1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, 586 const struct thermal_trip *trip, int temp) 587 { 588 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 589 struct tegra_soctherm *ts = zone->ts; 590 const struct tegra_tsensor_group *sg = zone->sg; 591 struct device *dev = zone->dev; 592 593 if (!tz) 594 return -EINVAL; 595 596 if (trip->type == THERMAL_TRIP_CRITICAL) { 597 /* 598 * If thermtrips property is set in DT, 599 * doesn't need to program critical type trip to HW, 600 * if not, program critical trip to HW. 601 */ 602 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 603 return thermtrip_program(dev, sg, temp); 604 else 605 return 0; 606 607 } else if (trip->type == THERMAL_TRIP_HOT) { 608 int i; 609 610 for (i = 0; i < THROTTLE_SIZE; i++) { 611 struct thermal_cooling_device *cdev; 612 struct soctherm_throt_cfg *stc; 613 614 if (!ts->throt_cfgs[i].init) 615 continue; 616 617 cdev = ts->throt_cfgs[i].cdev; 618 if (thermal_trip_is_bound_to_cdev(tz, trip, cdev)) 619 stc = find_throttle_cfg_by_name(ts, cdev->type); 620 else 621 continue; 622 623 return throttrip_program(dev, sg, stc, temp); 624 } 625 } 626 627 return 0; 628 } 629 630 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 631 { 632 u32 r; 633 634 /* multiple zones could be handling and setting trips at once */ 635 mutex_lock(&zn->ts->thermctl_lock); 636 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 637 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 638 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 639 mutex_unlock(&zn->ts->thermctl_lock); 640 } 641 642 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 643 { 644 u32 r; 645 646 /* multiple zones could be handling and setting trips at once */ 647 mutex_lock(&zn->ts->thermctl_lock); 648 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 649 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 650 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 651 mutex_unlock(&zn->ts->thermctl_lock); 652 } 653 654 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi) 655 { 656 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 657 u32 r; 658 659 thermal_irq_disable(zone); 660 661 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 662 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 663 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 664 665 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 666 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 667 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 668 669 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 670 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 671 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 672 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 673 674 thermal_irq_enable(zone); 675 676 return 0; 677 } 678 679 static const struct thermal_zone_device_ops tegra_of_thermal_ops = { 680 .get_temp = tegra_thermctl_get_temp, 681 .set_trip_temp = tegra_thermctl_set_trip_temp, 682 .set_trips = tegra_thermctl_set_trips, 683 }; 684 685 static int get_hot_trip_cb(struct thermal_trip *trip, void *arg) 686 { 687 const struct thermal_trip **trip_ret = arg; 688 689 if (trip->type != THERMAL_TRIP_HOT) 690 return 0; 691 692 *trip_ret = trip; 693 /* Return nonzero to terminate the search. */ 694 return 1; 695 } 696 697 static const struct thermal_trip *get_hot_trip(struct thermal_zone_device *tz) 698 { 699 const struct thermal_trip *trip = NULL; 700 701 thermal_zone_for_each_trip(tz, get_hot_trip_cb, &trip); 702 703 return trip; 704 } 705 706 /** 707 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 708 * @dev: struct device * of the SOC_THERM instance 709 * @sg: pointer to the sensor group to set the thermtrip temperature for 710 * @tz: struct thermal_zone_device * 711 * 712 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 713 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 714 * type trip_temp 715 * from thermal zone. 716 * After they have been configured, THERMTRIP or THROTTLE will take 717 * action when the configured SoC thermal sensor group reaches a 718 * certain temperature. 719 * 720 * Return: 0 upon success, or a negative error code on failure. 