xref: /linux/drivers/thermal/thermal_debugfs.c (revision 1d5198dd08ac04b13a8b7539131baf0980998032)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2023 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * Thermal subsystem debug support
8  */
9 #include <linux/debugfs.h>
10 #include <linux/ktime.h>
11 #include <linux/list.h>
12 #include <linux/minmax.h>
13 #include <linux/mutex.h>
14 #include <linux/thermal.h>
15 
16 #include "thermal_core.h"
17 
18 static struct dentry *d_root;
19 static struct dentry *d_cdev;
20 static struct dentry *d_tz;
21 
22 /*
23  * Length of the string containing the thermal zone id or the cooling
24  * device id, including the ending nul character. We can reasonably
25  * assume there won't be more than 256 thermal zones as the maximum
26  * observed today is around 32.
27  */
28 #define IDSLENGTH 4
29 
30 /*
31  * The cooling device transition list is stored in a hash table where
32  * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
33  * have dozen of states but some can have much more, so a hash table
34  * is more adequate in this case, because the cost of browsing the entire
35  * list when storing the transitions may not be negligible.
36  */
37 #define CDEVSTATS_HASH_SIZE 16
38 
39 /**
40  * struct cdev_debugfs - per cooling device statistics structure
41  * A cooling device can have a high number of states. Showing the
42  * transitions on a matrix based representation can be overkill given
43  * most of the transitions won't happen and we end up with a matrix
44  * filled with zero. Instead, we show the transitions which actually
45  * happened.
46  *
47  * Every transition updates the current_state and the timestamp. The
48  * transitions and the durations are stored in lists.
49  *
50  * @total: the number of transitions for this cooling device
51  * @current_state: the current cooling device state
52  * @timestamp: the state change timestamp
53  * @transitions: an array of lists containing the state transitions
54  * @durations: an array of lists containing the residencies of each state
55  */
56 struct cdev_debugfs {
57 	u32 total;
58 	int current_state;
59 	ktime_t timestamp;
60 	struct list_head transitions[CDEVSTATS_HASH_SIZE];
61 	struct list_head durations[CDEVSTATS_HASH_SIZE];
62 };
63 
64 /**
65  * struct cdev_record - Common structure for cooling device entry
66  *
67  * The following common structure allows to store the information
68  * related to the transitions and to the state residencies. They are
69  * identified with a id which is associated to a value. It is used as
70  * nodes for the "transitions" and "durations" above.
71  *
72  * @node: node to insert the structure in a list
73  * @id: identifier of the value which can be a state or a transition
74  * @residency: a ktime_t representing a state residency duration
75  * @count: a number of occurrences
76  */
77 struct cdev_record {
78 	struct list_head node;
79 	int id;
80 	union {
81                 ktime_t residency;
82                 u64 count;
83         };
84 };
85 
86 /**
87  * struct trip_stats - Thermal trip statistics
88  *
89  * The trip_stats structure has the relevant information to show the
90  * statistics related to temperature going above a trip point.
91  *
92  * @timestamp: the trip crossing timestamp
93  * @duration: total time when the zone temperature was above the trip point
94  * @count: the number of times the zone temperature was above the trip point
95  * @max: maximum recorded temperature above the trip point
96  * @min: minimum recorded temperature above the trip point
97  * @avg: average temperature above the trip point
98  */
99 struct trip_stats {
100 	ktime_t timestamp;
101 	ktime_t duration;
102 	int count;
103 	int max;
104 	int min;
105 	int avg;
106 };
107 
108 /**
109  * struct tz_episode - A mitigation episode information
110  *
111  * The tz_episode structure describes a mitigation episode. A
112  * mitigation episode begins the trip point with the lower temperature
113  * is crossed the way up and ends when it is crossed the way
114  * down. During this episode we can have multiple trip points crossed
115  * the way up and down if there are multiple trip described in the
116  * firmware after the lowest temperature trip point.
