1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip_id, int temp) 586 { 587 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 588 struct tegra_soctherm *ts = zone->ts; 589 struct thermal_trip trip; 590 const struct tegra_tsensor_group *sg = zone->sg; 591 struct device *dev = zone->dev; 592 int ret; 593 594 if (!tz) 595 return -EINVAL; 596 597 ret = __thermal_zone_get_trip(tz, trip_id, &trip); 598 if (ret) 599 return ret; 600 601 if (trip.type == THERMAL_TRIP_CRITICAL) { 602 /* 603 * If thermtrips property is set in DT, 604 * doesn't need to program critical type trip to HW, 605 * if not, program critical trip to HW. 606 */ 607 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 608 return thermtrip_program(dev, sg, temp); 609 else 610 return 0; 611 612 } else if (trip.type == THERMAL_TRIP_HOT) { 613 int i; 614 615 for (i = 0; i < THROTTLE_SIZE; i++) { 616 struct thermal_cooling_device *cdev; 617 struct soctherm_throt_cfg *stc; 618 619 if (!ts->throt_cfgs[i].init) 620 continue; 621 622 cdev = ts->throt_cfgs[i].cdev; 623 if (get_thermal_instance(tz, cdev, trip_id)) 624 stc = find_throttle_cfg_by_name(ts, cdev->type); 625 else 626 continue; 627 628 return throttrip_program(dev, sg, stc, temp); 629 } 630 } 631 632 return 0; 633 } 634 635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 636 { 637 u32 r; 638 639 /* multiple zones could be handling and setting trips at once */ 640 mutex_lock(&zn->ts->thermctl_lock); 641 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 642 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 643 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 644 mutex_unlock(&zn->ts->thermctl_lock); 645 } 646 647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 648 { 649 u32 r; 650 651 /* multiple zones could be handling and setting trips at once */ 652 mutex_lock(&zn->ts->thermctl_lock); 653 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 654 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 655 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 656 mutex_unlock(&zn->ts->thermctl_lock); 657 } 658 659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi) 660 { 661 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 662 u32 r; 663 664 thermal_irq_disable(zone); 665 666 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 667 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 668 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 669 670 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 671 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 672 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 673 674 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 675 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 676 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 677 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 678 679 thermal_irq_enable(zone); 680 681 return 0; 682 } 683 684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = { 685 .get_temp = tegra_thermctl_get_temp, 686 .set_trip_temp = tegra_thermctl_set_trip_temp, 687 .set_trips = tegra_thermctl_set_trips, 688 }; 689 690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp) 691 { 692 int i, ret; 693 struct thermal_trip trip; 694 695 for (i = 0; i < thermal_zone_get_num_trips(tz); i++) { 696 697 ret = thermal_zone_get_trip(tz, i, &trip); 698 if (ret) 699 return -EINVAL; 700 701 if (trip.type == THERMAL_TRIP_HOT) { 702 *trip_id = i; 703 return 0; 704 } 705 } 706 707 return -EINVAL; 708 } 709 710 /** 711 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 712 * @dev: struct device * of the SOC_THERM instance 713 * @sg: pointer to the sensor group to set the thermtrip temperature for 714 * @tz: struct thermal_zone_device * 715 * 716 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 717 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 718 * type trip_temp 719 * from thermal zone. 720 * After they have been configured, THERMTRIP or THROTTLE will take 721 * action when the configured SoC thermal sensor group reaches a 722 * certain temperature. 723 * 724 * Return: 0 upon success, or a negative error code on failure. 725 * "Success" does not mean that trips was enabled; it could also 726 * mean that no node was found in DT. 727 * THERMTRIP has been enabled successfully when a message similar to 728 * this one appears on the serial console: 729 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 730 * THROTTLE has been enabled successfully when a message similar to 731 * this one appears on the serial console: 732 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 733 */ 734 static int tegra_soctherm_set_hwtrips(struct device *dev, 735 const struct tegra_tsensor_group *sg, 736 struct thermal_zone_device *tz) 737 { 738 struct tegra_soctherm *ts = dev_get_drvdata(dev); 739 struct soctherm_throt_cfg *stc; 740 int i, trip, temperature, ret; 741 742 /* Get thermtrips. If missing, try to get critical trips. */ 743 temperature = tsensor_group_thermtrip_get(ts, sg->id); 744 if (min_low_temp == temperature) 745 if (thermal_zone_get_crit_temp(tz, &temperature)) 746 temperature = max_high_temp; 747 748 ret = thermtrip_program(dev, sg, temperature); 749 if (ret) { 750 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 751 return ret; 752 } 753 754 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 755 sg->name, temperature); 756 757 ret = get_hot_temp(tz, &trip, &temperature); 758 if (ret) { 759 dev_info(dev, "throttrip: %s: missing hot temperature\n", 760 sg->name); 761 return 0; 762 } 763 764 for (i = 0; i < THROTTLE_OC1; i++) { 765 struct thermal_cooling_device *cdev; 766 767 if (!ts->throt_cfgs[i].init) 768 continue; 769 770 cdev = ts->throt_cfgs[i].cdev; 771 if (get_thermal_instance(tz, cdev, trip)) 772 stc = find_throttle_cfg_by_name(ts, cdev->type); 773 else 774 continue; 775 776 ret = throttrip_program(dev, sg, stc, temperature); 777 if (ret) { 778 dev_err(dev, "throttrip: %s: error during enable\n", 779 sg->name); 780 return ret; 781 } 782 783 dev_info(dev, 784 "throttrip: will throttle when %s reaches %d mC\n", 785 sg->name, temperature); 786 break; 787 } 788 789 if (i == THROTTLE_SIZE) 790 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 791 sg->name); 792 793 return 0; 794 } 795 796 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 797 { 798 struct tegra_soctherm *ts = dev_id; 799 u32 r; 800 801 /* Case for no lock: 802 * Although interrupts are enabled in set_trips, there is still no need 803 * to lock here because the interrupts are disabled before programming 804 * new trip points. Hence there cant be a interrupt on the same sensor. 