721 * "Success" does not mean that trips was enabled; it could also 722 * mean that no node was found in DT. 723 * THERMTRIP has been enabled successfully when a message similar to 724 * this one appears on the serial console: 725 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 726 * THROTTLE has been enabled successfully when a message similar to 727 * this one appears on the serial console: 728 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 729 */ 730 static int tegra_soctherm_set_hwtrips(struct device *dev, 731 const struct tegra_tsensor_group *sg, 732 struct thermal_zone_device *tz) 733 { 734 struct tegra_soctherm *ts = dev_get_drvdata(dev); 735 const struct thermal_trip *hot_trip; 736 struct soctherm_throt_cfg *stc; 737 int i, temperature, ret; 738 739 /* Get thermtrips. If missing, try to get critical trips. */ 740 temperature = tsensor_group_thermtrip_get(ts, sg->id); 741 if (min_low_temp == temperature) 742 if (thermal_zone_get_crit_temp(tz, &temperature)) 743 temperature = max_high_temp; 744 745 ret = thermtrip_program(dev, sg, temperature); 746 if (ret) { 747 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 748 return ret; 749 } 750 751 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 752 sg->name, temperature); 753 754 hot_trip = get_hot_trip(tz); 755 if (!hot_trip) { 756 dev_info(dev, "throttrip: %s: missing hot temperature\n", 757 sg->name); 758 return 0; 759 } 760 761 for (i = 0; i < THROTTLE_OC1; i++) { 762 struct thermal_cooling_device *cdev; 763 764 if (!ts->throt_cfgs[i].init) 765 continue; 766 767 cdev = ts->throt_cfgs[i].cdev; 768 if (thermal_trip_is_bound_to_cdev(tz, hot_trip, cdev)) 769 stc = find_throttle_cfg_by_name(ts, cdev->type); 770 else 771 continue; 772 773 ret = throttrip_program(dev, sg, stc, temperature); 774 if (ret) { 775 dev_err(dev, "throttrip: %s: error during enable\n", 776 sg->name); 777 return ret; 778 } 779 780 dev_info(dev, 781 "throttrip: will throttle when %s reaches %d mC\n", 782 sg->name, temperature); 783 break; 784 } 785 786 if (i == THROTTLE_SIZE) 787 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 788 sg->name); 789 790 return 0; 791 } 792 793 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 794 { 795 struct tegra_soctherm *ts = dev_id; 796 u32 r; 797 798 /* Case for no lock: 799 * Although interrupts are enabled in set_trips, there is still no need 800 * to lock here because the interrupts are disabled before programming 801 * new trip points. Hence there cant be a interrupt on the same sensor. 802 * An interrupt can however occur on a sensor while trips are being 803 * programmed on a different one. This beign a LEVEL interrupt won't 804 * cause a new interrupt but this is taken care of by the re-reading of 805 * the STATUS register in the thread function. 806 */ 807 r = readl(ts->regs + THERMCTL_INTR_STATUS); 808 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 809 810 return IRQ_WAKE_THREAD; 811 } 812 813 /** 814 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 815 * @irq: The interrupt number being requested; not used 816 * @dev_id: Opaque pointer to tegra_soctherm; 817 * 818 * Clears the interrupt status register if there are expected 819 * interrupt bits set. 820 * The interrupt(s) are then handled by updating the corresponding 821 * thermal zones. 822 * 823 * An error is logged if any unexpected interrupt bits are set. 824 * 825 * Disabled interrupts are re-enabled. 826 * 827 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 828 * is needed. 829 */ 830 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 831 { 832 struct tegra_soctherm *ts = dev_id; 833 struct thermal_zone_device *tz; 834 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 835 836 st = readl(ts->regs + THERMCTL_INTR_STATUS); 837 838 /* deliberately clear expected interrupts handled in SW */ 839 cp |= st & TH_INTR_CD0_MASK; 840 cp |= st & TH_INTR_CU0_MASK; 841 842 gp |= st & TH_INTR_GD0_MASK; 843 gp |= st & TH_INTR_GU0_MASK; 844 845 pl |= st & TH_INTR_PD0_MASK; 846 pl |= st & TH_INTR_PU0_MASK; 847 848 me |= st & TH_INTR_MD0_MASK; 849 me |= st & TH_INTR_MU0_MASK; 850 851 ex |= cp | gp | pl | me; 852 if (ex) { 853 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 854 st &= ~ex; 855 856 if (cp) { 857 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 858 thermal_zone_device_update(tz, 859 THERMAL_EVENT_UNSPECIFIED); 860 } 861 862 if (gp) { 863 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 864 thermal_zone_device_update(tz, 865 THERMAL_EVENT_UNSPECIFIED); 866 } 867 868 if (pl) { 869 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 870 thermal_zone_device_update(tz, 871 THERMAL_EVENT_UNSPECIFIED); 872 } 873 874 if (me) { 875 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 876 thermal_zone_device_update(tz, 877 