1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2023 Linaro Limited 4 * 5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org> 6 * 7 * Thermal subsystem debug support 8 */ 9 #include <linux/debugfs.h> 10 #include <linux/ktime.h> 11 #include <linux/list.h> 12 #include <linux/minmax.h> 13 #include <linux/mutex.h> 14 #include <linux/thermal.h> 15 16 #include "thermal_core.h" 17 18 static struct dentry *d_root; 19 static struct dentry *d_cdev; 20 static struct dentry *d_tz; 21 22 /* 23 * Length of the string containing the thermal zone id or the cooling 24 * device id, including the ending nul character. We can reasonably 25 * assume there won't be more than 256 thermal zones as the maximum 26 * observed today is around 32. 27 */ 28 #define IDSLENGTH 4 29 30 /* 31 * The cooling device transition list is stored in a hash table where 32 * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices 33 * have dozen of states but some can have much more, so a hash table 34 * is more adequate in this case, because the cost of browsing the entire 35 * list when storing the transitions may not be negligible. 36 */ 37 #define CDEVSTATS_HASH_SIZE 16 38 39 /** 40 * struct cdev_debugfs - per cooling device statistics structure 41 * A cooling device can have a high number of states. Showing the 42 * transitions on a matrix based representation can be overkill given 43 * most of the transitions won't happen and we end up with a matrix 44 * filled with zero. Instead, we show the transitions which actually 45 * happened. 46 * 47 * Every transition updates the current_state and the timestamp. The 48 * transitions and the durations are stored in lists. 49 * 50 * @total: the number of transitions for this cooling device 51 * @current_state: the current cooling device state 52 * @timestamp: the state change timestamp 53 * @transitions: an array of lists containing the state transitions 54 * @durations: an array of lists containing the residencies of each state 55 */ 56 struct cdev_debugfs { 57 u32 total; 58 int current_state; 59 ktime_t timestamp; 60 struct list_head transitions[CDEVSTATS_HASH_SIZE]; 61 struct list_head durations[CDEVSTATS_HASH_SIZE]; 62 }; 63 64 /** 65 * struct cdev_record - Common structure for cooling device entry 66 * 67 * The following common structure allows to store the information 68 * related to the transitions and to the state residencies. They are 69 * identified with a id which is associated to a value. It is used as 70 * nodes for the "transitions" and "durations" above. 71 * 72 * @node: node to insert the structure in a list 73 * @id: identifier of the value which can be a state or a transition 74 * @residency: a ktime_t representing a state residency duration 75 * @count: a number of occurrences 76 */ 77 struct cdev_record { 78 struct list_head node; 79 int id; 80 union { 81 ktime_t residency; 82 u64 count; 83 }; 84 }; 85 86 /** 87 * struct trip_stats - Thermal trip statistics 88 * 89 * The trip_stats structure has the relevant information to show the 90 * statistics related to temperature going above a trip point. 91 * 92 * @timestamp: the trip crossing timestamp 93 * @duration: total time when the zone temperature was above the trip point 94 * @trip_temp: trip temperature at mitigation start 95 * @trip_hyst: trip hysteresis at mitigation start 96 * @count: the number of times the zone temperature was above the trip point 97 * @max: maximum recorded temperature above the trip point 98 * @min: minimum recorded temperature above the trip point 99 * @avg: average temperature above the trip point 100 */ 101 struct trip_stats { 102 ktime_t timestamp; 103 ktime_t duration; 104 int trip_temp; 105 int trip_hyst; 106 int count; 107 int max; 108 int min; 109 int avg; 110 }; 111 112 /** 113 * struct tz_episode - A mitigation episode information 114 * 115 * The tz_episode structure describes a mitigation episode. A 116 * mitigation episode begins the trip point with the lower temperature 117 * is crossed the way up and ends when it is crossed the way 118 * down. During this episode we can have multiple trip points crossed 119 * the way up and down if there are multiple trip described in the 120 * firmware after the lowest temperature trip point. 