805 * An interrupt can however occur on a sensor while trips are being 806 * programmed on a different one. This beign a LEVEL interrupt won't 807 * cause a new interrupt but this is taken care of by the re-reading of 808 * the STATUS register in the thread function. 809 */ 810 r = readl(ts->regs + THERMCTL_INTR_STATUS); 811 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 812 813 return IRQ_WAKE_THREAD; 814 } 815 816 /** 817 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 818 * @irq: The interrupt number being requested; not used 819 * @dev_id: Opaque pointer to tegra_soctherm; 820 * 821 * Clears the interrupt status register if there are expected 822 * interrupt bits set. 823 * The interrupt(s) are then handled by updating the corresponding 824 * thermal zones. 825 * 826 * An error is logged if any unexpected interrupt bits are set. 827 * 828 * Disabled interrupts are re-enabled. 829 * 830 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 831 * is needed. 832 */ 833 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 834 { 835 struct tegra_soctherm *ts = dev_id; 836 struct thermal_zone_device *tz; 837 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 838 839 st = readl(ts->regs + THERMCTL_INTR_STATUS); 840 841 /* deliberately clear expected interrupts handled in SW */ 842 cp |= st & TH_INTR_CD0_MASK; 843 cp |= st & TH_INTR_CU0_MASK; 844 845 gp |= st & TH_INTR_GD0_MASK; 846 gp |= st & TH_INTR_GU0_MASK; 847 848 pl |= st & TH_INTR_PD0_MASK; 849 pl |= st & TH_INTR_PU0_MASK; 850 851 me |= st & TH_INTR_MD0_MASK; 852 me |= st & TH_INTR_MU0_MASK; 853 854 ex |= cp | gp | pl | me; 855 if (ex) { 856 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 857 st &= ~ex; 858 859 if (cp) { 860 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 861 thermal_zone_device_update(tz, 862 THERMAL_EVENT_UNSPECIFIED); 863 } 864 865 if (gp) { 866 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 867 thermal_zone_device_update(tz, 868 THERMAL_EVENT_UNSPECIFIED); 869 } 870 871 if (pl) { 872 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 873 thermal_zone_device_update(tz, 874 THERMAL_EVENT_UNSPECIFIED); 875 } 876 877 if (me) { 878 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 879 thermal_zone_device_update(tz, 880 THERMAL_EVENT_UNSPECIFIED); 881 } 882 } 883 884 /* deliberately ignore expected interrupts NOT handled in SW */ 885 ex |= TH_INTR_IGNORE_MASK; 886 st &= ~ex; 887 888 if (st) { 889 /* Whine about any other unexpected INTR bits still set */ 890 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 891 writel(st, ts->regs + THERMCTL_INTR_STATUS); 892 } 893 894 return IRQ_HANDLED; 895 } 896 897 /** 898 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 899 * @ts: pointer to a struct tegra_soctherm 900 * @alarm: The soctherm throttle id 901 * @enable: Flag indicating enable the soctherm over-current 902 * interrupt or disable it 903 * 904 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 905 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 906 */ 907 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 908 enum soctherm_throttle_id alarm, 909 bool enable) 910 { 911 u32 r; 912 913 if (!enable) 914 return; 915 916 r = readl(ts->regs + OC_INTR_ENABLE); 917 switch (alarm) { 918 case THROTTLE_OC1: 919 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 920 break; 921 case THROTTLE_OC2: 922 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 923 break; 924 case THROTTLE_OC3: 925 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 926 break; 927 case THROTTLE_OC4: 928 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 929 break; 930 default: 931 r = 0; 932 break; 933 } 934 writel(r, ts->regs + OC_INTR_ENABLE); 935 } 936 937 /** 938 * soctherm_handle_alarm() - Handles soctherm alarms 939 * @alarm: The soctherm throttle id 940 * 941 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 942 * a warning or informative message. 943 * 944 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 945 */ 946 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 947 { 948 int rv = -EINVAL; 949 950 switch (alarm) { 951 case THROTTLE_OC1: 952 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 953 rv = 0; 954 break; 955 956 case THROTTLE_OC2: 957 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 958 rv = 0; 959 break; 960 961 case THROTTLE_OC3: 962 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 963 rv = 0; 964 break; 965 966 case THROTTLE_OC4: 967 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 968 rv = 0; 969 break; 970 971 default: 972 break; 973 } 974 975 if (rv) 976 pr_err("soctherm: ERROR in handling %s alarm\n", 977 throt_names[alarm]); 978 979 return rv; 980 } 981 982 /** 983 * soctherm_edp_isr_thread() - log an over-current interrupt request 984 * @irq: OC irq number. Currently not being used. See description 985 * @arg: a void pointer for callback, currently not being used 986 * 987 * Over-current events are handled in hardware. This function is called to log 988 * and handle any OC events that happened. Additionally, it checks every 989 * over-current interrupt registers for registers are set but 990 * was not expected (i.e. any discrepancy in interrupt status) by the function, 991 * the discrepancy will logged. 992 * 993 * Return: %IRQ_HANDLED 994 */ 995 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 996 { 997 struct tegra_soctherm *ts = arg; 998 u32 st, ex, oc1, oc2, oc3, oc4; 999 1000 st = readl(ts->regs + OC_INTR_STATUS); 1001 1002 /* deliberately clear expected interrupts handled in SW */ 1003 oc1 = st & OC_INTR_OC1_MASK; 1004 oc2 = st & OC_INTR_OC2_MASK; 1005 oc3 = st & OC_INTR_OC3_MASK; 1006 oc4 = st & OC_INTR_OC4_MASK; 1007 ex = oc1 | oc2 | oc3 | oc4; 1008 1009 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1010 if (ex) { 1011 writel(st, ts->regs + OC_INTR_STATUS); 1012 st &= ~ex; 1013 1014 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1015 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1016 1017 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1018 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1019 1020 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1021 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1022 1023 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1024 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1025 1026 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1027 handle_nested_irq( 1028 irq_find_mapping(soc_irq_cdata.domain, 