117  *
118  * @timestamp: first trip point crossed the way up
119  * @duration: total duration of the mitigation episode
120  * @node: a list element to be added to the list of tz events
121  * @trip_stats: per trip point statistics, flexible array
122  */
123 struct tz_episode {
124 	ktime_t timestamp;
125 	ktime_t duration;
126 	struct list_head node;
127 	struct trip_stats trip_stats[];
128 };
129 
130 /**
131  * struct tz_debugfs - Store all mitigation episodes for a thermal zone
132  *
133  * The tz_debugfs structure contains the list of the mitigation
134  * episodes and has to track which trip point has been crossed in
135  * order to handle correctly nested trip point mitigation episodes.
136  *
137  * We keep the history of the trip point crossed in an array and as we
138  * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
139  * we keep track of the current position in the history array.
140  *
141  * @tz_episodes: a list of thermal mitigation episodes
142  * @tz: thermal zone this object belongs to
143  * @trips_crossed: an array of trip points crossed by id
144  * @nr_trips: the number of trip points currently being crossed
145  */
146 struct tz_debugfs {
147 	struct list_head tz_episodes;
148 	struct thermal_zone_device *tz;
149 	int *trips_crossed;
150 	int nr_trips;
151 };
152 
153 /**
154  * struct thermal_debugfs - High level structure for a thermal object in debugfs
155  *
156  * The thermal_debugfs structure is the common structure used by the
157  * cooling device or the thermal zone to store the statistics.
158  *
159  * @d_top: top directory of the thermal object directory
160  * @lock: per object lock to protect the internals
161  *
162  * @cdev_dbg: a cooling device debug structure
163  * @tz_dbg: a thermal zone debug structure
164  */
165 struct thermal_debugfs {
166 	struct dentry *d_top;
167 	struct mutex lock;
168 	union {
169 		struct cdev_debugfs cdev_dbg;
170 		struct tz_debugfs tz_dbg;
171 	};
172 };
173 
174 void thermal_debug_init(void)
175 {
176 	d_root = debugfs_create_dir("thermal", NULL);
177 	if (!d_root)
178 		return;
179 
180 	d_cdev = debugfs_create_dir("cooling_devices", d_root);
181 	if (!d_cdev)
182 		return;
183 
184 	d_tz = debugfs_create_dir("thermal_zones", d_root);
185 }
186 
187 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
188 {
189 	struct thermal_debugfs *thermal_dbg;
190 	char ids[IDSLENGTH];
191 
192 	thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
193 	if (!thermal_dbg)
194 		return NULL;
195 
196 	mutex_init(&thermal_dbg->lock);
197 
198 	snprintf(ids, IDSLENGTH, "%d", id);
199 
200 	thermal_dbg->d_top = debugfs_create_dir(ids, d);
201 	if (!thermal_dbg->d_top) {
202 		kfree(thermal_dbg);
203 		return NULL;
204 	}
205 
206 	return thermal_dbg;
207 }
208 
209 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
210 {
211 	if (!thermal_dbg)
212 		return;
213 
214 	debugfs_remove(thermal_dbg->d_top);
215 
216 	kfree(thermal_dbg);
217 }
218 
219 static struct cdev_record *
220 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
221 				  struct list_head *lists, int id)
222 {
223 	struct cdev_record *cdev_record;
224 
225 	cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
226 	if (!cdev_record)
227 		return NULL;
228 
229 	cdev_record->id = id;
230 	INIT_LIST_HEAD(&cdev_record->node);
231 	list_add_tail(&cdev_record->node,
232 		      &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
233 
234 	return cdev_record;
235 }
236 
237 static struct cdev_record *
238 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
239 				 struct list_head *lists, int id)
240 {
241 	struct cdev_record *entry;
242 
243 	list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
244 		if (entry->id == id)
245 			return entry;
246 
247 	return NULL;
248 }
249 
250 static struct cdev_record *
251 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
