xref: /linux/drivers/thermal/thermal_debugfs.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2023 Linaro Limited
4  *
5  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6  *
7  * Thermal subsystem debug support
8  */
9 #include <linux/debugfs.h>
10 #include <linux/ktime.h>
11 #include <linux/list.h>
12 #include <linux/minmax.h>
13 #include <linux/mutex.h>
14 #include <linux/thermal.h>
15 
16 #include "thermal_core.h"
17 
18 static struct dentry *d_root;
19 static struct dentry *d_cdev;
20 static struct dentry *d_tz;
21 
22 /*
23  * Length of the string containing the thermal zone id or the cooling
24  * device id, including the ending nul character. We can reasonably
25  * assume there won't be more than 256 thermal zones as the maximum
26  * observed today is around 32.
27  */
28 #define IDSLENGTH 4
29 
30 /*
31  * The cooling device transition list is stored in a hash table where
32  * the size is CDEVSTATS_HASH_SIZE. The majority of cooling devices
33  * have dozen of states but some can have much more, so a hash table
34  * is more adequate in this case, because the cost of browsing the entire
35  * list when storing the transitions may not be negligible.
36  */
37 #define CDEVSTATS_HASH_SIZE 16
38 
39 /**
40  * struct cdev_debugfs - per cooling device statistics structure
41  * A cooling device can have a high number of states. Showing the
42  * transitions on a matrix based representation can be overkill given
43  * most of the transitions won't happen and we end up with a matrix
44  * filled with zero. Instead, we show the transitions which actually
45  * happened.
46  *
47  * Every transition updates the current_state and the timestamp. The
48  * transitions and the durations are stored in lists.
49  *
50  * @total: the number of transitions for this cooling device
51  * @current_state: the current cooling device state
52  * @timestamp: the state change timestamp
53  * @transitions: an array of lists containing the state transitions
54  * @durations: an array of lists containing the residencies of each state
55  */
56 struct cdev_debugfs {
57 	u32 total;
58 	int current_state;
59 	ktime_t timestamp;
60 	struct list_head transitions[CDEVSTATS_HASH_SIZE];
61 	struct list_head durations[CDEVSTATS_HASH_SIZE];
62 };
63 
64 /**
65  * struct cdev_record - Common structure for cooling device entry
66  *
67  * The following common structure allows to store the information
68  * related to the transitions and to the state residencies. They are
69  * identified with a id which is associated to a value. It is used as
70  * nodes for the "transitions" and "durations" above.
71  *
72  * @node: node to insert the structure in a list
73  * @id: identifier of the value which can be a state or a transition
74  * @residency: a ktime_t representing a state residency duration
75  * @count: a number of occurrences
76  */
77 struct cdev_record {
78 	struct list_head node;
79 	int id;
80 	union {
81                 ktime_t residency;
82                 u64 count;
83         };
84 };
85 
86 /**
87  * struct trip_stats - Thermal trip statistics
88  *
89  * The trip_stats structure has the relevant information to show the
90  * statistics related to temperature going above a trip point.
91  *
92  * @timestamp: the trip crossing timestamp
93  * @duration: total time when the zone temperature was above the trip point
94  * @count: the number of times the zone temperature was above the trip point
95  * @max: maximum recorded temperature above the trip point
96  * @min: minimum recorded temperature above the trip point
97  * @avg: average temperature above the trip point
98  */
99 struct trip_stats {
100 	ktime_t timestamp;
101 	ktime_t duration;
102 	int count;
103 	int max;
104 	int min;
105 	int avg;
106 };
107 
108 /**
109  * struct tz_episode - A mitigation episode information
110  *
111  * The tz_episode structure describes a mitigation episode. A
112  * mitigation episode begins the trip point with the lower temperature
113  * is crossed the way up and ends when it is crossed the way
114  * down. During this episode we can have multiple trip points crossed
115  * the way up and down if there are multiple trip described in the
116  * firmware after the lowest temperature trip point.
117  *
118  * @timestamp: first trip point crossed the way up
119  * @duration: total duration of the mitigation episode
120  * @node: a list element to be added to the list of tz events
121  * @trip_stats: per trip point statistics, flexible array
122  */
123 struct tz_episode {
124 	ktime_t timestamp;
125 	ktime_t duration;
126 	struct list_head node;
127 	struct trip_stats trip_stats[];
128 };
129 
130 /**
131  * struct tz_debugfs - Store all mitigation episodes for a thermal zone
132  *
133  * The tz_debugfs structure contains the list of the mitigation
134  * episodes and has to track which trip point has been crossed in
135  * order to handle correctly nested trip point mitigation episodes.