THERMAL_EVENT_UNSPECIFIED); 878 } 879 } 880 881 /* deliberately ignore expected interrupts NOT handled in SW */ 882 ex |= TH_INTR_IGNORE_MASK; 883 st &= ~ex; 884 885 if (st) { 886 /* Whine about any other unexpected INTR bits still set */ 887 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 888 writel(st, ts->regs + THERMCTL_INTR_STATUS); 889 } 890 891 return IRQ_HANDLED; 892 } 893 894 /** 895 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 896 * @ts: pointer to a struct tegra_soctherm 897 * @alarm: The soctherm throttle id 898 * @enable: Flag indicating enable the soctherm over-current 899 * interrupt or disable it 900 * 901 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 902 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 903 */ 904 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 905 enum soctherm_throttle_id alarm, 906 bool enable) 907 { 908 u32 r; 909 910 if (!enable) 911 return; 912 913 r = readl(ts->regs + OC_INTR_ENABLE); 914 switch (alarm) { 915 case THROTTLE_OC1: 916 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 917 break; 918 case THROTTLE_OC2: 919 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 920 break; 921 case THROTTLE_OC3: 922 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 923 break; 924 case THROTTLE_OC4: 925 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 926 break; 927 default: 928 r = 0; 929 break; 930 } 931 writel(r, ts->regs + OC_INTR_ENABLE); 932 } 933 934 /** 935 * soctherm_handle_alarm() - Handles soctherm alarms 936 * @alarm: The soctherm throttle id 937 * 938 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 939 * a warning or informative message. 940 * 941 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 942 */ 943 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 944 { 945 int rv = -EINVAL; 946 947 switch (alarm) { 948 case THROTTLE_OC1: 949 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 950 rv = 0; 951 break; 952 953 case THROTTLE_OC2: 954 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 955 rv = 0; 956 break; 957 958 case THROTTLE_OC3: 959 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 960 rv = 0; 961 break; 962 963 case THROTTLE_OC4: 964 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 965 rv = 0; 966 break; 967 968 default: 969 break; 970 } 971 972 if (rv) 973 pr_err("soctherm: ERROR in handling %s alarm\n", 974 throt_names[alarm]); 975 976 return rv; 977 } 978 979 /** 980 * soctherm_edp_isr_thread() - log an over-current interrupt request 981 * @irq: OC irq number. Currently not being used. See description 982 * @arg: a void pointer for callback, currently not being used 983 * 984 * Over-current events are handled in hardware. This function is called to log 985 * and handle any OC events that happened. Additionally, it checks every 986 * over-current interrupt registers for registers are set but 987 * was not expected (i.e. any discrepancy in interrupt status) by the function, 988 * the discrepancy will logged. 989 * 990 * Return: %IRQ_HANDLED 991 */ 992 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 993 { 994 struct tegra_soctherm *ts = arg; 995 u32 st, ex, oc1, oc2, oc3, oc4; 996 997 st = readl(ts->regs + OC_INTR_STATUS); 998 999 /* deliberately clear expected interrupts handled in SW */ 1000 oc1 = st & OC_INTR_OC1_MASK; 1001 oc2 = st & OC_INTR_OC2_MASK; 1002 oc3 = st & OC_INTR_OC3_MASK; 1003 oc4 = st & OC_INTR_OC4_MASK; 1004 ex = oc1 | oc2 | oc3 | oc4; 1005 1006 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1007 if (ex) { 1008 writel(st, ts->regs + OC_INTR_STATUS); 1009 st &= ~ex; 1010 1011 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1012 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1013 1014 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1015 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1016 1017 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1018 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1019 1020 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1021 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1022 1023 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1024 handle_nested_irq( 1025 irq_find_mapping(soc_irq_cdata.domain, 0)); 1026 1027 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1028 handle_nested_irq( 1029 irq_find_mapping(soc_irq_cdata.domain, 1)); 1030 1031 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1032 handle_nested_irq( 1033 irq_find_mapping(soc_irq_cdata.domain, 2)); 1034 1035 