0)); 1029 1030 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1031 handle_nested_irq( 1032 irq_find_mapping(soc_irq_cdata.domain, 1)); 1033 1034 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1035 handle_nested_irq( 1036 irq_find_mapping(soc_irq_cdata.domain, 2)); 1037 1038 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1039 handle_nested_irq( 1040 irq_find_mapping(soc_irq_cdata.domain, 3)); 1041 } 1042 1043 if (st) { 1044 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1045 writel(st, ts->regs + OC_INTR_STATUS); 1046 } 1047 1048 return IRQ_HANDLED; 1049 } 1050 1051 /** 1052 * soctherm_edp_isr() - Disables any active interrupts 1053 * @irq: The interrupt request number 1054 * @arg: Opaque pointer to an argument 1055 * 1056 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1057 * masking any asserted interrupts. Doing this prevents the same interrupts 1058 * from triggering this isr repeatedly. The thread woken by this isr will 1059 * handle asserted interrupts and subsequently unmask/re-enable them. 1060 * 1061 * The OC_INTR_DISABLE register indicates which OC interrupts 1062 * have been disabled. 1063 * 1064 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1065 */ 1066 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1067 { 1068 struct tegra_soctherm *ts = arg; 1069 u32 r; 1070 1071 if (!ts) 1072 return IRQ_NONE; 1073 1074 r = readl(ts->regs + OC_INTR_STATUS); 1075 writel(r, ts->regs + OC_INTR_DISABLE); 1076 1077 return IRQ_WAKE_THREAD; 1078 } 1079 1080 /** 1081 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1082 * @data: Interrupt request data 1083 * 1084 * Looks up the chip data from @data and locks the mutex associated with 1085 * a particular over-current interrupt request. 1086 */ 1087 static void soctherm_oc_irq_lock(struct irq_data *data) 1088 { 1089 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1090 1091 mutex_lock(&d->irq_lock); 1092 } 1093 1094 /** 1095 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1096 * @data: Interrupt request data 1097 * 1098 * Looks up the interrupt request data @data and unlocks the mutex associated 1099 * with a particular over-current interrupt request. 1100 */ 1101 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1102 { 1103 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1104 1105 mutex_unlock(&d->irq_lock); 1106 } 1107 1108 /** 1109 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1110 * @data: irq_data structure of the chip 1111 * 1112 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1113 * to respond to over-current interrupts. 1114 * 1115 */ 1116 static void soctherm_oc_irq_enable(struct irq_data *data) 1117 { 1118 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1119 1120 d->irq_enable |= BIT(data->hwirq); 1121 } 1122 1123 /** 1124 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1125 * @data: The interrupt request information 1126 * 1127 * Clears the interrupt request enable bit of the overcurrent 1128 * interrupt request chip data. 1129 * 1130 * Return: Nothing is returned (void) 1131 */ 1132 static void soctherm_oc_irq_disable(struct irq_data *data) 1133 { 1134 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1135 1136 d->irq_enable &= ~BIT(data->hwirq); 1137 } 1138 1139 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1140 { 1141 return 0; 1142 } 1143 1144 /** 1145 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1146 * @h: Interrupt request domain 1147 * @virq: Virtual interrupt request number 1148 * @hw: Hardware interrupt request number 1149 * 1150 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1151 * interrupt request is called, the irq_domain takes the request's virtual 1152 * request number (much like a virtual memory address) and maps it to a 1153 * physical hardware request number. 1154 * 1155 * When a mapping doesn't already exist for a virtual request number, the 1156 * irq_domain calls this function to associate the virtual request number with 1157 * a hardware request number. 1158 * 1159 * Return: 0 1160 */ 1161 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1162 irq_hw_number_t hw) 1163 { 1164 struct soctherm_oc_irq_chip_data *data = h->host_data; 1165 1166 irq_set_chip_data(virq, data); 1167 irq_set_chip(virq, &data->irq_chip); 1168 irq_set_nested_thread(virq, 1); 1169 return 0; 1170 } 1171 1172 /** 1173 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1174 * @d: Interrupt request domain 1175 * @ctrlr: Controller device tree node 1176 * @intspec: Array of u32s from DTs "interrupt" property 1177 * @intsize: Number of values inside the intspec array 1178 * @out_hwirq: HW IRQ value associated with this interrupt 1179 * @out_type: The IRQ SENSE type for this interrupt. 1180 * 1181 * This Device Tree IRQ specifier translation function will translate a 1182 * specific "interrupt" as defined by 2 DT values where the cell values map 1183 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1184 * number, this function will subtract 1 from the value listed in DT. 1185 * 1186 * Return: 0 1187 */ 1188 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1189 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1190 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1191 { 1192 if (WARN_ON(intsize < 2)) 1193 return -EINVAL; 1194 1195 /* 1196 * The HW value is 1 index less than the DT IRQ values. 1197 * i.e. OC4 goes to HW index 3. 1198 */ 1199 *out_hwirq = intspec[0] - 1; 1200 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1201 return 0; 1202 } 1203 1204 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1205 .map = soctherm_oc_irq_map, 1206 .xlate = soctherm_irq_domain_xlate_twocell, 1207 }; 1208 1209 /** 1210 * soctherm_oc_int_init() - Initial enabling of the over 1211 * current interrupts 1212 * @np: The devicetree node for soctherm 1213 * @num_irqs: The number of new interrupt requests 1214 * 1215 * Sets the over current interrupt request chip data 1216 * 1217 * Return: 0 on success or if overcurrent interrupts are not enabled, 1218 * -ENOMEM (out of memory), or irq_base if the function failed to 1219 * allocate the irqs 1220 */ 1221 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1222 { 1223 if (!num_irqs) { 1224 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1225 return 0; 1226 } 1227 1228 mutex_init(&soc_irq_cdata.irq_lock); 1229 soc_irq_cdata.irq_enable = 0; 1230 1231 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1232 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1233 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1234 