136  *
137  * We keep the history of the trip point crossed in an array and as we
138  * can go back and forth inside this history, eg. trip 0,1,2,1,2,1,0,
139  * we keep track of the current position in the history array.
140  *
141  * @tz_episodes: a list of thermal mitigation episodes
142  * @trips_crossed: an array of trip points crossed by id
143  * @nr_trips: the number of trip points currently being crossed
144  */
145 struct tz_debugfs {
146 	struct list_head tz_episodes;
147 	int *trips_crossed;
148 	int nr_trips;
149 };
150 
151 /**
152  * struct thermal_debugfs - High level structure for a thermal object in debugfs
153  *
154  * The thermal_debugfs structure is the common structure used by the
155  * cooling device or the thermal zone to store the statistics.
156  *
157  * @d_top: top directory of the thermal object directory
158  * @lock: per object lock to protect the internals
159  *
160  * @cdev_dbg: a cooling device debug structure
161  * @tz_dbg: a thermal zone debug structure
162  */
163 struct thermal_debugfs {
164 	struct dentry *d_top;
165 	struct mutex lock;
166 	union {
167 		struct cdev_debugfs cdev_dbg;
168 		struct tz_debugfs tz_dbg;
169 	};
170 };
171 
172 void thermal_debug_init(void)
173 {
174 	d_root = debugfs_create_dir("thermal", NULL);
175 	if (!d_root)
176 		return;
177 
178 	d_cdev = debugfs_create_dir("cooling_devices", d_root);
179 	if (!d_cdev)
180 		return;
181 
182 	d_tz = debugfs_create_dir("thermal_zones", d_root);
183 }
184 
185 static struct thermal_debugfs *thermal_debugfs_add_id(struct dentry *d, int id)
186 {
187 	struct thermal_debugfs *thermal_dbg;
188 	char ids[IDSLENGTH];
189 
190 	thermal_dbg = kzalloc(sizeof(*thermal_dbg), GFP_KERNEL);
191 	if (!thermal_dbg)
192 		return NULL;
193 
194 	mutex_init(&thermal_dbg->lock);
195 
196 	snprintf(ids, IDSLENGTH, "%d", id);
197 
198 	thermal_dbg->d_top = debugfs_create_dir(ids, d);
199 	if (!thermal_dbg->d_top) {
200 		kfree(thermal_dbg);
201 		return NULL;
202 	}
203 
204 	return thermal_dbg;
205 }
206 
207 static void thermal_debugfs_remove_id(struct thermal_debugfs *thermal_dbg)
208 {
209 	if (!thermal_dbg)
210 		return;
211 
212 	debugfs_remove(thermal_dbg->d_top);
213 
214 	kfree(thermal_dbg);
215 }
216 
217 static struct cdev_record *
218 thermal_debugfs_cdev_record_alloc(struct thermal_debugfs *thermal_dbg,
219 				  struct list_head *lists, int id)
220 {
221 	struct cdev_record *cdev_record;
222 
223 	cdev_record = kzalloc(sizeof(*cdev_record), GFP_KERNEL);
224 	if (!cdev_record)
225 		return NULL;
226 
227 	cdev_record->id = id;
228 	INIT_LIST_HEAD(&cdev_record->node);
229 	list_add_tail(&cdev_record->node,
230 		      &lists[cdev_record->id % CDEVSTATS_HASH_SIZE]);
231 
232 	return cdev_record;
233 }
234 
235 static struct cdev_record *
236 thermal_debugfs_cdev_record_find(struct thermal_debugfs *thermal_dbg,
237 				 struct list_head *lists, int id)
238 {
239 	struct cdev_record *entry;
240 
241 	list_for_each_entry(entry, &lists[id % CDEVSTATS_HASH_SIZE], node)
242 		if (entry->id == id)
243 			return entry;
244 
245 	return NULL;
246 }
247 
248 static struct cdev_record *
249 thermal_debugfs_cdev_record_get(struct thermal_debugfs *thermal_dbg,
250 				struct list_head *lists, int id)
251 {
252 	struct cdev_record *cdev_record;
253 
254 	cdev_record = thermal_debugfs_cdev_record_find(thermal_dbg, lists, id);
255 	if (cdev_record)
256 		return cdev_record;
257 
258 	return thermal_debugfs_cdev_record_alloc(thermal_dbg, lists, id);
259 }
260 
261 static void thermal_debugfs_cdev_clear(struct cdev_debugfs *cdev_dbg)
