfs_create_dir("thermal_zones", d_root); 185 } 186 187 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) 188 { 189 struct thermal_debugfs *thermal_dbg; 190 char ids[IDSLENGTH]; 191 192 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); 193 if (!thermal_dbg) 194 return NULL; 195 196 mutex_init(&thermal_dbg->lock); 197 198 snprintf(ids, IDSLENGTH, "%d", id); 199 200 thermal_dbg->d_top = debugfs_create_dir(ids, d); 201 if (!thermal_dbg->d_top) { 202 kfree(thermal_dbg); 203 return NULL; 204 } 205 206 return thermal_dbg; 207 } 208 209 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) 210 { 211 if (!thermal_dbg) 212 return; 213 214 debugfs_remove(thermal_dbg->d_top); 215 216 kfree(thermal_dbg); 217 } 218 219 static struct cdev_record * 220 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, 221 struct list_head *lists, int id) 222 { 223 struct cdev_record *cdev_record; 224 225 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); 226 if (!cdev_record) 227 return NULL; 228 229 cdev_record->id = id; 230 INIT_LIST_HEAD(&cdev_record->node); 231 list_add_tail(&cdev_record->node, 232 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); 233 234 return cdev_record; 235 } 236 237 static struct cdev_record * 238 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, 239 struct list_head *lists, int id) 240 { 241 struct cdev_record *entry; 242 243 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) 244 if (entry->id == id) 245 return entry; 246 247 return NULL; 248 } 249 250 static struct cdev_record * 251 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, 252 struct list_head *lists, int id) 253 { 254 struct cdev_record *cdev_record; 255 256 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); 257 if (cdev_record) 258 return cdev_record; 259 260 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); 261 } 262 263 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) 264 { 265 int i; 266 struct cdev_record *entry, *tmp; 267 268 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 269 270 list_for_each_entry_safe(entry, tmp, 271 &cdev_dbg->transitions[i], node) { 272 list_del(&entry->node); 273 kfree(entry); 274 } 275 276 list_for_each_entry_safe(entry, tmp, 277 &cdev_dbg->durations[i], node) { 278 list_del(&entry->node); 279 kfree(entry); 280 } 281 } 282 283 cdev_dbg->total = 0; 284 } 285 286 static void *cdev_seq_start(struct seq_file *s, loff_t *pos) 287 { 288 struct thermal_debugfs *thermal_dbg = s->private; 289 290 mutex_lock(&thermal_dbg->lock); 291 292 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 293 } 294 295 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) 296 { 297 (*pos)++; 298 299 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 300 } 301 302 static void cdev_seq_stop(struct seq_file *s, void *v) 303 { 304 struct thermal_debugfs *thermal_dbg = s->private; 305 306 mutex_unlock(&thermal_dbg->lock); 307 } 308 309 static int cdev_tt_seq_show(struct seq_file *s, void *v) 310 { 311 struct thermal_debugfs *thermal_dbg = s->private; 312 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 313 struct list_head *transitions = cdev_dbg->transitions; 314 struct cdev_record *entry; 315 int i = *(loff_t *)v; 316 317 if (!i) 318 seq_puts(s, "Transition\tOccurences\n"); 319 320 list_for_each_entry(entry, &transitions[i], node) { 321 /* 322 * Assuming maximum cdev states is 1024, the longer 323 * string for a transition would be "1024->1024\0" 324 */ 325 char buffer[11]; 326 327 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", 328 entry->id >> 16, entry->id & 0xFFFF); 329 330 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); 331 } 332 333 return 0; 334 } 335 336 static const struct seq_operations tt_sops = { 337 .start = cdev_seq_start, 338 .next = cdev_seq_next, 339 .stop = cdev_seq_stop, 340 .show = cdev_tt_seq_show, 341 }; 342 343 DEFINE_SEQ_ATTRIBUTE(tt); 344 345 static