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1036 handle_nested_irq( 1037 irq_find_mapping(soc_irq_cdata.domain, 3)); 1038 } 1039 1040 if (st) { 1041 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1042 writel(st, ts->regs + OC_INTR_STATUS); 1043 } 1044 1045 return IRQ_HANDLED; 1046 } 1047 1048 /** 1049 * soctherm_edp_isr() - Disables any active interrupts 1050 * @irq: The interrupt request number 1051 * @arg: Opaque pointer to an argument 1052 * 1053 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1054 * masking any asserted interrupts. Doing this prevents the same interrupts 1055 * from triggering this isr repeatedly. The thread woken by this isr will 1056 * handle asserted interrupts and subsequently unmask/re-enable them. 1057 * 1058 * The OC_INTR_DISABLE register indicates which OC interrupts 1059 * have been disabled. 1060 * 1061 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1062 */ 1063 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1064 { 1065 struct tegra_soctherm *ts = arg; 1066 u32 r; 1067 1068 if (!ts) 1069 return IRQ_NONE; 1070 1071 r = readl(ts->regs + OC_INTR_STATUS); 1072 writel(r, ts->regs + OC_INTR_DISABLE); 1073 1074 return IRQ_WAKE_THREAD; 1075 } 1076 1077 /** 1078 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1079 * @data: Interrupt request data 1080 * 1081 * Looks up the chip data from @data and locks the mutex associated with 1082 * a particular over-current interrupt request. 1083 */ 1084 static void soctherm_oc_irq_lock(struct irq_data *data) 1085 { 1086 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1087 1088 mutex_lock(&d->irq_lock); 1089 } 1090 1091 /** 1092 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1093 * @data: Interrupt request data 1094 * 1095 * Looks up the interrupt request data @data and unlocks the mutex associated 1096 * with a particular over-current interrupt request. 1097 */ 1098 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1099 { 1100 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1101 1102 mutex_unlock(&d->irq_lock); 1103 } 1104 1105 /** 1106 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1107 * @data: irq_data structure of the chip 1108 * 1109 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1110 * to respond to over-current interrupts. 1111 * 1112 */ 1113 static void soctherm_oc_irq_enable(struct irq_data *data) 1114 { 1115 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1116 1117 d->irq_enable |= BIT(data->hwirq); 1118 } 1119 1120 /** 1121 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1122 * @data: The interrupt request information 1123 * 1124 * Clears the interrupt request enable bit of the overcurrent 1125 * interrupt request chip data. 1126 * 1127 * Return: Nothing is returned (void) 1128 */ 1129 static void soctherm_oc_irq_disable(struct irq_data *data) 1130 { 1131 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1132 1133 d->irq_enable &= ~BIT(data->hwirq); 1134 } 1135 1136 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1137 { 1138 return 0; 1139 } 1140 1141 /** 1142 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1143 * @h: Interrupt request domain 1144 * @virq: Virtual interrupt request number 1145 * @hw: Hardware interrupt request number 1146 * 1147 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1148 * interrupt request is called, the irq_domain takes the request's virtual 1149 * request number (much like a virtual memory address) and maps it to a 1150 * physical hardware request number. 1151 * 1152 * When a mapping doesn't already exist for a virtual request number, the 1153 * irq_domain calls this function to associate the virtual request number with 1154 * a hardware request number. 1155 * 1156 * Return: 0 1157 */ 1158 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1159 irq_hw_number_t hw) 1160 { 1161 struct soctherm_oc_irq_chip_data *data = h->host_data; 1162 1163 irq_set_chip_data(virq, data); 1164 irq_set_chip(virq, &data->irq_chip); 1165 irq_set_nested_thread(virq, 1); 1166 return 0; 1167 } 1168 1169 /** 1170 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1171 * @d: Interrupt request domain 1172 * @ctrlr: Controller device tree node 1173 * @intspec: Array of u32s from DTs "interrupt" property 1174 * @intsize: Number of values inside the intspec array 1175 * @out_hwirq: HW IRQ value associated with this interrupt 1176 * @out_type: The IRQ SENSE type for this interrupt. 