262 {
263 	int i;
264 	struct cdev_record *entry, *tmp;
265 
266 	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
267 
268 		list_for_each_entry_safe(entry, tmp,
269 					 &cdev_dbg->transitions[i], node) {
270 			list_del(&entry->node);
271 			kfree(entry);
272 		}
273 
274 		list_for_each_entry_safe(entry, tmp,
275 					 &cdev_dbg->durations[i], node) {
276 			list_del(&entry->node);
277 			kfree(entry);
278 		}
279 	}
280 
281 	cdev_dbg->total = 0;
282 }
283 
284 static void *cdev_seq_start(struct seq_file *s, loff_t *pos)
285 {
286 	struct thermal_debugfs *thermal_dbg = s->private;
287 
288 	mutex_lock(&thermal_dbg->lock);
289 
290 	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
291 }
292 
293 static void *cdev_seq_next(struct seq_file *s, void *v, loff_t *pos)
294 {
295 	(*pos)++;
296 
297 	return (*pos < CDEVSTATS_HASH_SIZE) ? pos : NULL;
298 }
299 
300 static void cdev_seq_stop(struct seq_file *s, void *v)
301 {
302 	struct thermal_debugfs *thermal_dbg = s->private;
303 
304 	mutex_unlock(&thermal_dbg->lock);
305 }
306 
307 static int cdev_tt_seq_show(struct seq_file *s, void *v)
308 {
309 	struct thermal_debugfs *thermal_dbg = s->private;
310 	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
311 	struct list_head *transitions = cdev_dbg->transitions;
312 	struct cdev_record *entry;
313 	int i = *(loff_t *)v;
314 
315 	if (!i)
316 		seq_puts(s, "Transition\tOccurences\n");
317 
318 	list_for_each_entry(entry, &transitions[i], node) {
319 		/*
320 		 * Assuming maximum cdev states is 1024, the longer
321 		 * string for a transition would be "1024->1024\0"
322 		 */
323 		char buffer[11];
324 
325 		snprintf(buffer, ARRAY_SIZE(buffer), "%d->%d",
326 			 entry->id >> 16, entry->id & 0xFFFF);
327 
328 		seq_printf(s, "%-10s\t%-10llu\n", buffer, entry->count);
329 	}
330 
331 	return 0;
332 }
333 
334 static const struct seq_operations tt_sops = {
335 	.start = cdev_seq_start,
336 	.next = cdev_seq_next,
337 	.stop = cdev_seq_stop,
338 	.show = cdev_tt_seq_show,
339 };
340 
341 DEFINE_SEQ_ATTRIBUTE(tt);
342 
343 static int cdev_dt_seq_show(struct seq_file *s, void *v)
344 {
345 	struct thermal_debugfs *thermal_dbg = s->private;
346 	struct cdev_debugfs *cdev_dbg = &thermal_dbg->cdev_dbg;
347 	struct list_head *durations = cdev_dbg->durations;
348 	struct cdev_record *entry;
349 	int i = *(loff_t *)v;
350 
351 	if (!i)
352 		seq_puts(s, "State\tResidency\n");
353 
354 	list_for_each_entry(entry, &durations[i], node) {
355 		s64 duration = ktime_to_ms(entry->residency);
356 
357 		if (entry->id == cdev_dbg->current_state)
358 			duration += ktime_ms_delta(ktime_get(),
359 						   cdev_dbg->timestamp);
360 
361 		seq_printf(s, "%-5d\t%-10llu\n", entry->id, duration);
362 	}
363 
364 	return 0;
365 }
366 
367 static const struct seq_operations dt_sops = {
368 	.start = cdev_seq_start,
369 	.next = cdev_seq_next,
370 	.stop = cdev_seq_stop,
371 	.show = cdev_dt_seq_show,
372 };
373 
374 DEFINE_SEQ_ATTRIBUTE(dt);
375 
376 static int cdev_clear_set(void *data, u64 val)
377 {
378 	struct thermal_debugfs *thermal_dbg = data;
379 
380 	if (!val)
381 		return -EINVAL;
382 
383 	mutex_lock(&thermal_dbg->lock);
384 
385 	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
386 
387 	mutex_unlock(&thermal_dbg->lock);
388 
389 	return 0;
390 }
391 
392 DEFINE_DEBUGFS_ATTRIBUTE(cdev_clear_fops, NULL, cdev_clear_set, "%llu\n");
393 
394 /**
395  * thermal_debug_cdev_state_update - Update a cooling device state change
396  *
397  * Computes a transition and the duration of the previous state residency.