121 * 122 * @timestamp: first trip point crossed the way up 123 * @duration: total duration of the mitigation episode 124 * @node: a list element to be added to the list of tz events 125 * @trip_stats: per trip point statistics, flexible array 126 */ 127 struct tz_episode { 128 ktime_t timestamp; 129 ktime_t duration; 130 struct list_head node; 131 struct trip_stats trip_stats[]; 132 }; 133 134 /** 135 * struct tz_debugfs - Store all mitigation episodes for a thermal zone 136 * 137 * The tz_debugfs structure contains the list of the mitigation 138 * episodes and has to track which trip point has been crossed in 139 * order to handle correctly nested trip point mitigation episodes. 140 * 141 * We keep the history of the trip point crossed in an array and as we 142 * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0, 143 * we keep track of the current position in the history array. 144 * 145 * @tz_episodes: a list of thermal mitigation episodes 146 * @tz: thermal zone this object belongs to 147 * @trips_crossed: an array of trip points crossed by id 148 * @nr_trips: the number of trip points currently being crossed 149 */ 150 struct tz_debugfs { 151 struct list_head tz_episodes; 152 struct thermal_zone_device *tz; 153 int *trips_crossed; 154 int nr_trips; 155 }; 156 157 /** 158 * struct thermal_debugfs - High level structure for a thermal object in debugfs 159 * 160 * The thermal_debugfs structure is the common structure used by the 161 * cooling device or the thermal zone to store the statistics. 162 * 163 * @d_top: top directory of the thermal object directory 164 * @lock: per object lock to protect the internals 165 * 166 * @cdev_dbg: a cooling device debug structure 167 * @tz_dbg: a thermal zone debug structure 168 */ 169 struct thermal_debugfs { 170 struct dentry *d_top; 171 struct mutex lock; 172 union { 173 struct cdev_debugfs cdev_dbg; 174 struct tz_debugfs tz_dbg; 175 }; 176 }; 177 178 void thermal_debug_init(void) 179 { 180 d_root = debugfs_create_dir("thermal", NULL); 181 if (!d_root) 182 return; 183 184 d_cdev = debugfs_create_dir("cooling_devices", d_root); 185 if (!d_cdev) 186 return; 187 188 d_tz = debugfs_create_dir("thermal_zones", d_root); 189 } 190 191 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id) 192 { 193 struct thermal_debugfs *thermal_dbg; 194 char ids[IDSLENGTH]; 195 196 thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL); 197 if (!thermal_dbg) 198 return NULL; 199 200 mutex_init(&thermal_dbg->lock); 201 202 snprintf(ids, IDSLENGTH, "%d", id); 203 204 thermal_dbg->d_top = debugfs_create_dir(ids, d); 205 if (!thermal_dbg->d_top) { 206 kfree(thermal_dbg); 207 return NULL; 208 } 209 210 return thermal_dbg; 211 } 212 213 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg) 214 { 215 if (!thermal_dbg) 216 return; 217 218 debugfs_remove(thermal_dbg->d_top); 219 220 kfree(thermal_dbg); 221 } 222 223 static struct cdev_record * 224 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg, 225 struct list_head *lists, int id) 226 { 227 struct cdev_record *cdev_record; 228 229 cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL); 230 if (!cdev_record) 231 return NULL; 232 233 cdev_record->id = id; 234 INIT_LIST_HEAD(&cdev_record->node); 235 