soctherm_oc_irq_sync_unlock; 1235 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1236 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1237 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1238 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1239 1240 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1241 &soctherm_oc_domain_ops, 1242 &soc_irq_cdata); 1243 1244 if (!soc_irq_cdata.domain) { 1245 pr_err("%s: Failed to create IRQ domain\n", __func__); 1246 return -ENOMEM; 1247 } 1248 1249 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1250 return 0; 1251 } 1252 1253 #ifdef CONFIG_DEBUG_FS 1254 static int regs_show(struct seq_file *s, void *data) 1255 { 1256 struct platform_device *pdev = s->private; 1257 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1258 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1259 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1260 u32 r, state; 1261 int i, level; 1262 1263 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1264 1265 for (i = 0; i < ts->soc->num_tsensors; i++) { 1266 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1267 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1268 1269 seq_printf(s, "%s: ", tsensors[i].name); 1270 seq_printf(s, "En(%d) ", state); 1271 1272 if (!state) { 1273 seq_puts(s, "\n"); 1274 continue; 1275 } 1276 1277 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1278 seq_printf(s, "tiddq(%d) ", state); 1279 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1280 seq_printf(s, "ten_count(%d) ", state); 1281 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1282 seq_printf(s, "tsample(%d) ", state + 1); 1283 1284 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1285 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1286 seq_printf(s, "Temp(%d/", state); 1287 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1288 seq_printf(s, "%d) ", translate_temp(state)); 1289 1290 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1291 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1292 seq_printf(s, "Capture(%d/", state); 1293 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1294 seq_printf(s, "%d) ", state); 1295 1296 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1297 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1298 seq_printf(s, "Stop(%d) ", state); 1299 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1300 seq_printf(s, "Tall(%d) ", state); 1301 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1302 seq_printf(s, "Over(%d/", state); 1303 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1304 seq_printf(s, "%d/", state); 1305 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1306 seq_printf(s, "%d) ", state); 1307 1308 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1309 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1310 seq_printf(s, "Therm_A/B(%d/", state); 1311 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1312 seq_printf(s, "%d)\n", (s16)state); 1313 } 1314 1315 r = readl(ts->regs + SENSOR_PDIV); 1316 seq_printf(s, "PDIV: 0x%x\n", r); 1317 1318 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1319 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1320 1321 seq_puts(s, "\n"); 1322 seq_puts(s, "-----SOC_THERM-----\n"); 1323 1324 r = readl(ts->regs + SENSOR_TEMP1); 1325 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1326 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1327 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1328 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1329 r = readl(ts->regs + SENSOR_TEMP2); 1330 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1331 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1332 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1333 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1334 1335 for (i = 0; i < ts->soc->num_ttgs; i++) { 1336 seq_printf(s, "%s:\n", ttgs[i]->name); 1337 for (level = 0; level < 4; level++) { 1338 s32 v; 1339 u32 mask; 1340 u16 off = ttgs[i]->thermctl_lvl0_offset; 1341 1342 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1343 1344 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1345 state = REG_GET_MASK(r, mask); 1346 v = sign_extend32(state, ts->soc->bptt - 1); 1347 v *= ts->soc->thresh_grain; 1348 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1349 1350 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1351 state = REG_GET_MASK(r, mask); 1352 v = sign_extend32(state, ts->soc->bptt - 1); 1353 v *= ts->soc->thresh_grain; 1354 seq_printf(s, "%d ) ", v); 1355 1356 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1357 state = REG_GET_MASK(r, mask); 1358 seq_printf(s, "En(%d) ", state); 1359 1360 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1361 state = REG_GET_MASK(r, mask); 1362 seq_puts(s, "CPU Throt"); 1363 if (!state) 1364 seq_printf(s, "(%s) ", "none"); 1365 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1366 seq_printf(s, "(%s) ", "L"); 1367 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1368 seq_printf(s, "(%s) ", "H"); 1369 else 1370 seq_printf(s, "(%s) ", "H+L"); 1371 1372 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1373 state = REG_GET_MASK(r, mask); 1374 seq_puts(s, "GPU Throt"); 1375 if (!state) 1376 seq_printf(s, "(%s) ", "none"); 1377 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1378 seq_printf(s, "(%s) ", "L"); 1379 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1380 seq_printf(s, "(%s) ", "H"); 1381 else 1382 seq_printf(s, "(%s) ", "H+L"); 1383 1384 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1385 state = REG_GET_MASK(r, mask); 1386 seq_printf(s, "Status(%s)\n", 1387 state == 0 ? "LO" : 1388 state == 1 ? "In" : 1389 state == 2 ? "Res" : "HI"); 1390 } 1391 } 1392 1393 r = readl(ts->regs + THERMCTL_STATS_CTL); 1394 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1395 r & STATS_CTL_EN_UP ? "En" : "--", 1396 r & STATS_CTL_EN_DN ? "En" : "--"); 1397 1398 for (level = 0; level < 4; level++) { 1399 u16 off; 1400 1401 off = THERMCTL_LVL0_UP_STATS; 1402 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1403 seq_printf(s, " Level_%d Up(%d) ", level, r); 1404 1405 off = THERMCTL_LVL0_DN_STATS; 1406 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1407 seq_printf(s, "Dn(%d)\n", r); 1408 } 1409 1410 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1411 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1412 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1413 for (i = 0; i < ts->soc->num_ttgs; i++) { 1414 