252 				struct list_head *lists, int id)
253 {
254 	struct cdev_record *cdev_record;
255 
256 	cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
257 	if (cdev_record)
258 		return cdev_record;
259 
260 	return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
261 }
262 
263 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
264 {
265 	int i;
266 	struct cdev_record *entry, *tmp;
267 
268 	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
269 
270 		list_for_each_entry_safe(entry, tmp,
271 					 &cdev_dbg->transitions[i], node) {
272 			list_del(&entry->node);
273 			kfree(entry);
274 		}
275 
276 		list_for_each_entry_safe(entry, tmp,
277 					 &cdev_dbg->durations[i], node) {
278 			list_del(&entry->node);
279 			kfree(entry);
280 		}
281 	}
282 
283 	cdev_dbg->total = 0;
284 }
285 
286 static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
287 {
288 	struct thermal_debugfs *thermal_dbg = s->private;
289 
290 	mutex_lock(&thermal_dbg->lock);
291 
292 	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
293 }
294 
295 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
296 {
297 	(*pos)++;
298 
299 	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
300 }
301 
302 static void cdev_seq_stop(struct seq_file *s, void *v)
303 {
304 	struct thermal_debugfs *thermal_dbg = s->private;
305 
306 	mutex_unlock(&thermal_dbg->lock);
307 }
308 
309 static int cdev_tt_seq_show(struct seq_file *s, void *v)
310 {
311 	struct thermal_debugfs *thermal_dbg = s->private;
312 	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
313 	struct list_head *transitions = cdev_dbg->transitions;
314 	struct cdev_record *entry;
315 	int i = *(loff_t *)v;
316 
317 	if (!i)
318 		seq_puts(s, "Transition\tOccurences\n");
319 
320 	list_for_each_entry(entry, &transitions[i], node) {
321 		/*
322 		 * Assuming maximum cdev states is 1024, the longer
323 		 * string for a transition would be "1024->1024\0"
324 		 */
325 		char buffer[11];
326 
327 		snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
328 			 entry->id >> 16, entry->id & 0xFFFF);
329 
330 		seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
331 	}
332 
333 	return 0;
334 }
335 
336 static const struct seq_operations tt_sops = {
337 	.start = cdev_seq_start,
338 	.next = cdev_seq_next,
339 	.stop = cdev_seq_stop,
340 	.show = cdev_tt_seq_show,
341 };
342 
343 DEFINE_SEQ_ATTRIBUTE(tt);
344 
345 static int cdev_dt_seq_show(struct seq_file *s, void *v)
346 {
347 	struct thermal_debugfs *thermal_dbg = s->private;
348 	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
349 	struct list_head *durations = cdev_dbg->durations;
350 	struct cdev_record *entry;
351 	int i = *(loff_t *)v;
352 
353 	if (!i)
354 		seq_puts(s, "State\tResidency\n");
355 
356 	list_for_each_entry(entry, &durations[i], node) {
357 		s64 duration = ktime_to_ms(entry->residency);
358 
359 		if (entry->id == cdev_dbg->current_state)
360 			duration += ktime_ms_delta(ktime_get(),
361 						   cdev_dbg->timestamp);
362 
363 		seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
364 	}
365 
366 	return 0;
367 }
368 
369 static const struct seq_operations dt_sops = {
370 	.start = cdev_seq_start,
371 	.next = cdev_seq_next,
372 	.stop = cdev_seq_stop,
373 	.show = cdev_dt_seq_show,
374 };
375 
376 DEFINE_SEQ_ATTRIBUTE(dt);
377 
378 static int cdev_clear_set(void *data, u64 val)
379 {
380 	struct thermal_debugfs *thermal_dbg = data;
381 
382 	if (!val)
383 		return -EINVAL;
384 
385 	mutex_lock(&thermal_dbg->lock);
386 
387 	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
388 
389 	mutex_unlock(&thermal_dbg->lock);
390 
391 	return 0;
392 }
393 
394 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
395 
396 /**
397  * thermal_debug_cdev_state_update - Update a cooling device state change
398  *
399  * Computes a transition and the duration of the previous state residency.