list_add_tail(&cdev_record->node, 236 &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]); 237 238 return cdev_record; 239 } 240 241 static struct cdev_record * 242 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg, 243 struct list_head *lists, int id) 244 { 245 struct cdev_record *entry; 246 247 list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node) 248 if (entry->id == id) 249 return entry; 250 251 return NULL; 252 } 253 254 static struct cdev_record * 255 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg, 256 struct list_head *lists, int id) 257 { 258 struct cdev_record *cdev_record; 259 260 cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id); 261 if (cdev_record) 262 return cdev_record; 263 264 return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id); 265 } 266 267 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg) 268 { 269 int i; 270 struct cdev_record *entry, *tmp; 271 272 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 273 274 list_for_each_entry_safe(entry, tmp, 275 &cdev_dbg->transitions[i], node) { 276 list_del(&entry->node); 277 kfree(entry); 278 } 279 280 list_for_each_entry_safe(entry, tmp, 281 &cdev_dbg->durations[i], node) { 282 list_del(&entry->node); 283 kfree(entry); 284 } 285 } 286 287 cdev_dbg->total = 0; 288 } 289 290 static void *cdev_seq_start(struct seq_file *s, loff_t *pos) 291 { 292 struct thermal_debugfs *thermal_dbg = s->private; 293 294 mutex_lock(&thermal_dbg->lock); 295 296 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 297 } 298 299 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos) 300 { 301 (*pos)++; 302 303 return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL; 304 } 305 306 static void cdev_seq_stop(struct seq_file *s, void *v) 307 { 308 struct thermal_debugfs *thermal_dbg = s->private; 309 310 mutex_unlock(&thermal_dbg->lock); 311 } 312 313 static int cdev_tt_seq_show(struct seq_file *s, void *v) 314 { 315 struct thermal_debugfs *thermal_dbg = s->private; 316 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 317 struct list_head *transitions = cdev_dbg->transitions; 318 struct cdev_record *entry; 319 int i = *(loff_t *)v; 320 321 if (!i) 322 seq_puts(s, "Transition\tOccurences\n"); 323 324 list_for_each_entry(entry, &transitions[i], node) { 325 /* 326 * Assuming maximum cdev states is 1024, the longer 327 * string for a transition would be "1024->1024\0" 328 */ 329 char buffer[11]; 330 331 snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d", 332 entry->id >> 16, entry->id & 0xFFFF); 333 334 seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count); 335 } 336 337 return 0; 338 } 339 340 static const struct seq_operations tt_sops = { 341 .start = cdev_seq_start, 342 .next = cdev_seq_next, 343 .stop = cdev_seq_stop, 344 .show = cdev_tt_seq_show, 345 }; 346 347 DEFINE_SEQ_ATTRIBUTE(tt); 348 349 static int cdev_dt_seq_show(struct seq_file *s, void *v) 350 { 351 struct thermal_debugfs *thermal_dbg = s->private; 352 struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg; 353 struct list_head *durations = cdev_dbg->durations; 354 struct cdev_record *entry; 355 int i = *(loff_t *)v; 356 357 if (!i) 358 seq_puts(s, "State\tResidency\n"); 359 360 list_for_each_entry(entry, &durations[i], node) { 361 s64 duration = ktime_to_ms(entry->residency); 362 363 if (entry->id == cdev_dbg->current_state) 364 duration += ktime_ms_delta(ktime_get(), 365 cdev_dbg->timestamp); 366 367 seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration); 368 } 369 370 return 0; 371 } 372 373 static const struct seq_operations dt_sops = { 374 .start = cdev_seq_start, 375 .next = cdev_seq_next, 376 .stop = cdev_seq_stop, 377 .show = cdev_dt_seq_show, 378 }; 379 380 DEFINE_SEQ_ATTRIBUTE(dt); 381 382 static int cdev_clear_set(void *data, u64 val) 383 { 384 struct thermal_debugfs *thermal_dbg = data; 385 386 if (!val) 387 return -EINVAL; 388 389 mutex_lock(&thermal_dbg->lock); 390 391 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 392 393 mutex_unlock(&thermal_dbg->lock); 394 395 return 0; 396 } 397 398 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n"); 399 400 /** 401 * thermal_debug_cdev_state_update - Update a cooling device state change 402 * 403 * Computes a transition and the duration of the previous state residency. 