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1415 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1416 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1417 state *= ts->soc->thresh_grain; 1418 seq_printf(s, "Thresh(%d)\n", state); 1419 } 1420 1421 r = readl(ts->regs + THROT_GLOBAL_CFG); 1422 seq_puts(s, "\n"); 1423 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1424 1425 seq_puts(s, "---------------------------------------------------\n"); 1426 r = readl(ts->regs + THROT_STATUS); 1427 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1428 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1429 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1430 seq_printf(s, "state(%d) ", state); 1431 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1432 seq_printf(s, "enabled(%d)\n", state); 1433 1434 r = readl(ts->regs + CPU_PSKIP_STATUS); 1435 if (ts->soc->use_ccroc) { 1436 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1437 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1438 } else { 1439 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1440 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1441 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1442 seq_printf(s, "N(%d) ", state); 1443 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1444 seq_printf(s, "enabled(%d)\n", state); 1445 } 1446 1447 return 0; 1448 } 1449 1450 DEFINE_SHOW_ATTRIBUTE(regs); 1451 1452 static void soctherm_debug_init(struct platform_device *pdev) 1453 { 1454 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1455 struct dentry *root; 1456 1457 root = debugfs_create_dir("soctherm", NULL); 1458 1459 tegra->debugfs_dir = root; 1460 1461 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1462 } 1463 #else 1464 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1465 #endif 1466 1467 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1468 { 1469 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1470 int err; 1471 1472 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1473 return -EINVAL; 1474 1475 reset_control_assert(tegra->reset); 1476 1477 if (enable) { 1478 err = clk_prepare_enable(tegra->clock_soctherm); 1479 if (err) { 1480 reset_control_deassert(tegra->reset); 1481 return err; 1482 } 1483 1484 err = clk_prepare_enable(tegra->clock_tsensor); 1485 if (err) { 1486 clk_disable_unprepare(tegra->clock_soctherm); 1487 reset_control_deassert(tegra->reset); 1488 return err; 1489 } 1490 } else { 1491 clk_disable_unprepare(tegra->clock_tsensor); 1492 clk_disable_unprepare(tegra->clock_soctherm); 1493 } 1494 1495 reset_control_deassert(tegra->reset); 1496 1497 return 0; 1498 } 1499 1500 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1501 unsigned long *max_state) 1502 { 1503 *max_state = 1; 1504 return 0; 1505 } 1506 1507 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1508 unsigned long *cur_state) 1509 { 1510 struct tegra_soctherm *ts = cdev->devdata; 1511 u32 r; 1512 1513 r = readl(ts->regs + THROT_STATUS); 1514 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1515 *cur_state = 1; 1516 else 1517 *cur_state = 0; 1518 1519 return 0; 1520 } 1521 1522 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1523 unsigned long cur_state) 1524 { 1525 return 0; 1526 } 1527 1528 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1529 .get_max_state = throt_get_cdev_max_state, 1530 .get_cur_state = throt_get_cdev_cur_state, 1531 .set_cur_state = throt_set_cdev_state, 1532 }; 1533 1534 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1535 { 1536 struct device *dev = &pdev->dev; 1537 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1538 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1539 const int max_num_prop = ts->soc->num_ttgs * 2; 1540 u32 *tlb; 1541 int i, j, n, ret; 1542 1543 if (!tt) 1544 return -ENOMEM; 1545 1546 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1547 if (n <= 0) { 1548 dev_info(dev, 1549 "missing thermtrips, will use critical trips as shut down temp\n"); 1550 return n; 1551 } 1552 1553 n = min(max_num_prop, n); 1554 1555 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1556 if (!tlb) 1557 return -ENOMEM; 1558 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1559 tlb, n); 1560 if (ret) { 1561 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1562 return ret; 1563 } 1564 1565 i = 0; 1566 for (j = 0; j < n; j = j + 2) { 1567 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1568 continue; 1569 1570 tt[i].id = tlb[j]; 1571 tt[i].temp = tlb[j + 1]; 1572 i++; 1573 } 1574 1575 return 0; 1576 } 1577 1578 static void soctherm_oc_cfg_parse(struct device *dev, 1579 struct device_node *np_oc, 1580 struct soctherm_throt_cfg *stc) 1581 { 1582 u32 val; 1583 1584 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1585 stc->oc_cfg.active_low = 1; 1586 else 1587 stc->oc_cfg.active_low = 0; 1588 1589 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1590 stc->oc_cfg.intr_en = 1; 1591 stc->oc_cfg.alarm_cnt_thresh = val; 1592 } 1593 1594 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1595 stc->oc_cfg.throt_period = val; 1596 1597 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1598 stc->oc_cfg.alarm_filter = val; 1599 1600 /* BRIEF throttling by default, do not support STICKY */ 1601 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1602 } 1603 1604 static int soctherm_throt_cfg_parse(struct device *dev, 1605 struct device_node *np, 1606 struct soctherm_throt_cfg *stc) 1607 { 1608 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1609 int ret; 1610 u32 val; 1611 1612 ret = of_property_read_u32(np, "nvidia,priority", &val); 1613 if (ret) { 1614 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1615 return -EINVAL; 1616 } 1617 stc->priority = val; 1618 1619 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1620 "nvidia,cpu-throt-level" : 1621 "nvidia,cpu-throt-percent", &val); 1622 if (!ret) { 1623 if (ts->soc->use_ccroc && 1624 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1625 stc->cpu_throt_level = val; 1626 else if (!ts->soc->use_ccroc && val <= 100) 1627 stc->cpu_throt_depth = val; 1628 else 1629 goto err; 1630 } else { 1631 goto err; 1632 } 1633 1634 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1635 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1636 stc->gpu_throt_level = val; 1637 else 1638 goto err; 1639 1640 return 0; 1641 1642 err: 1643 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1644 stc->name); 1645 return -EINVAL; 1646 } 1647 1648 /** 1649 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1650 * and register them as cooling devices. 