398  *
399  * @cdev : a pointer to a cooling device
400  * @new_state: an integer corresponding to the new cooling device state
401  */
402 void thermal_debug_cdev_state_update(const struct thermal_cooling_device *cdev,
403 				     int new_state)
404 {
405 	struct thermal_debugfs *thermal_dbg = cdev->debugfs;
406 	struct cdev_debugfs *cdev_dbg;
407 	struct cdev_record *cdev_record;
408 	int transition, old_state;
409 
410 	if (!thermal_dbg || (thermal_dbg->cdev_dbg.current_state == new_state))
411 		return;
412 
413 	mutex_lock(&thermal_dbg->lock);
414 
415 	cdev_dbg = &thermal_dbg->cdev_dbg;
416 
417 	old_state = cdev_dbg->current_state;
418 
419 	/*
420 	 * Get the old state information in the durations list. If
421 	 * this one does not exist, a new allocated one will be
422 	 * returned. Recompute the total duration in the old state and
423 	 * get a new timestamp for the new state.
424 	 */
425 	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
426 						      cdev_dbg->durations,
427 						      old_state);
428 	if (cdev_record) {
429 		ktime_t now = ktime_get();
430 		ktime_t delta = ktime_sub(now, cdev_dbg->timestamp);
431 		cdev_record->residency = ktime_add(cdev_record->residency, delta);
432 		cdev_dbg->timestamp = now;
433 	}
434 
435 	cdev_dbg->current_state = new_state;
436 	transition = (old_state << 16) | new_state;
437 
438 	/*
439 	 * Get the transition in the transitions list. If this one
440 	 * does not exist, a new allocated one will be returned.
441 	 * Increment the occurrence of this transition which is stored
442 	 * in the value field.
443 	 */
444 	cdev_record = thermal_debugfs_cdev_record_get(thermal_dbg,
445 						      cdev_dbg->transitions,
446 						      transition);
447 	if (cdev_record)
448 		cdev_record->count++;
449 
450 	cdev_dbg->total++;
451 
452 	mutex_unlock(&thermal_dbg->lock);
453 }
454 
455 /**
456  * thermal_debug_cdev_add - Add a cooling device debugfs entry
457  *
458  * Allocates a cooling device object for debug, initializes the
459  * statistics and create the entries in sysfs.
460  * @cdev: a pointer to a cooling device
461  */
462 void thermal_debug_cdev_add(struct thermal_cooling_device *cdev)
463 {
464 	struct thermal_debugfs *thermal_dbg;
465 	struct cdev_debugfs *cdev_dbg;
466 	int i;
467 
468 	thermal_dbg = thermal_debugfs_add_id(d_cdev, cdev->id);
469 	if (!thermal_dbg)
470 		return;
471 
472 	cdev_dbg = &thermal_dbg->cdev_dbg;
473 
474 	for (i = 0; i < CDEVSTATS_HASH_SIZE; i++) {
475 		INIT_LIST_HEAD(&cdev_dbg->transitions[i]);
476 		INIT_LIST_HEAD(&cdev_dbg->durations[i]);
477 	}
478 
479 	cdev_dbg->current_state = 0;
480 	cdev_dbg->timestamp = ktime_get();
481 
482 	debugfs_create_file("trans_table", 0400, thermal_dbg->d_top,
483 			    thermal_dbg, &tt_fops);
484 
485 	debugfs_create_file("time_in_state_ms", 0400, thermal_dbg->d_top,
486 			    thermal_dbg, &dt_fops);
487 
488 	debugfs_create_file("clear", 0200, thermal_dbg->d_top,
489 			    thermal_dbg, &cdev_clear_fops);
490 
491 	debugfs_create_u32("total_trans", 0400, thermal_dbg->d_top,
492 			   &cdev_dbg->total);
493 
494 	cdev->debugfs = thermal_dbg;
495 }
496 
497 /**
498  * thermal_debug_cdev_remove - Remove a cooling device debugfs entry
499  *
500  * Frees the statistics memory data and remove the debugfs entry
501  *
502  * @cdev: a pointer to a cooling device
503  */
504 void thermal_debug_cdev_remove(struct thermal_cooling_device *cdev)
505 {
506 	struct thermal_debugfs *thermal_dbg = cdev->debugfs;
507 