404 * 405 * @cdev : a pointer to a cooling device 406 * @new_state: an integer corresponding to the new cooling device state 407 */ 408 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev, 409 int new_state) 410 { 411 struct thermal_debugfs *thermal_dbg = cdev->debugfs; 412 struct cdev_debugfs *cdev_dbg; 413 struct cdev_record *cdev_record; 414 int transition, old_state; 415 416 if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state)) 417 return; 418 419 mutex_lock(&thermal_dbg->lock); 420 421 cdev_dbg = &thermal_dbg->cdev_dbg; 422 423 old_state = cdev_dbg->current_state; 424 425 /* 426 * Get the old state information in the durations list. If 427 * this one does not exist, a new allocated one will be 428 * returned. Recompute the total duration in the old state and 429 * get a new timestamp for the new state. 430 */ 431 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 432 cdev_dbg->durations, 433 old_state); 434 if (cdev_record) { 435 ktime_t now = ktime_get(); 436 ktime_t delta = ktime_sub(now, cdev_dbg->timestamp); 437 cdev_record->residency = ktime_add(cdev_record->residency, delta); 438 cdev_dbg->timestamp = now; 439 } 440 441 cdev_dbg->current_state = new_state; 442 443 /* 444 * Create a record for the new state if it is not there, so its 445 * duration will be printed by cdev_dt_seq_show() as expected if it 446 * runs before the next state transition. 447 */ 448 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, new_state); 449 450 transition = (old_state << 16) | new_state; 451 452 /* 453 * Get the transition in the transitions list. If this one 454 * does not exist, a new allocated one will be returned. 455 * Increment the occurrence of this transition which is stored 456 * in the value field. 457 */ 458 cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg, 459 cdev_dbg->transitions, 460 transition); 461 if (cdev_record) 462 cdev_record->count++; 463 464 cdev_dbg->total++; 465 466 mutex_unlock(&thermal_dbg->lock); 467 } 468 469 /** 470 * thermal_debug_cdev_add - Add a cooling device debugfs entry 471 * 472 * Allocates a cooling device object for debug, initializes the 473 * statistics and create the entries in sysfs. 474 * @cdev: a pointer to a cooling device 475 * @state: current state of the cooling device 476 */ 477 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev, int state) 478 { 479 struct thermal_debugfs *thermal_dbg; 480 struct cdev_debugfs *cdev_dbg; 481 int i; 482 483 thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id); 484 if (!thermal_dbg) 485 return; 486 487 cdev_dbg = &thermal_dbg->cdev_dbg; 488 489 for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) { 490 INIT_LIST_HEAD(&cdev_dbg->transitions[i]); 491 INIT_LIST_HEAD(&cdev_dbg->durations[i]); 492 } 493 494 cdev_dbg->current_state = state; 495 cdev_dbg->timestamp = ktime_get(); 496 497 /* 498 * Create a record for the initial cooling device state, so its 499 * duration will be printed by cdev_dt_seq_show() as expected if it 500 * runs before the first state transition. 