int cdev_dt_seq_show(struct seq_file *s, void *v) 346 { 347 struct thermal_debugfs *thermal_dbg = s->private; 348 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 349 struct list_head *durations = cdev_dbg->durations; 350 struct cdev_record *entry; 351 int i = *(loff_t *)v; 352 353 if (!i) 354 seq_puts(s, "State\tResidency\n"); 355 356 list_for_each_entry(entry, &durations[i], node) { 357 s64 duration = ktime_to_ms(entry->residency); 358 359 if (entry->id == cdev_dbg->current_state) 360 duration += ktime_ms_delta(ktime_get(), 361 cdev_dbg->timestamp); 362 363 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); 364 } 365 366 return 0; 367 } 368 369 static const struct seq_operations dt_sops = { 370 .start = cdev_seq_start, 371 .next = cdev_seq_next, 372 .stop = cdev_seq_stop, 373 .show = cdev_dt_seq_show, 374 }; 375 376 DEFINE_SEQ_ATTRIBUTE(dt); 377 378 static int cdev_clear_set(void *data, u64 val) 379 { 380 struct thermal_debugfs *thermal_dbg = data; 381 382 if (!val) 383 return -EINVAL; 384 385 mutex_lock(&thermal_dbg->lock); 386 387 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 388 389 mutex_unlock(&thermal_dbg->lock); 390 391 return 0; 392 } 393 394 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); 395 396 /** 397 * thermal_debug_cdev_state_update - Update a cooling device state change 398 * 399 * Computes a transition and the duration of the previous state residency. 400 * 401 * @cdev : a pointer to a cooling device 402 * @new_state: an integer corresponding to the new cooling device state 403 */ 404 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, 405 int new_state) 406 { 407 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 408 struct cdev_debugfs *cdev_dbg; 409 struct cdev_record *cdev_record; 410 int transition, old_state; 411 412 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) 413 return; 414 415 mutex_lock(&thermal_dbg->lock); 416 417 cdev_dbg = &thermal_dbg->cdev_dbg; 418 419 old_state = cdev_dbg->current_state; 420 421 /* 422 * Get the old state information in the durations list. If 423 * this one does not exist, a new allocated one will be 424 * returned. Recompute the total duration in the old state and 425 * get a new timestamp for the new state. 426 */ 427 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 428 cdev_dbg->durations, 429 old_state); 430 if (cdev_record) { 431 ktime_t now = ktime_get(); 432 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); 433 cdev_record->residency = ktime_add(cdev_record->residency, delta); 434 cdev_dbg->timestamp = now; 435 } 436 437 cdev_dbg->current_state = new_state; 438 439 /* 440 * Create a record for the new state if it is not there, so its 441 * duration will be printed by cdev_dt_seq_show() as expected if it 442 * runs before the next state transition. 443 */ 444 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state); 445 446 transition = (old_state << 16) | new_state; 447 448 /* 449 * Get the transition in the transitions list. If this one 450 * does not exist, a new allocated one will be returned. 451 * Increment the occurrence of this transition which is stored 452 * in the value field. 453 */ 454 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 455 cdev_dbg->transitions, 456 transition); 457 if (cdev_record) 458 cdev_record->count++; 459 460 cdev_dbg->total++; 461 462 mutex_unlock(&thermal_dbg->lock); 463 } 464 465 /** 466 * thermal_debug_cdev_add - Add a cooling device debugfs entry 467 * 468 * Allocates a cooling device object for debug, initializes the 469 * statistics and create the entries in sysfs. 