1651 * @pdev: Pointer to platform_device struct 1652 */ 1653 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1654 { 1655 struct device *dev = &pdev->dev; 1656 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1657 struct device_node *np_stc, *np_stcc; 1658 const char *name; 1659 int i; 1660 1661 for (i = 0; i < THROTTLE_SIZE; i++) { 1662 ts->throt_cfgs[i].name = throt_names[i]; 1663 ts->throt_cfgs[i].id = i; 1664 ts->throt_cfgs[i].init = false; 1665 } 1666 1667 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1668 if (!np_stc) { 1669 dev_info(dev, 1670 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1671 return; 1672 } 1673 1674 for_each_child_of_node(np_stc, np_stcc) { 1675 struct soctherm_throt_cfg *stc; 1676 struct thermal_cooling_device *tcd; 1677 int err; 1678 1679 name = np_stcc->name; 1680 stc = find_throttle_cfg_by_name(ts, name); 1681 if (!stc) { 1682 dev_err(dev, 1683 "throttle-cfg: could not find %s\n", name); 1684 continue; 1685 } 1686 1687 if (stc->init) { 1688 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1689 of_node_put(np_stcc); 1690 break; 1691 } 1692 1693 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1694 if (err) 1695 continue; 1696 1697 if (stc->id >= THROTTLE_OC1) { 1698 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1699 stc->init = true; 1700 } else { 1701 1702 tcd = thermal_of_cooling_device_register(np_stcc, 1703 (char *)name, ts, 1704 &throt_cooling_ops); 1705 if (IS_ERR_OR_NULL(tcd)) { 1706 dev_err(dev, 1707 "throttle-cfg: %s: failed to register cooling device\n", 1708 name); 1709 continue; 1710 } 1711 stc->cdev = tcd; 1712 stc->init = true; 1713 } 1714 1715 } 1716 1717 of_node_put(np_stc); 1718 } 1719 1720 /** 1721 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1722 * @ts: pointer to a struct tegra_soctherm 1723 * @level: describing the level LOW/MED/HIGH of throttling 1724 * 1725 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1726 * the M/N values desired for each level. This function does this. 1727 * 1728 * This function pre-programs the CCROC NV_THERM levels in terms of 1729 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1730 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1731 */ 1732 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1733 { 1734 u8 depth, dividend; 1735 u32 r; 1736 1737 switch (level) { 1738 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1739 depth = 50; 1740 break; 1741 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1742 depth = 75; 1743 break; 1744 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1745 depth = 80; 1746 break; 1747 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1748 return; 1749 default: 1750 return; 1751 } 1752 1753 dividend = THROT_DEPTH_DIVIDEND(depth); 1754 1755 /* setup PSKIP in ccroc nv_therm registers */ 1756 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1757 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1758 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1759 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1760 1761 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1762 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1763 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1764 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1765 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1766 } 1767 1768 /** 1769 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1770 * @ts: pointer to a struct tegra_soctherm 1771 * @throt: the LIGHT/HEAVY of throttle event id 1772 * 1773 * Pulse skippers are used to throttle clock frequencies. This 1774 * function programs the pulse skippers based on @throt and platform 1775 * data. This function is used on SoCs which have CPU-local pulse 1776 * skipper control, such as T13x. It programs soctherm's interface to 1777 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1778 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1779 */ 1780 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1781 enum soctherm_throttle_id throt) 1782 { 1783 u32 r, throt_vect; 1784 1785 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1786 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1787 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1788 throt_vect = THROT_VECT_LOW; 1789 break; 1790 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1791 throt_vect = THROT_VECT_MED; 1792 break; 1793 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1794 throt_vect = THROT_VECT_HIGH; 1795 break; 1796 default: 1797 throt_vect = THROT_VECT_NONE; 1798 break; 1799 } 1800 1801 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1802 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1803 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1804 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1805 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1806 1807 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1808 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1809 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1810 } 1811 1812 /** 1813 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1814 * @ts: pointer to a struct tegra_soctherm 1815 * @throt: the LIGHT/HEAVY of throttle event id 1816 * 1817 * Pulse skippers are used to throttle clock frequencies. This 1818 * function programs the pulse skippers based on @throt and platform 1819 * data. This function is used for CPUs that have "remote" pulse 1820 * skipper control, e.g., the CPU pulse skipper is controlled by the 1821 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1822 * complex.) 