1177 * 1178 * This Device Tree IRQ specifier translation function will translate a 1179 * specific "interrupt" as defined by 2 DT values where the cell values map 1180 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1181 * number, this function will subtract 1 from the value listed in DT. 1182 * 1183 * Return: 0 1184 */ 1185 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1186 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1187 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1188 { 1189 if (WARN_ON(intsize < 2)) 1190 return -EINVAL; 1191 1192 /* 1193 * The HW value is 1 index less than the DT IRQ values. 1194 * i.e. OC4 goes to HW index 3. 1195 */ 1196 *out_hwirq = intspec[0] - 1; 1197 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1198 return 0; 1199 } 1200 1201 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1202 .map = soctherm_oc_irq_map, 1203 .xlate = soctherm_irq_domain_xlate_twocell, 1204 }; 1205 1206 /** 1207 * soctherm_oc_int_init() - Initial enabling of the over 1208 * current interrupts 1209 * @np: The devicetree node for soctherm 1210 * @num_irqs: The number of new interrupt requests 1211 * 1212 * Sets the over current interrupt request chip data 1213 * 1214 * Return: 0 on success or if overcurrent interrupts are not enabled, 1215 * -ENOMEM (out of memory), or irq_base if the function failed to 1216 * allocate the irqs 1217 */ 1218 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1219 { 1220 if (!num_irqs) { 1221 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1222 return 0; 1223 } 1224 1225 mutex_init(&soc_irq_cdata.irq_lock); 1226 soc_irq_cdata.irq_enable = 0; 1227 1228 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1229 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1230 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1231 soctherm_oc_irq_sync_unlock; 1232 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1233 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1234 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1235 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1236 1237 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1238 &soctherm_oc_domain_ops, 1239 &soc_irq_cdata); 1240 1241 if (!soc_irq_cdata.domain) { 1242 pr_err("%s: Failed to create IRQ domain\n", __func__); 1243 return -ENOMEM; 1244 } 1245 1246 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1247 return 0; 1248 } 1249 1250 #ifdef CONFIG_DEBUG_FS 1251 static int regs_show(struct seq_file *s, void *data) 1252 { 1253 struct platform_device *pdev = s->private; 1254 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1255 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1256 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1257 u32 r, state; 1258 int i, level; 1259 1260 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1261 1262 for (i = 0; i < ts->soc->num_tsensors; i++) { 1263 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1264 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1265 1266 seq_printf(s, "%s: ", tsensors[i].name); 1267 seq_printf(s, "En(%d) ", state); 1268 1269 if (!state) { 1270 seq_puts(s, "\n"); 1271 continue; 1272 } 1273 1274 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1275 seq_printf(s, "tiddq(%d) ", state); 1276 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1277 seq_printf(s, "ten_count(%d) ", state); 1278 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1279 seq_printf(s, "tsample(%d) ", state + 1); 1280 1281 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1282 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1283 seq_printf(s, "Temp(%d/", state); 1284 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1285 seq_printf(s, "%d) ", translate_temp(state)); 1286 1287 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1288 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1289 seq_printf(s, "Capture(%d/", state); 1290 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1291 seq_printf(s, "%d) ", state); 1292 1293 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1294 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1295 seq_printf(s, "Stop(%d) ", state); 1296 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1297 seq_printf(s, "Tall(%d) ", state); 1298 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1299 seq_printf(s, "Over(%d/", state); 1300 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1301 seq_printf(s, "%d/", state); 1302 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1303 seq_printf(s, "%d) ", state); 1304 1305 