508 	if (!thermal_dbg)
509 		return;
510 
511 	mutex_lock(&thermal_dbg->lock);
512 
513 	thermal_debugfs_cdev_clear(&thermal_dbg->cdev_dbg);
514 	cdev->debugfs = NULL;
515 
516 	mutex_unlock(&thermal_dbg->lock);
517 
518 	thermal_debugfs_remove_id(thermal_dbg);
519 }
520 
521 static struct tz_episode *thermal_debugfs_tz_event_alloc(struct thermal_zone_device *tz,
522 							ktime_t now)
523 {
524 	struct tz_episode *tze;
525 	int i;
526 
527 	tze = kzalloc(struct_size(tze, trip_stats, tz->num_trips), GFP_KERNEL);
528 	if (!tze)
529 		return NULL;
530 
531 	INIT_LIST_HEAD(&tze->node);
532 	tze->timestamp = now;
533 
534 	for (i = 0; i < tz->num_trips; i++) {
535 		tze->trip_stats[i].min = INT_MAX;
536 		tze->trip_stats[i].max = INT_MIN;
537 	}
538 
539 	return tze;
540 }
541 
542 void thermal_debug_tz_trip_up(struct thermal_zone_device *tz,
543 			      const struct thermal_trip *trip)
544 {
545 	struct tz_episode *tze;
546 	struct tz_debugfs *tz_dbg;
547 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
548 	int temperature = tz->temperature;
549 	int trip_id = thermal_zone_trip_id(tz, trip);
550 	ktime_t now = ktime_get();
551 
552 	if (!thermal_dbg)
553 		return;
554 
555 	mutex_lock(&thermal_dbg->lock);
556 
557 	tz_dbg = &thermal_dbg->tz_dbg;
558 
559 	/*
560 	 * The mitigation is starting. A mitigation can contain
561 	 * several episodes where each of them is related to a
562 	 * temperature crossing a trip point. The episodes are
563 	 * nested. That means when the temperature is crossing the
564 	 * first trip point, the duration begins to be measured. If
565 	 * the temperature continues to increase and reaches the
566 	 * second trip point, the duration of the first trip must be
567 	 * also accumulated.
568 	 *
569 	 * eg.
570 	 *
571 	 * temp
572 	 *   ^
573 	 *   |             --------
574 	 * trip 2         /        \         ------
575 	 *   |           /|        |\      /|      |\
576 	 * trip 1       / |        | `----  |      | \
577 	 *   |         /| |        |        |      | |\
578 	 * trip 0     / | |        |        |      | | \
579 	 *   |       /| | |        |        |      | | |\
580 	 *   |      / | | |        |        |      | | | `--
581 	 *   |     /  | | |        |        |      | | |
582 	 *   |-----   | | |        |        |      | | |
583 	 *   |        | | |        |        |      | | |
584 	 *    --------|-|-|--------|--------|------|-|-|------------------> time
585 	 *            | | |<--t2-->|        |<-t2'>| | |
586 	 *            | |                            | |
587 	 *            | |<------------t1------------>| |
588 	 *            |                                |
589 	 *            |<-------------t0--------------->|
590 	 *
591 	 */
592 	if (!tz_dbg->nr_trips) {
593 		tze = thermal_debugfs_tz_event_alloc(tz, now);
594 		if (!tze)
595 			goto unlock;
596 
597 		list_add(&tze->node, &tz_dbg->tz_episodes);
598 	}
599 
600 	/*
601 	 * Each time a trip point is crossed the way up, the trip_id
602 	 * is stored in the trip_crossed array and the nr_trips is
603 	 * incremented. A nr_trips equal to zero means we are entering
604 	 * a mitigation episode.
605 	 *
606 	 * The trip ids may not be in the ascending order but the
607 	 * result in the array trips_crossed will be in the ascending
608 	 * temperature order. The function detecting when a trip point
609 	 * is crossed the way down will handle the very rare case when
610 	 * the trip points may have been reordered during this
611 	 * mitigation episode.