1823 */ 1824 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1825 enum soctherm_throttle_id throt) 1826 { 1827 u32 r; 1828 int depth; 1829 u8 dividend; 1830 1831 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1832 dividend = THROT_DEPTH_DIVIDEND(depth); 1833 1834 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1835 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1836 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1837 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1838 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1839 1840 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1841 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1842 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1843 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1844 } 1845 1846 /** 1847 * throttlectl_gpu_level_select() - selects throttling level for GPU 1848 * @ts: pointer to a struct tegra_soctherm 1849 * @throt: the LIGHT/HEAVY of throttle event id 1850 * 1851 * This function programs soctherm's interface to GK20a NV_THERM to select 1852 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1853 * 1854 * Return: boolean true if HW was programmed 1855 */ 1856 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1857 enum soctherm_throttle_id throt) 1858 { 1859 u32 r, level, throt_vect; 1860 1861 level = ts->throt_cfgs[throt].gpu_throt_level; 1862 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1863 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1864 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1865 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1866 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1867 } 1868 1869 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1870 enum soctherm_throttle_id throt) 1871 { 1872 u32 r; 1873 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1874 1875 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1876 return -EINVAL; 1877 1878 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1879 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1880 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1881 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1882 writel(r, ts->regs + ALARM_CFG(throt)); 1883 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1884 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1885 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1886 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1887 1888 return 0; 1889 } 1890 1891 /** 1892 * soctherm_throttle_program() - programs pulse skippers' configuration 1893 * @ts: pointer to a struct tegra_soctherm 1894 * @throt: the LIGHT/HEAVY of the throttle event id. 1895 * 1896 * Pulse skippers are used to throttle clock frequencies. 1897 * This function programs the pulse skippers. 1898 */ 1899 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1900 enum soctherm_throttle_id throt) 1901 { 1902 u32 r; 1903 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1904 1905 if (!stc.init) 1906 return; 1907 1908 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1909 return; 1910 1911 /* Setup PSKIP parameters */ 1912 if (ts->soc->use_ccroc) 1913 throttlectl_cpu_level_select(ts, throt); 1914 else 1915 throttlectl_cpu_mn(ts, throt); 1916 1917 throttlectl_gpu_level_select(ts, throt); 1918 1919 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1920 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1921 1922 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1923 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1924 1925 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1926 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1927 if (r >= stc.priority) 1928 return; 1929 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1930 stc.priority); 1931 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1932 } 1933 1934 static void tegra_soctherm_throttle(struct device *dev) 1935 { 1936 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1937 u32 v; 1938 int i; 1939 1940 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1941 if (ts->soc->use_ccroc) { 1942 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1943 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1944 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1945 } 1946 1947 /* Thermal HW throttle programming */ 1948 for (i = 0; i < THROTTLE_SIZE; i++) 1949 soctherm_throttle_program(ts, i); 1950 1951 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1952 if (ts->soc->use_ccroc) { 1953 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1954 1955 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1956 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1957 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1958 } else { 1959 writel(v, ts->regs + THROT_GLOBAL_CFG); 1960 1961 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1962 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1963 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1964 } 1965 1966 /* initialize stats collection */ 1967 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1968 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1969 writel(v, ts->regs + THERMCTL_STATS_CTL); 1970 } 1971 1972 static int soctherm_interrupts_init(struct platform_device *pdev, 1973 struct tegra_soctherm *tegra) 1974 { 1975 struct device_node *np = pdev->dev.of_node; 1976 int ret; 1977 1978 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 1979 if (ret < 0) { 1980 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 1981 return ret; 1982 } 1983 1984 tegra->thermal_irq = platform_get_irq(pdev, 0); 1985 if (tegra->thermal_irq < 0) { 1986 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 1987 return 0; 1988 } 1989 1990 tegra->edp_irq = platform_get_irq(pdev, 1); 1991 if (tegra->edp_irq < 0) { 1992 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 1993 return 0; 1994 } 1995 1996 ret = devm_request_threaded_irq(&pdev->dev, 1997 tegra->thermal_irq, 1998 soctherm_thermal_isr, 1999 soctherm_thermal_isr_thread, 2000 IRQF_ONESHOT, 2001 dev_name(&pdev->dev), 2002 tegra); 2003 if (ret < 0) { 2004 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2005 return ret; 2006 } 2007 2008 ret = devm_request_threaded_irq(&pdev->dev, 2009 tegra->edp_irq, 2010 soctherm_edp_isr, 2011 soctherm_edp_isr_thread, 2012 IRQF_ONESHOT, 2013 "soctherm_edp", 2014 tegra); 2015 if (ret < 0) { 2016 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2017 return ret; 2018 } 2019 2020 return 0; 2021 } 2022 2023 static void soctherm_init(struct platform_device *pdev) 2024 { 2025 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2026 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2027 int i; 2028 u32 pdiv, hotspot; 2029 2030 /* Initialize raw sensors */ 2031 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2032 enable_tsensor(tegra, i); 2033 2034 /* program pdiv and hotspot offsets per THERM */ 2035 pdiv = readl(tegra->regs + SENSOR_PDIV); 2036 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2037 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2038 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2039 ttgs[i]->pdiv); 2040 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2041 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2042 continue; 2043 hotspot = REG_SET_MASK(hotspot, 2044 ttgs[i]->pllx_hotspot_mask, 2045 ttgs[i]->pllx_hotspot_diff); 2046 } 2047 writel(pdiv, tegra->regs + SENSOR_PDIV); 2048 