400  *
401  * @cdev : a pointer to a cooling device
402  * @new_state: an integer corresponding to the new cooling device state
403  */
404 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
405 				     int new_state)
406 {
407 	struct thermal_debugfs *thermal_dbg = cdev->debugfs;
408 	struct cdev_debugfs *cdev_dbg;
409 	struct cdev_record *cdev_record;
410 	int transition, old_state;
411 
412 	if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
413 		return;
414 
415 	mutex_lock(&thermal_dbg->lock);
416 
417 	cdev_dbg = &thermal_dbg->cdev_dbg;
418 
419 	old_state = cdev_dbg->current_state;
420 
421 	/*
422 	 * Get the old state information in the durations list. If
423 	 * this one does not exist, a new allocated one will be
424 	 * returned. Recompute the total duration in the old state and
425 	 * get a new timestamp for the new state.
426 	 */
427 	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
428 						      cdev_dbg->durations,
429 						      old_state);
430 	if (cdev_record) {
431 		ktime_t now = ktime_get();
432 		ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
433 		cdev_record->residency = ktime_add(cdev_record->residency, delta);
434 		cdev_dbg->timestamp = now;
435 	}
436 
437 	cdev_dbg->current_state = new_state;
438 
439 	/*
440 	 * Create a record for the new state if it is not there, so its
441 	 * duration will be printed by cdev_dt_seq_show() as expected if it
442 	 * runs before the next state transition.
443 	 */
444 	thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state);
445 
446 	transition = (old_state << 16) | new_state;
447 
448 	/*
449 	 * Get the transition in the transitions list. If this one
450 	 * does not exist, a new allocated one will be returned.
451 	 * Increment the occurrence of this transition which is stored
452 	 * in the value field.
453 	 */
454 	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
455 						      cdev_dbg->transitions,
456 						      transition);
457 	if (cdev_record)
458 		cdev_record->count++;
459 
460 	cdev_dbg->total++;
461 
462 	mutex_unlock(&thermal_dbg->lock);
463 }
464 
465 /**
466  * thermal_debug_cdev_add - Add a cooling device debugfs entry
467  *
468  * Allocates a cooling device object for debug, initializes the
469  * statistics and create the entries in sysfs.
470  * @cdev: a pointer to a cooling device
471  * @state: current state of the cooling device
472  */
473 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state)
474 {
475 	struct thermal_debugfs *thermal_dbg;
476 	struct cdev_debugfs *cdev_dbg;
477 	int i;
478 
479 	thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
480 	if (!thermal_dbg)
481 		return;
482 
483 	cdev_dbg = &thermal_dbg->cdev_dbg;
484 
485 	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
486 		INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
487 		INIT_LIST_HEAD(&cdev_dbg->durations[i]);
488 	}
489 
490 	cdev_dbg->current_state = state;
491 	cdev_dbg->timestamp = ktime_get();
492 
493 	/*
494 	 * Create a record for the initial cooling device state, so its
495 	 * duration will be printed by cdev_dt_seq_show() as expected if it
496 	 * runs before the first state transition.
497 	 */
498 	thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state);
499 
500 	debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
501 			    thermal_dbg, &tt_fops);
502 
503 	debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
504 			    thermal_dbg, &dt_fops);
505 
506 	debugfs_create_file("clear", 0200, thermal_dbg->d_top,
507 			    thermal_dbg, &cdev_clear_fops);
508 
509 	debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
510 			   &cdev_dbg->total);
511 
512 	cdev->debugfs = thermal_dbg;
513 }
514 
515 /**
516  * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
517  *
518  * Frees the statistics memory data and remove the debugfs entry
519  *
520  * @cdev: a pointer to a cooling device
521  */
522 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
523 {
524 	struct thermal_debugfs *thermal_dbg;
525 
526 	mutex_lock(&cdev->lock);
527 
528 	thermal_dbg = cdev->debugfs;
529 	if (!thermal_dbg) {
530 		mutex_unlock(&cdev->lock);
531 		return;
532 	}
533 
534 	cdev->debugfs = NULL;
535 
536 	mutex_unlock(&cdev->lock);
537 
538 	mutex_lock(&thermal_dbg->lock);
539 
540 	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