612 	 */
613 	tz_dbg->trips_crossed[tz_dbg->nr_trips++] = trip_id;
614 
615 	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
616 	tze->trip_stats[trip_id].timestamp = now;
617 	tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, temperature);
618 	tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, temperature);
619 	tze->trip_stats[trip_id].count++;
620 	tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
621 		(temperature - tze->trip_stats[trip_id].avg) /
622 		tze->trip_stats[trip_id].count;
623 
624 unlock:
625 	mutex_unlock(&thermal_dbg->lock);
626 }
627 
628 void thermal_debug_tz_trip_down(struct thermal_zone_device *tz,
629 				const struct thermal_trip *trip)
630 {
631 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
632 	struct tz_episode *tze;
633 	struct tz_debugfs *tz_dbg;
634 	ktime_t delta, now = ktime_get();
635 	int trip_id = thermal_zone_trip_id(tz, trip);
636 	int i;
637 
638 	if (!thermal_dbg)
639 		return;
640 
641 	mutex_lock(&thermal_dbg->lock);
642 
643 	tz_dbg = &thermal_dbg->tz_dbg;
644 
645 	/*
646 	 * The temperature crosses the way down but there was not
647 	 * mitigation detected before. That may happen when the
648 	 * temperature is greater than a trip point when registering a
649 	 * thermal zone, which is a common use case as the kernel has
650 	 * no mitigation mechanism yet at boot time.
651 	 */
652 	if (!tz_dbg->nr_trips)
653 		goto out;
654 
655 	for (i = tz_dbg->nr_trips - 1; i >= 0; i--) {
656 		if (tz_dbg->trips_crossed[i] == trip_id)
657 			break;
658 	}
659 
660 	if (i < 0)
661 		goto out;
662 
663 	tz_dbg->nr_trips--;
664 
665 	if (i < tz_dbg->nr_trips)
666 		tz_dbg->trips_crossed[i] = tz_dbg->trips_crossed[tz_dbg->nr_trips];
667 
668 	tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
669 
670 	delta = ktime_sub(now, tze->trip_stats[trip_id].timestamp);
671 
672 	tze->trip_stats[trip_id].duration =
673 		ktime_add(delta, tze->trip_stats[trip_id].duration);
674 
675 	/*
676 	 * This event closes the mitigation as we are crossing the
677 	 * last trip point the way down.
678 	 */
679 	if (!tz_dbg->nr_trips)
680 		tze->duration = ktime_sub(now, tze->timestamp);
681 
682 out:
683 	mutex_unlock(&thermal_dbg->lock);
684 }
685 
686 void thermal_debug_update_temp(struct thermal_zone_device *tz)
687 {
688 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
689 	struct tz_episode *tze;
690 	struct tz_debugfs *tz_dbg;
691 	int trip_id, i;
692 
693 	if (!thermal_dbg)
694 		return;
695 
696 	mutex_lock(&thermal_dbg->lock);
697 
698 	tz_dbg = &thermal_dbg->tz_dbg;
699 
700 	if (!tz_dbg->nr_trips)
701 		goto out;
702 
703 	for (i = 0; i < tz_dbg->nr_trips; i++) {
704 		trip_id = tz_dbg->trips_crossed[i];
705 		tze = list_first_entry(&tz_dbg->tz_episodes, struct tz_episode, node);
706 		tze->trip_stats[trip_id].count++;
707 		tze->trip_stats[trip_id].max = max(tze->trip_stats[trip_id].max, tz->temperature);
708 		tze->trip_stats[trip_id].min = min(tze->trip_stats[trip_id].min, tz->temperature);
709 		tze->trip_stats[trip_id].avg = tze->trip_stats[trip_id].avg +
710 			(tz->temperature - tze->trip_stats[trip_id].avg) /
711 			tze->trip_stats[trip_id].count;
712 	}
713 out:
714 	mutex_unlock(&thermal_dbg->lock);
715 }
716 
717 static void *tze_seq_start(struct seq_file *s, loff_t *pos)
718 {
719 	struct thermal_zone_device *tz = s->private;
720 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