470 * @cdev: a pointer to a cooling device 471 * @state: current state of the cooling device 472 */ 473 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state) 474 { 475 struct thermal_debugfs *thermal_dbg; 476 struct cdev_debugfs *cdev_dbg; 477 int i; 478 479 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); 480 if (!thermal_dbg) 481 return; 482 483 cdev_dbg = &thermal_dbg->cdev_dbg; 484 485 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 486 INIT_LIST_HEAD(&cdev_dbg->transitions[i]); 487 INIT_LIST_HEAD(&cdev_dbg->durations[i]); 488 } 489 490 cdev_dbg->current_state = state; 491 cdev_dbg->timestamp = ktime_get(); 492 493 /* 494 * Create a record for the initial cooling device state, so its 495 * duration will be printed by cdev_dt_seq_show() as expected if it 496 * runs before the first state transition. 497 */ 498 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state); 499 500 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, 501 thermal_dbg, &tt_fops); 502 503 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, 504 thermal_dbg, &dt_fops); 505 506 debugfs_create_file("clear", 0200, thermal_dbg->d_top, 507 thermal_dbg, &cdev_clear_fops); 508 509 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, 510 &cdev_dbg->total); 511 512 cdev->debugfs = thermal_dbg; 513 } 514 515 /** 516 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry 517 * 518 * Frees the statistics memory data and remove the debugfs entry 519 * 520 * @cdev: a pointer to a cooling device 521 */ 522 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) 523 { 524 struct thermal_debugfs *thermal_dbg; 525 526 mutex_lock(&cdev->lock); 527 528 thermal_dbg = cdev->debugfs; 529 if (!thermal_dbg) { 530 mutex_unlock(&cdev->lock); 531 return; 532 } 533 534 cdev->debugfs = NULL; 535 536 mutex_unlock(&cdev->lock); 537 538 mutex_lock(&thermal_dbg->lock); 539 540 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 541 542 mutex_unlock(&thermal_dbg->lock); 543 544 thermal_debugfs_remove_id(thermal_dbg); 545 } 546 547 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, 548 ktime_t now) 549 { 550 struct tz_episode *tze; 551 int i; 552 553 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); 554 if (!tze) 555 return NULL; 556 557 INIT_LIST_HEAD(&tze->node); 558 tze->timestamp = now; 559 tze->duration = KTIME_MIN; 560 561 for (i = 0; i < tz->num_trips; i++) { 562 tze->trip_stats[i].min = INT_MAX; 563 tze->trip_stats[i].max = INT_MIN; 564 } 565 566 return tze; 567 } 568 569 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, 570 const struct thermal_trip *trip) 571 { 572 struct tz_episode *tze; 573 struct tz_debugfs *tz_dbg; 574 struct thermal_debugfs *thermal_dbg = tz->debugfs; 575 int trip_id = thermal_zone_trip_id(tz, trip); 576 ktime_t now = ktime_get(); 577 578 if (!thermal_dbg) 579 return; 580 581 mutex_lock(&thermal_dbg->lock); 582 583 tz_dbg = &thermal_dbg->tz_dbg; 584 585 /* 586 * The mitigation is starting. A mitigation can contain 587 * several episodes where each of them is related to a 588 * temperature crossing a trip point. The episodes are 589 * nested. That means when the temperature is crossing the 590 * first trip point, the duration begins to be measured. If 591 * the temperature continues to increase and reaches the 592 * second trip point, the duration of the first trip must be 593 * also accumulated. 594 * 595 * eg. 596 * 597 * temp 598 * ^ 599 * | -------- 600 * trip 2 / \ ------ 601 * | /| |\ /| |\ 602 * trip 1 / | | `---- | | \ 603 * | /| | | | | |\ 604 * trip 0 / | | | | | | \ 605 * | /| | | | | | | |\ 606 * | / | | | | | | | | `-- 607 * | / | | | | | | | | 608 * |----- | | | | | | | | 609 * | | | | | | | | | 610 * --------|-|-|--------|--------|------|-|-|------------------> time 611 * | | |<--t2-->| |<-t2'>| | | 612 * | | | | 613 * | |<------------t1------------>| | 614 * | | 615 * |<-------------t0--------------->| 616 * 617 */ 618 if (!tz_dbg->nr_trips) { 619 tze = thermal_debugfs_tz_event_alloc(tz, now); 620 if (!tze) 621 goto unlock; 622 623 list_add(&tze->node, &tz_dbg->tz_episodes); 624 } 625 626 /* 627 * Each time a trip point is crossed the way up, the trip_id 628 * is stored in the trip_crossed array and the nr_trips is 629 * incremented. A nr_trips equal to zero means we are entering 630 * a mitigation episode. 