541 
542 	mutex_unlock(&thermal_dbg->lock);
543 
544 	thermal_debugfs_remove_id(thermal_dbg);
545 }
546 
547 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
548 							ktime_t now)
549 {
550 	struct tz_episode *tze;
551 	int i;
552 
553 	tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
554 	if (!tze)
555 		return NULL;
556 
557 	INIT_LIST_HEAD(&tze->node);
558 	tze->timestamp = now;
559 	tze->duration = KTIME_MIN;
560 
561 	for (i = 0; i < tz->num_trips; i++) {
562 		tze->trip_stats[i].min = INT_MAX;
563 		tze->trip_stats[i].max = INT_MIN;
564 	}
565 
566 	return tze;
567 }
568 
569 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
570 			      const struct thermal_trip *trip)
571 {
572 	struct tz_episode *tze;
573 	struct tz_debugfs *tz_dbg;
574 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
575 	int trip_id = thermal_zone_trip_id(tz, trip);
576 	ktime_t now = ktime_get();
577 
578 	if (!thermal_dbg)
579 		return;
580 
581 	mutex_lock(&thermal_dbg->lock);
582 
583 	tz_dbg = &thermal_dbg->tz_dbg;
584 
585 	/*
586 	 * The mitigation is starting. A mitigation can contain
587 	 * several episodes where each of them is related to a
588 	 * temperature crossing a trip point. The episodes are
589 	 * nested. That means when the temperature is crossing the
590 	 * first trip point, the duration begins to be measured. If
591 	 * the temperature continues to increase and reaches the
592 	 * second trip point, the duration of the first trip must be
593 	 * also accumulated.
594 	 *
595 	 * eg.
596 	 *
597 	 * temp
598 	 *   ^
599 	 *   |             --------
600 	 * trip 2         /        \         ------
601 	 *   |           /|        |\      /|      |\
602 	 * trip 1       / |        | `----  |      | \
603 	 *   |         /| |        |        |      | |\
604 	 * trip 0     / | |        |        |      | | \
605 	 *   |       /| | |        |        |      | | |\
606 	 *   |      / | | |        |        |      | | | `--
607 	 *   |     /  | | |        |        |      | | |
608 	 *   |-----   | | |        |        |      | | |
609 	 *   |        | | |        |        |      | | |
610 	 *    --------|-|-|--------|--------|------|-|-|------------------> time
611 	 *            | | |<--t2-->|        |<-t2'>| | |
612 	 *            | |                            | |
613 	 *            | |<------------t1------------>| |
614 	 *            |                                |
615 	 *            |<-------------t0--------------->|
616 	 *
617 	 */
618 	if (!tz_dbg->nr_trips) {
619 		tze = thermal_debugfs_tz_event_alloc(tz, now);
620 		if (!tze)
621 			goto unlock;
622 
623 		list_add(&tze->node, &tz_dbg->tz_episodes);
624 	}
625 
626 	/*
627 	 * Each time a trip point is crossed the way up, the trip_id
628 	 * is stored in the trip_crossed array and the nr_trips is
629 	 * incremented. A nr_trips equal to zero means we are entering
630 	 * a mitigation episode.
631 	 *
632 	 * The trip ids may not be in the ascending order but the
633 	 * result in the array trips_crossed will be in the ascending
634 	 * temperature order. The function detecting when a trip point
635 	 * is crossed the way down will handle the very rare case when
636 	 * the trip points may have been reordered during this
637 	 * mitigation episode.
638 	 */
639 	tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
640 
641 	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
642 	tze->trip_stats[trip_id].timestamp = now;
643 
644 unlock:
645 	mutex_unlock(&thermal_dbg->lock);
646 }
647 
648 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
649 				const struct thermal_trip *trip)
650 {
651 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
652 	struct tz_episode *tze;
653 	struct tz_debugfs *tz_dbg;
654 	ktime_t delta, now = ktime_get();
655 	int trip_id = thermal_zone_trip_id(tz, trip);
656 	int i;
657 
658 	if (!thermal_dbg)
659 		return;
660 
661 	mutex_lock(&thermal_dbg->lock);
662 
663 	tz_dbg = &thermal_dbg->tz_dbg;
664 
665 	/*
666 	 * The temperature crosses the way down but there was not
667 	 * mitigation detected before. That may happen when the
668 	 * temperature is greater than a trip point when registering a
669 	 * thermal zone, which is a common use case as the kernel has
670 	 * no mitigation mechanism yet at boot time.