721 	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
722 
723 	mutex_lock(&thermal_dbg->lock);
724 
725 	return seq_list_start(&tz_dbg->tz_episodes, *pos);
726 }
727 
728 static void *tze_seq_next(struct seq_file *s, void *v, loff_t *pos)
729 {
730 	struct thermal_zone_device *tz = s->private;
731 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
732 	struct tz_debugfs *tz_dbg = &thermal_dbg->tz_dbg;
733 
734 	return seq_list_next(v, &tz_dbg->tz_episodes, pos);
735 }
736 
737 static void tze_seq_stop(struct seq_file *s, void *v)
738 {
739 	struct thermal_zone_device *tz = s->private;
740 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
741 
742 	mutex_unlock(&thermal_dbg->lock);
743 }
744 
745 static int tze_seq_show(struct seq_file *s, void *v)
746 {
747 	struct thermal_zone_device *tz = s->private;
748 	struct thermal_trip *trip;
749 	struct tz_episode *tze;
750 	const char *type;
751 	int trip_id;
752 
753 	tze = list_entry((struct list_head *)v, struct tz_episode, node);
754 
755 	seq_printf(s, ",-Mitigation at %lluus, duration=%llums\n",
756 		   ktime_to_us(tze->timestamp),
757 		   ktime_to_ms(tze->duration));
758 
759 	seq_printf(s, "| trip |     type | temp(°mC) | hyst(°mC) |  duration  |  avg(°mC) |  min(°mC) |  max(°mC) |\n");
760 
761 	for_each_trip(tz, trip) {
762 		/*
763 		 * There is no possible mitigation happening at the
764 		 * critical trip point, so the stats will be always
765 		 * zero, skip this trip point
766 		 */
767 		if (trip->type == THERMAL_TRIP_CRITICAL)
768 			continue;
769 
770 		if (trip->type == THERMAL_TRIP_PASSIVE)
771 			type = "passive";
772 		else if (trip->type == THERMAL_TRIP_ACTIVE)
773 			type = "active";
774 		else
775 			type = "hot";
776 
777 		trip_id = thermal_zone_trip_id(tz, trip);
778 
779 		seq_printf(s, "| %*d | %*s | %*d | %*d | %*lld | %*d | %*d | %*d |\n",
780 			   4 , trip_id,
781 			   8, type,
782 			   9, trip->temperature,
783 			   9, trip->hysteresis,
784 			   10, ktime_to_ms(tze->trip_stats[trip_id].duration),
785 			   9, tze->trip_stats[trip_id].avg,
786 			   9, tze->trip_stats[trip_id].min,
787 			   9, tze->trip_stats[trip_id].max);
788 	}
789 
790 	return 0;
791 }
792 
793 static const struct seq_operations tze_sops = {
794 	.start = tze_seq_start,
795 	.next = tze_seq_next,
796 	.stop = tze_seq_stop,
797 	.show = tze_seq_show,
798 };
799 
800 DEFINE_SEQ_ATTRIBUTE(tze);
801 
802 void thermal_debug_tz_add(struct thermal_zone_device *tz)
803 {
804 	struct thermal_debugfs *thermal_dbg;
805 	struct tz_debugfs *tz_dbg;
806 
807 	thermal_dbg = thermal_debugfs_add_id(d_tz, tz->id);
808 	if (!thermal_dbg)
809 		return;
810 
811 	tz_dbg = &thermal_dbg->tz_dbg;
812 
813 	tz_dbg->trips_crossed = kzalloc(sizeof(int) * tz->num_trips, GFP_KERNEL);
814 	if (!tz_dbg->trips_crossed) {
815 		thermal_debugfs_remove_id(thermal_dbg);
816 		return;
817 	}
818 
819 	INIT_LIST_HEAD(&tz_dbg->tz_episodes);
820 
821 	debugfs_create_file("mitigations", 0400, thermal_dbg->d_top, tz, &tze_fops);
822 
823 	tz->debugfs = thermal_dbg;
824 }
825 
826 void thermal_debug_tz_remove(struct thermal_zone_device *tz)
827 {
828 	struct thermal_debugfs *thermal_dbg = tz->debugfs;
829 
830 	if (!thermal_dbg)
831 		return;
832 
833 	mutex_lock(&thermal_dbg->lock);
834 
835 	tz->debugfs = NULL;
836 
837 	mutex_unlock(&thermal_dbg->lock);
838 
839 	thermal_debugfs_remove_id(thermal_dbg);
840 }
841