631 * 632 * The trip ids may not be in the ascending order but the 633 * result in the array trips_crossed will be in the ascending 634 * temperature order. The function detecting when a trip point 635 * is crossed the way down will handle the very rare case when 636 * the trip points may have been reordered during this 637 * mitigation episode. 638 */ 639 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; 640 641 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 642 tze->trip_stats[trip_id].timestamp = now; 643 644 unlock: 645 mutex_unlock(&thermal_dbg->lock); 646 } 647 648 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, 649 const struct thermal_trip *trip) 650 { 651 struct thermal_debugfs *thermal_dbg = tz->debugfs; 652 struct tz_episode *tze; 653 struct tz_debugfs *tz_dbg; 654 ktime_t delta, now = ktime_get(); 655 int trip_id = thermal_zone_trip_id(tz, trip); 656 int i; 657 658 if (!thermal_dbg) 659 return; 660 661 mutex_lock(&thermal_dbg->lock); 662 663 tz_dbg = &thermal_dbg->tz_dbg; 664 665 /* 666 * The temperature crosses the way down but there was not 667 * mitigation detected before. That may happen when the 668 * temperature is greater than a trip point when registering a 669 * thermal zone, which is a common use case as the kernel has 670 * no mitigation mechanism yet at boot time. 671 */ 672 if (!tz_dbg->nr_trips) 673 goto out; 674 675 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { 676 if (tz_dbg->trips_crossed[i] == trip_id) 677 break; 678 } 679 680 if (i < 0) 681 goto out; 682 683 tz_dbg->nr_trips--; 684 685 if (i < tz_dbg->nr_trips) 686 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; 687 688 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 689 690 delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp); 691 692 tze->trip_stats[trip_id].duration = 693 ktime_add(delta, tze->trip_stats[trip_id].duration); 694 695 /* Mark the end of mitigation for this trip point. */ 696 tze->trip_stats[trip_id].timestamp = KTIME_MAX; 697 698 /* 699 * This event closes the mitigation as we are crossing the 700 * last trip point the way down. 701 */ 702 if (!tz_dbg->nr_trips) 703 tze->duration = ktime_sub(now, tze->timestamp); 704 705 out: 706 mutex_unlock(&thermal_dbg->lock); 707 } 708 709 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz) 710 { 711 struct thermal_debugfs *thermal_dbg = tz->debugfs; 712 struct tz_debugfs *tz_dbg; 713 struct tz_episode *tze; 714 int i; 715 716 if (!thermal_dbg) 717 return; 718 719 mutex_lock(&thermal_dbg->lock); 720 721 tz_dbg = &thermal_dbg->tz_dbg; 722 723 if (!tz_dbg->nr_trips) 724 goto out; 725 726 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 727 728 for (i = 0; i < tz_dbg->nr_trips; i++) { 729 int trip_id = tz_dbg->trips_crossed[i]; 730 struct trip_stats *trip_stats = &tze->trip_stats[trip_id]; 731 732 trip_stats->max = max(trip_stats->max, tz->temperature); 733 trip_stats->min = min(trip_stats->min, tz->temperature); 734 trip_stats->avg += (tz->temperature - trip_stats->avg) / 735 ++trip_stats->count; 736 } 737 out: 738 mutex_unlock(&thermal_dbg->lock); 739 } 740 741 static void *tze_seq_start(struct seq_file *s, loff_t *pos) 742 { 743 struct thermal_debugfs *thermal_dbg = s->private; 744 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 745 746 mutex_lock(&thermal_dbg->lock); 747 748 return seq_list_start(&tz_dbg->tz_episodes, *pos); 749 } 750 751 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) 752 { 753 struct thermal_debugfs *thermal_dbg = s->private; 754 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 755 756 return seq_list_next(v, &tz_dbg->tz_episodes, pos); 757 } 758 759 static void tze_seq_stop(struct seq_file *s, void *v) 760 { 761 struct thermal_debugfs *thermal_dbg = s->private; 762 763 