671 	 */
672 	if (!tz_dbg->nr_trips)
673 		goto out;
674 
675 	for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
676 		if (tz_dbg->trips_crossed[i] == trip_id)
677 			break;
678 	}
679 
680 	if (i < 0)
681 		goto out;
682 
683 	tz_dbg->nr_trips--;
684 
685 	if (i < tz_dbg->nr_trips)
686 		tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
687 
688 	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
689 
690 	delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp);
691 
692 	tze->trip_stats[trip_id].duration =
693 		ktime_add(delta, tze->trip_stats[trip_id].duration);
694 
695 	/* Mark the end of mitigation for this trip point. */
696 	tze->trip_stats[trip_id].timestamp = KTIME_MAX;
697 
698 	/*
699 	 * This event closes the mitigation as we are crossing the
700 	 * last trip point the way down.
701 	 */
702 	if (!tz_dbg->nr_trips)
703 		tze->duration = ktime_sub(now, tze->timestamp);
704 
705 out:
706 	mutex_unlock(&thermal_dbg->lock);
707 }
708 
709 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz)
710 {
711 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
712 	struct tz_debugfs *tz_dbg;
713 	struct tz_episode *tze;
714 	int i;
715 
716 	if (!thermal_dbg)
717 		return;
718 
719 	mutex_lock(&thermal_dbg->lock);
720 
721 	tz_dbg = &thermal_dbg->tz_dbg;
722 
723 	if (!tz_dbg->nr_trips)
724 		goto out;
725 
726 	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
727 
728 	for (i = 0; i < tz_dbg->nr_trips; i++) {
729 		int trip_id = tz_dbg->trips_crossed[i];
730 		struct trip_stats *trip_stats = &tze->trip_stats[trip_id];
731 
732 		trip_stats->max = max(trip_stats->max, tz->temperature);
733 		trip_stats->min = min(trip_stats->min, tz->temperature);
734 		trip_stats->avg += (tz->temperature - trip_stats->avg) /
735 					++trip_stats->count;
736 	}
737 out:
738 	mutex_unlock(&thermal_dbg->lock);
739 }
740 
741 static void *tze_seq_start(struct seq_file *s, loff_t *pos)
742 {
743 	struct thermal_debugfs *thermal_dbg = s->private;
744 	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
745 
746 	mutex_lock(&thermal_dbg->lock);
747 
748 	return seq_list_start(&tz_dbg->tz_episodes, *pos);
749 }
750 
751 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
752 {
753 	struct thermal_debugfs *thermal_dbg = s->private;
754 	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
755 
756 	return seq_list_next(v, &tz_dbg->tz_episodes, pos);
757 }
758 
759 static void tze_seq_stop(struct seq_file *s, void *v)
760 {
761 	struct thermal_debugfs *thermal_dbg = s->private;
762 
763 	mutex_unlock(&thermal_dbg->lock);
764 }
765 
766 static int tze_seq_show(struct seq_file *s, void *v)
767 {
768 	struct thermal_debugfs *thermal_dbg = s->private;
769 	struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz;
770 	struct thermal_trip_desc *td;
771 	struct tz_episode *tze;
772 	const char *type;
773 	u64 duration_ms;
774 	int trip_id;
775 	char c;
776 
777 	tze = list_entry((struct list_head *)v, struct tz_episode, node);
778 
779 	if (tze->duration == KTIME_MIN) {
780 		/* Mitigation in progress. */
781 		duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp));
782 		c = '>';
783 	} else {
784 		duration_ms = ktime_to_ms(tze->duration);
785 		c = '=';
786 	}
787 
788 	seq_printf(s, ",-Mitigation at %lluus, duration%c%llums\n",
789 		   ktime_to_us(tze->timestamp), c, duration_ms);
790 