501 */ 502 thermal_debugfs_cdev_record_get(thermal_dbg, cdev_dbg->durations, state); 503 504 debugfs_create_file("trans_table", 0400, thermal_dbg->d_top, 505 thermal_dbg, &tt_fops); 506 507 debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top, 508 thermal_dbg, &dt_fops); 509 510 debugfs_create_file("clear", 0200, thermal_dbg->d_top, 511 thermal_dbg, &cdev_clear_fops); 512 513 debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top, 514 &cdev_dbg->total); 515 516 cdev->debugfs = thermal_dbg; 517 } 518 519 /** 520 * thermal_debug_cdev_remove - Remove a cooling device debugfs entry 521 * 522 * Frees the statistics memory data and remove the debugfs entry 523 * 524 * @cdev: a pointer to a cooling device 525 */ 526 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev) 527 { 528 struct thermal_debugfs *thermal_dbg; 529 530 mutex_lock(&cdev->lock); 531 532 thermal_dbg = cdev->debugfs; 533 if (!thermal_dbg) { 534 mutex_unlock(&cdev->lock); 535 return; 536 } 537 538 cdev->debugfs = NULL; 539 540 mutex_unlock(&cdev->lock); 541 542 mutex_lock(&thermal_dbg->lock); 543 544 thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg); 545 546 mutex_unlock(&thermal_dbg->lock); 547 548 thermal_debugfs_remove_id(thermal_dbg); 549 } 550 551 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz, 552 ktime_t now) 553 { 554 struct tz_episode *tze; 555 int i; 556 557 tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL); 558 if (!tze) 559 return NULL; 560 561 INIT_LIST_HEAD(&tze->node); 562 tze->timestamp = now; 563 tze->duration = KTIME_MIN; 564 565 for (i = 0; i < tz->num_trips; i++) { 566 tze->trip_stats[i].min = INT_MAX; 567 tze->trip_stats[i].max = INT_MIN; 568 } 569 570 return tze; 571 } 572 573 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz, 574 const struct thermal_trip *trip) 575 { 576 struct tz_episode *tze; 577 struct tz_debugfs *tz_dbg; 578 struct thermal_debugfs *thermal_dbg = tz->debugfs; 579 int trip_id = thermal_zone_trip_id(tz, trip); 580 ktime_t now = ktime_get(); 581 struct trip_stats *trip_stats; 582 583 if (!thermal_dbg) 584 return; 585 586 mutex_lock(&thermal_dbg->lock); 587 588 tz_dbg = &thermal_dbg->tz_dbg; 589 590 /* 591 * The mitigation is starting. A mitigation can contain 592 * several episodes where each of them is related to a 593 * temperature crossing a trip point. The episodes are 594 * nested. That means when the temperature is crossing the 595 * first trip point, the duration begins to be measured. If 596 * the temperature continues to increase and reaches the 597 * second trip point, the duration of the first trip must be 598 * also accumulated. 599 * 600 * eg. 601 * 602 * temp 603 * ^ 604 * | -------- 605 * trip 2 / \ ------ 606 * | /| |\ /| |\ 607 * trip 1 / | | `---- | | \ 608 * | /| | | | | |\ 609 * trip 0 / | | | | | | \ 610 * | /| | | | | | | |\ 611 * | / | | | | | | | | `-- 612 * | / | | | | | | | | 613 * |----- | | | | | | | | 614 * | | | | | | | | | 615 * --------|-|-|--------|--------|------|-|-|------------------> time 616 * | | |<--t2-->| |<-t2'>| | | 617 * | | | | 618 * | |<------------t1------------>| | 619 * | | 620 * |<-------------t0--------------->| 621 * 622 */ 623 if (!tz_dbg->nr_trips) { 624 tze = thermal_debugfs_tz_event_alloc(tz, now); 625 if (!tze) 626 goto unlock; 627 628 list_add(&tze->node, &tz_dbg->tz_episodes); 629 } 630 631 /* 632 * Each time a trip point is crossed the way up, the trip_id 633 * is stored in the trip_crossed array and the nr_trips is 634 * incremented. A nr_trips equal to zero means we are entering 635 * a mitigation episode. 636 * 637 * The trip ids may not be in the ascending order but the 638 * result in the array trips_crossed will be in the ascending 639 * temperature order. The function detecting when a trip point 640 * is crossed the way down will handle the very rare case when 641 * the trip points may have been reordered during this 642 * mitigation episode. 