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2049 2050 /* Configure hw throttle */ 2051 tegra_soctherm_throttle(&pdev->dev); 2052 } 2053 2054 static const struct of_device_id tegra_soctherm_of_match[] = { 2055 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2056 { 2057 .compatible = "nvidia,tegra124-soctherm", 2058 .data = &tegra124_soctherm, 2059 }, 2060 #endif 2061 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2062 { 2063 .compatible = "nvidia,tegra132-soctherm", 2064 .data = &tegra132_soctherm, 2065 }, 2066 #endif 2067 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2068 { 2069 .compatible = "nvidia,tegra210-soctherm", 2070 .data = &tegra210_soctherm, 2071 }, 2072 #endif 2073 { }, 2074 }; 2075 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2076 2077 static int tegra_soctherm_probe(struct platform_device *pdev) 2078 { 2079 const struct of_device_id *match; 2080 struct tegra_soctherm *tegra; 2081 struct thermal_zone_device *z; 2082 struct tsensor_shared_calib shared_calib; 2083 struct tegra_soctherm_soc *soc; 2084 unsigned int i; 2085 int err; 2086 2087 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2088 if (!match) 2089 return -ENODEV; 2090 2091 soc = (struct tegra_soctherm_soc *)match->data; 2092 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2093 return -EINVAL; 2094 2095 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2096 if (!tegra) 2097 return -ENOMEM; 2098 2099 mutex_init(&tegra->thermctl_lock); 2100 dev_set_drvdata(&pdev->dev, tegra); 2101 2102 tegra->soc = soc; 2103 2104 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg"); 2105 if (IS_ERR(tegra->regs)) { 2106 dev_err(&pdev->dev, "can't get soctherm registers"); 2107 return PTR_ERR(tegra->regs); 2108 } 2109 2110 if (!tegra->soc->use_ccroc) { 2111 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg"); 2112 if (IS_ERR(tegra->clk_regs)) { 2113 dev_err(&pdev->dev, "can't get car clk registers"); 2114 return PTR_ERR(tegra->clk_regs); 2115 } 2116 } else { 2117 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg"); 2118 if (IS_ERR(tegra->ccroc_regs)) { 2119 dev_err(&pdev->dev, "can't get ccroc registers"); 2120 return PTR_ERR(tegra->ccroc_regs); 2121 } 2122 } 2123 2124 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2125 if (IS_ERR(tegra->reset)) { 2126 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2127 return PTR_ERR(tegra->reset); 2128 } 2129 2130 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2131 if (IS_ERR(tegra->clock_tsensor)) { 2132 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2133 return PTR_ERR(tegra->clock_tsensor); 2134 } 2135 2136 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2137 if (IS_ERR(tegra->clock_soctherm)) { 2138 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2139 return PTR_ERR(tegra->clock_soctherm); 2140 } 2141 2142 tegra->calib = devm_kcalloc(&pdev->dev, 2143 soc->num_tsensors, sizeof(u32), 2144 GFP_KERNEL); 2145 if (!tegra->calib) 2146 return -ENOMEM; 2147 2148 /* calculate shared calibration data */ 2149 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2150 if (err) 2151 return err; 2152 2153 /* calculate tsensor calibration data */ 2154 for (i = 0; i < soc->num_tsensors; ++i) { 2155 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2156 &shared_calib, 2157 &tegra->calib[i]); 2158 if (err) 2159 return err; 2160 } 2161 2162 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2163 soc->num_ttgs, sizeof(z), 2164 GFP_KERNEL); 2165 if (!tegra->thermctl_tzs) 2166 return -ENOMEM; 2167 2168 err = soctherm_clk_enable(pdev, true); 2169 if (err) 2170 return err; 2171 2172 soctherm_thermtrips_parse(pdev); 2173 2174 soctherm_init_hw_throt_cdev(pdev); 2175 2176 soctherm_init(pdev); 2177 2178 for (i = 0; i < soc->num_ttgs; ++i) { 2179 struct tegra_thermctl_zone *zone = 2180 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2181 if (!zone) { 2182 err = -ENOMEM; 2183 goto disable_clocks; 2184 } 2185 2186 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2187 zone->dev = &pdev->dev; 2188 zone->sg = soc->ttgs[i]; 2189 zone->ts = tegra; 2190 2191 z = devm_thermal_of_zone_register(&pdev->dev, 2192 soc->ttgs[i]->id, zone, 2193 &tegra_of_thermal_ops); 2194 if (IS_ERR(z)) { 2195 err = PTR_ERR(z); 2196 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2197 err); 2198 goto disable_clocks; 2199 } 2200 2201 zone->tz = z; 2202 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2203 2204 /* Configure hw trip points */ 2205 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2206 if (err) 2207 goto disable_clocks; 2208 } 2209 2210 err = soctherm_interrupts_init(pdev, tegra); 2211 2212 soctherm_debug_init(pdev); 2213 2214 return 0; 2215 2216 disable_clocks: 2217 soctherm_clk_enable(pdev, false); 2218 2219 return err; 2220 } 2221 2222 static void tegra_soctherm_remove(struct platform_device *pdev) 2223 { 2224 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2225 2226 debugfs_remove_recursive(tegra->debugfs_dir); 2227 2228 soctherm_clk_enable(pdev, false); 2229 } 2230 2231 static int __maybe_unused soctherm_suspend(struct device *dev) 2232 { 2233 struct platform_device *pdev = to_platform_device(dev); 2234 2235 soctherm_clk_enable(pdev, false); 2236 2237 return 0; 2238 } 2239 2240 static int __maybe_unused soctherm_resume(struct device *dev) 2241 { 2242 struct platform_device *pdev = to_platform_device(dev); 2243 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2244 struct tegra_soctherm_soc *soc = tegra->soc; 2245 int err, i; 2246 2247 err = soctherm_clk_enable(pdev, true); 2248 if (err) { 2249 dev_err(&pdev->dev, 2250 "Resume failed: enable clocks failed\n"); 2251 return err; 2252 } 2253 2254 soctherm_init(pdev); 2255 2256 for (i = 0; i < soc->num_ttgs; ++i) { 2257 struct thermal_zone_device *tz; 2258 2259 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2260 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2261 if (err) { 2262 dev_err(&pdev->dev, 2263 "Resume failed: set hwtrips failed\n"); 2264 return err; 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2272 2273 static struct platform_driver tegra_soctherm_driver = { 2274 .probe = tegra_soctherm_probe, 2275 .remove_new = tegra_soctherm_remove, 2276 .driver = { 2277 .name = "tegra_soctherm", 2278 .pm = &tegra_soctherm_pm, 2279 .of_match_table = tegra_soctherm_of_match, 2280 }, 2281 }; 2282 module_platform_driver(tegra_soctherm_driver); 2283 2284 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2285 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2286 MODULE_LICENSE("GPL v2"); 2287