791 	seq_printf(s, "| trip |     type | temp(°mC) | hyst(°mC) |  duration   |  avg(°mC) |  min(°mC) |  max(°mC) |\n");
792 
793 	for_each_trip_desc(tz, td) {
794 		const struct thermal_trip *trip = &td->trip;
795 		struct trip_stats *trip_stats;
796 
797 		/* Skip invalid trips. */
798 		if (trip->temperature == THERMAL_TEMP_INVALID)
799 			continue;
800 
801 		/*
802 		 * There is no possible mitigation happening at the
803 		 * critical trip point, so the stats will be always
804 		 * zero, skip this trip point
805 		 */
806 		if (trip->type == THERMAL_TRIP_CRITICAL)
807 			continue;
808 
809 		trip_id = thermal_zone_trip_id(tz, trip);
810 		trip_stats = &tze->trip_stats[trip_id];
811 
812 		/* Skip trips without any stats. */
813 		if (trip_stats->min > trip_stats->max)
814 			continue;
815 
816 		if (trip->type == THERMAL_TRIP_PASSIVE)
817 			type = "passive";
818 		else if (trip->type == THERMAL_TRIP_ACTIVE)
819 			type = "active";
820 		else
821 			type = "hot";
822 
823 		if (trip_stats->timestamp != KTIME_MAX) {
824 			/* Mitigation in progress. */
825 			ktime_t delta = ktime_sub(ktime_get(),
826 						  trip_stats->timestamp);
827 
828 			delta = ktime_add(delta, trip_stats->duration);
829 			duration_ms = ktime_to_ms(delta);
830 			c = '>';
831 		} else {
832 			duration_ms = ktime_to_ms(trip_stats->duration);
833 			c = ' ';
834 		}
835 
836 		seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d | %*d |\n",
837 			   4 , trip_id,
838 			   8, type,
839 			   9, trip->temperature,
840 			   9, trip->hysteresis,
841 			   c, 10, duration_ms,
842 			   9, trip_stats->avg,
843 			   9, trip_stats->min,
844 			   9, trip_stats->max);
845 	}
846 
847 	return 0;
848 }
849 
850 static const struct seq_operations tze_sops = {
851 	.start = tze_seq_start,
852 	.next = tze_seq_next,
853 	.stop = tze_seq_stop,
854 	.show = tze_seq_show,
855 };
856 
857 DEFINE_SEQ_ATTRIBUTE(tze);
858 
859 void thermal_debug_tz_add(struct thermal_zone_device *tz)
860 {
861 	struct thermal_debugfs *thermal_dbg;
862 	struct tz_debugfs *tz_dbg;
863 
864 	thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
865 	if (!thermal_dbg)
866 		return;
867 
868 	tz_dbg = &thermal_dbg->tz_dbg;
869 
870 	tz_dbg->tz = tz;
871 
872 	tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
873 	if (!tz_dbg->trips_crossed) {
874 		thermal_debugfs_remove_id(thermal_dbg);
875 		return;
876 	}
877 
878 	INIT_LIST_HEAD(&tz_dbg->tz_episodes);
879 
880 	debugfs_create_file("mitigations", 0400, thermal_dbg->d_top,
881 			    thermal_dbg, &tze_fops);
882 
883 	tz->debugfs = thermal_dbg;
884 }
885 
886 void thermal_debug_tz_remove(struct thermal_zone_device *tz)
887 {
888 	struct thermal_debugfs *thermal_dbg;
889 	struct tz_episode *tze, *tmp;
890 	struct tz_debugfs *tz_dbg;
891 	int *trips_crossed;
892 
893 	mutex_lock(&tz->lock);
894 
895 	thermal_dbg = tz->debugfs;
896 	if (!thermal_dbg) {
897 		mutex_unlock(&tz->lock);
898 		return;
899 	}
900 
901 	tz->debugfs = NULL;
902 
903 	mutex_unlock(&tz->lock);
904 
905 	tz_dbg = &thermal_dbg->tz_dbg;
906 
907 	mutex_lock(&thermal_dbg->lock);
908 
909 	trips_crossed = tz_dbg->trips_crossed;
910 
911 	list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) {
912 		list_del(&tze->node);
913 		kfree(tze);
914 	}
915 
916 	mutex_unlock(&thermal_dbg->lock);
917 
918 	thermal_debugfs_remove_id(thermal_dbg);
919 	kfree(trips_crossed);
920 }
921