643 */ 644 tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id; 645 646 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 647 trip_stats = &tze->trip_stats[trip_id]; 648 trip_stats->trip_temp = trip->temperature; 649 trip_stats->trip_hyst = trip->hysteresis; 650 trip_stats->timestamp = now; 651 652 unlock: 653 mutex_unlock(&thermal_dbg->lock); 654 } 655 656 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz, 657 const struct thermal_trip *trip) 658 { 659 struct thermal_debugfs *thermal_dbg = tz->debugfs; 660 struct tz_episode *tze; 661 struct tz_debugfs *tz_dbg; 662 ktime_t delta, now = ktime_get(); 663 int trip_id = thermal_zone_trip_id(tz, trip); 664 int i; 665 666 if (!thermal_dbg) 667 return; 668 669 mutex_lock(&thermal_dbg->lock); 670 671 tz_dbg = &thermal_dbg->tz_dbg; 672 673 /* 674 * The temperature crosses the way down but there was not 675 * mitigation detected before. That may happen when the 676 * temperature is greater than a trip point when registering a 677 * thermal zone, which is a common use case as the kernel has 678 * no mitigation mechanism yet at boot time. 679 */ 680 if (!tz_dbg->nr_trips) 681 goto out; 682 683 for (i = tz_dbg->nr_trips - 1; i >= 0; i--) { 684 if (tz_dbg->trips_crossed[i] == trip_id) 685 break; 686 } 687 688 if (i < 0) 689 goto out; 690 691 tz_dbg->nr_trips--; 692 693 if (i < tz_dbg->nr_trips) 694 tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips]; 695 696 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 697 698 delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp); 699 700 tze->trip_stats[trip_id].duration = 701 ktime_add(delta, tze->trip_stats[trip_id].duration); 702 703 /* Mark the end of mitigation for this trip point. */ 704 tze->trip_stats[trip_id].timestamp = KTIME_MAX; 705 706 /* 707 * This event closes the mitigation as we are crossing the 708 * last trip point the way down. 709 */ 710 if (!tz_dbg->nr_trips) 711 tze->duration = ktime_sub(now, tze->timestamp); 712 713 out: 714 mutex_unlock(&thermal_dbg->lock); 715 } 716 717 void thermal_debug_update_trip_stats(struct thermal_zone_device *tz) 718 { 719 struct thermal_debugfs *thermal_dbg = tz->debugfs; 720 struct tz_debugfs *tz_dbg; 721 struct tz_episode *tze; 722 int i; 723 724 if (!thermal_dbg) 725 return; 726 727 mutex_lock(&thermal_dbg->lock); 728 729 tz_dbg = &thermal_dbg->tz_dbg; 730 731 if (!tz_dbg->nr_trips) 732 goto out; 733 734 tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node); 735 736 for (i = 0; i < tz_dbg->nr_trips; i++) { 737 int trip_id = tz_dbg->trips_crossed[i]; 738 struct trip_stats *trip_stats = &tze->trip_stats[trip_id]; 739 740 trip_stats->max = max(trip_stats->max, tz->temperature); 741 trip_stats->min = min(trip_stats->min, tz->temperature); 742 trip_stats->avg += (tz->temperature - trip_stats->avg) / 743 ++trip_stats->count; 744 } 745 out: 746 mutex_unlock(&thermal_dbg->lock); 747 } 748 749 static void *tze_seq_start(struct seq_file *s, loff_t *pos) 750 { 751 struct thermal_debugfs *thermal_dbg = s->private; 752 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 753 754 mutex_lock(&thermal_dbg->lock); 755 756 return seq_list_start(&tz_dbg->tz_episodes, *pos); 757 } 758 759 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos) 760 { 761 struct thermal_debugfs *thermal_dbg = s->private; 762 struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg; 763 764 return seq_list_next(v, &tz_dbg->tz_episodes, pos); 765 } 766 767 static void tze_seq_stop(struct seq_file *s, void *v) 768 { 769 struct thermal_debugfs *thermal_dbg = s->private; 770 771 mutex_unlock(&thermal_dbg->lock); 772 } 773 774 static int tze_seq_show(struct seq_file *s, void *v) 775 { 776 struct thermal_debugfs *thermal_dbg = s->private; 777 struct thermal_zone_device *tz = thermal_dbg->tz_dbg.tz; 778 struct thermal_trip_desc *td; 779 struct tz_episode *tze; 780 const char *type; 781 u64 duration_ms; 782 int trip_id; 783 char c; 784 785 tze = list_entry((struct list_head *)v, struct tz_episode, node); 786 787 if (tze->duration == KTIME_MIN) { 788 /* Mitigation in progress. */ 789 duration_ms = ktime_to_ms(ktime_sub(ktime_get(), tze->timestamp)); 790 c = '>'; 791 } else { 792 duration_ms = ktime_to_ms(tze->duration); 793 c = '='; 794 } 795 796 seq_printf(s, ",-Mitigation at %lluus, duration%c%llums\n", 797 ktime_to_us(tze->timestamp), c, duration_ms); 798 799 seq_printf(s, "| trip | type | temp(°mC) | hyst(°mC) | duration | avg(°mC) | min(°mC) | max(°mC) |\n"); 800 801 for_each_trip_desc(tz, td) { 802 const struct thermal_trip *trip = &td->trip; 803 struct trip_stats *trip_stats; 804 805 /* 806 * There is no possible mitigation happening at the 807 * critical trip point, so the stats will be always 808 * zero, skip this trip point 809 */ 810 if (trip->type == THERMAL_TRIP_CRITICAL) 811 continue; 812 813 trip_id = thermal_zone_trip_id(tz, trip); 814 trip_stats = &tze->trip_stats[trip_id]; 815 816 /* Skip trips without any stats. */ 817 if (trip_stats->min > trip_stats->max) 818 continue; 819 820 if (trip->type == THERMAL_TRIP_PASSIVE) 821 type = "passive"; 822 else if (trip->type == THERMAL_TRIP_ACTIVE) 823 type = "active"; 824 else 825 type = "hot"; 826 827 if (trip_stats->timestamp != KTIME_MAX) { 828 /* Mitigation in progress. */ 829 ktime_t delta = ktime_sub(ktime_get(), 830 trip_stats->timestamp); 831 832 delta = ktime_add(delta, trip_stats->duration); 833 duration_ms = ktime_to_ms(delta); 834 c = '>'; 835 } else { 836 duration_ms = ktime_to_ms(trip_stats->duration); 837 c = ' '; 838 } 839 840 seq_printf(s, "| %*d | %*s | %*d | %*d | %c%*lld | %*d | %*d | %*d |\n", 841 4 , trip_id, 842 8, type, 843 9, trip_stats->trip_temp, 844 9, trip_stats->trip_hyst, 845 c, 10, duration_ms, 846 9, trip_stats->avg, 847 9, trip_stats->min, 848 9, trip_stats->max); 849 } 850 851 return 0; 852 } 853 854 static const struct seq_operations tze_sops = { 855 .start = tze_seq_start, 856 .next = tze_seq_next, 857 .stop = tze_seq_stop, 858 .show = tze_seq_show, 859 }; 860 861 DEFINE_SEQ_ATTRIBUTE(tze); 862 863 void thermal_debug_tz_add(struct thermal_zone_device *tz) 864 { 865 struct thermal_debugfs *thermal_dbg; 866 struct tz_debugfs *tz_dbg; 867 868 thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id); 869 if (!thermal_dbg) 870 return; 871 872 tz_dbg = &thermal_dbg->tz_dbg; 873 874 tz_dbg->tz = tz; 875 876 tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL); 877 if (!tz_dbg->trips_crossed) { 878 thermal_debugfs_remove_id(thermal_dbg); 879 return; 880 } 881 882 INIT_LIST_HEAD(&tz_dbg->tz_episodes); 883 884 debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, 885 thermal_dbg, &tze_fops); 886 887 tz->debugfs = thermal_dbg; 888 } 889 890 void thermal_debug_tz_remove(struct thermal_zone_device *tz) 891 { 892 struct thermal_debugfs *thermal_dbg; 893 struct tz_episode *tze, *tmp; 894 struct tz_debugfs *tz_dbg; 895 int *trips_crossed; 896 897 mutex_lock(&tz->lock); 898 899 thermal_dbg = tz->debugfs; 900 if (!thermal_dbg) { 901 mutex_unlock(&tz->lock); 902 return; 903 } 904 905 tz->debugfs = NULL; 906 907 mutex_unlock(&tz->lock); 908 909 tz_dbg = &thermal_dbg->tz_dbg; 910 911 mutex_lock(&thermal_dbg->lock); 912 913 trips_crossed = tz_dbg->trips_crossed; 914 915 list_for_each_entry_safe(tze, tmp, &tz_dbg->tz_episodes, node) { 916 list_del(&tze->node); 917 kfree(tze); 918 } 919 920 mutex_unlock(&thermal_dbg->lock); 921 922 thermal_debugfs_remove_id(thermal_dbg); 923 kfree(trips_crossed); 924 } 925