mutex_unlock(&thermal_dbg->lock); 764 } 765 766 static int tze_seq_show(struct seq_file *s, void *v) 767 { 768 struct thermal_debugfs *thermal_dbg = s->private; 769 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz; 770 struct thermal_trip_desc *td; 771 struct tz_episode *tze; 772 const char *type; 773 u64 duration_ms; 774 int trip_id; 775 char c; 776 777 tze = list_entry((struct list_head *)v, struct tz_episode, node); 778 779 if (tze->duration == KTIME_MIN) { 780 /* Mitigation in progress. */ 781 duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp)); 782 c = '>'; 783 } else { 784 duration_ms = ktime_to_ms(tze->duration); 785 c = '='; 786 } 787 788 seq_printf(s, ",-Mitigation at %lluus, duration%c%llums\n", 789 ktime_to_us(tze->timestamp), c, duration_ms); 790 791 seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n"); 792 793 for_each_trip_desc(tz, td) { 794 const struct thermal_trip *trip = &td->trip; 795 struct trip_stats *trip_stats; 796 797 /* Skip invalid trips. */ 798 if (trip->temperature == THERMAL_TEMP_INVALID) 799 continue; 800 801 /* 802 * There is no possible mitigation happening at the 803 * critical trip point, so the stats will be always 804 * zero, skip this trip point 805 */ 806 if (trip->type == THERMAL_TRIP_CRITICAL) 807 continue; 808 809 trip_id = thermal_zone_trip_id(tz, trip); 810 trip_stats = &tze->trip_stats[trip_id]; 811 812 /* Skip trips without any stats. */ 813 if (trip_stats->min > trip_stats->max) 814 continue; 815 816 if (trip->type == THERMAL_TRIP_PASSIVE) 817 type = "passive"; 818 else if (trip->type == THERMAL_TRIP_ACTIVE) 819 type = "active"; 820 else 821 type = "hot"; 822 823 if (trip_stats->timestamp != KTIME_MAX) { 824 /* Mitigation in progress. */ 825 ktime_t delta = ktime_sub(ktime_get(), 826 trip_stats->timestamp); 827 828 delta = ktime_add(delta, trip_stats->duration); 829 duration_ms = ktime_to_ms(delta); 830 c = '>'; 831 } else { 832 duration_ms = ktime_to_ms(trip_stats->duration); 833 c = ' '; 834 } 835 836 seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d | %*d |\n", 837 4 , trip_id, 838 8, type, 839 9, trip->temperature, 840 9, trip->hysteresis, 841 c, 10, duration_ms, 842 9, trip_stats->avg, 843 9, trip_stats->min, 844 9, trip_stats->max); 845 } 846 847 return 0; 848 } 849 850 static const struct seq_operations tze_sops = { 851 .start = tze_seq_start, 852 .next = tze_seq_next, 853 .stop = tze_seq_stop, 854 .show = tze_seq_show, 855 }; 856 857 DEFINE_SEQ_ATTRIBUTE(tze); 858 859 void thermal_debug_tz_add(struct thermal_zone_device *tz) 860 { 861 struct thermal_debugfs *thermal_dbg; 862 struct tz_debugfs *tz_dbg; 863 864 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); 865 if (!thermal_dbg) 866 return; 867 868 tz_dbg = &thermal_dbg->tz_dbg; 869 870 tz_dbg->tz = tz; 871 872 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); 873 if (!tz_dbg->trips_crossed) { 874 thermal_debugfs_remove_id(thermal_dbg); 875 return; 876 } 877 878 INIT_LIST_HEAD(&tz_dbg->tz_episodes); 879 880 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, 881 thermal_dbg, &tze_fops); 882 883 tz->debugfs = thermal_dbg; 884 } 885 886 void thermal_debug_tz_remove(struct thermal_zone_device *tz) 887 { 888 struct thermal_debugfs *thermal_dbg; 889 struct tz_episode *tze, *tmp; 890 struct tz_debugfs *tz_dbg; 891 int *trips_crossed; 892 893 mutex_lock(&tz->lock); 894 895 thermal_dbg = tz->debugfs; 896 if (!thermal_dbg) { 897 mutex_unlock(&tz->lock); 898 return; 899 } 900 901 tz->debugfs = NULL; 902 903 mutex_unlock(&tz->lock); 904 905 tz_dbg = &thermal_dbg->tz_dbg; 906 907 mutex_lock(&thermal_dbg->lock); 908 909 trips_crossed = tz_dbg->trips_crossed; 910 911 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) { 912 list_del(&tze->node); 913 kfree(tze); 914 } 915 916 mutex_unlock(&thermal_dbg->lock); 917 918 thermal_debugfs_remove_id(thermal_dbg); 919 kfree(trips_crossed); 920 } 921