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1306 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1307 seq_printf(s, "Therm_A/B(%d/", state); 1308 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1309 seq_printf(s, "%d)\n", (s16)state); 1310 } 1311 1312 r = readl(ts->regs + SENSOR_PDIV); 1313 seq_printf(s, "PDIV: 0x%x\n", r); 1314 1315 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1316 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1317 1318 seq_puts(s, "\n"); 1319 seq_puts(s, "-----SOC_THERM-----\n"); 1320 1321 r = readl(ts->regs + SENSOR_TEMP1); 1322 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1323 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1324 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1325 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1326 r = readl(ts->regs + SENSOR_TEMP2); 1327 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1328 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1329 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1330 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1331 1332 for (i = 0; i < ts->soc->num_ttgs; i++) { 1333 seq_printf(s, "%s:\n", ttgs[i]->name); 1334 for (level = 0; level < 4; level++) { 1335 s32 v; 1336 u32 mask; 1337 u16 off = ttgs[i]->thermctl_lvl0_offset; 1338 1339 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1340 1341 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1342 state = REG_GET_MASK(r, mask); 1343 v = sign_extend32(state, ts->soc->bptt - 1); 1344 v *= ts->soc->thresh_grain; 1345 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1346 1347 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1348 state = REG_GET_MASK(r, mask); 1349 v = sign_extend32(state, ts->soc->bptt - 1); 1350 v *= ts->soc->thresh_grain; 1351 seq_printf(s, "%d ) ", v); 1352 1353 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1354 state = REG_GET_MASK(r, mask); 1355 seq_printf(s, "En(%d) ", state); 1356 1357 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1358 state = REG_GET_MASK(r, mask); 1359 seq_puts(s, "CPU Throt"); 1360 if (!state) 1361 seq_printf(s, "(%s) ", "none"); 1362 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1363 seq_printf(s, "(%s) ", "L"); 1364 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1365 seq_printf(s, "(%s) ", "H"); 1366 else 1367 seq_printf(s, "(%s) ", "H+L"); 1368 1369 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1370 state = REG_GET_MASK(r, mask); 1371 seq_puts(s, "GPU Throt"); 1372 if (!state) 1373 seq_printf(s, "(%s) ", "none"); 1374 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1375 seq_printf(s, "(%s) ", "L"); 1376 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1377 seq_printf(s, "(%s) ", "H"); 1378 else 1379 seq_printf(s, "(%s) ", "H+L"); 1380 1381 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1382 state = REG_GET_MASK(r, mask); 1383 seq_printf(s, "Status(%s)\n", 1384 state == 0 ? "LO" : 1385 state == 1 ? "In" : 1386 state == 2 ? "Res" : "HI"); 1387 } 1388 } 1389 1390 r = readl(ts->regs + THERMCTL_STATS_CTL); 1391 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1392 r & STATS_CTL_EN_UP ? "En" : "--", 1393 r & STATS_CTL_EN_DN ? "En" : "--"); 1394 1395 for (level = 0; level < 4; level++) { 1396 u16 off; 1397 1398 off = THERMCTL_LVL0_UP_STATS; 1399 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1400 seq_printf(s, " Level_%d Up(%d) ", level, r); 1401 1402 off = THERMCTL_LVL0_DN_STATS; 1403 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1404 seq_printf(s, "Dn(%d)\n", r); 1405 } 1406 1407 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1408 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1409 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1410 for (i = 0; i < ts->soc->num_ttgs; i++) { 1411 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1412 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1413 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1414 state *= ts->soc->thresh_grain; 1415 seq_printf(s, "Thresh(%d)\n", state); 1416 } 1417 1418 r = readl(ts->regs + THROT_GLOBAL_CFG); 1419 seq_puts(s, "\n"); 1420 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1421 1422 seq_puts(s, "---------------------------------------------------\n"); 1423 r = readl(ts->regs + THROT_STATUS); 1424 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1425 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1426 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1427 seq_printf(s, "state(%d) ", state); 1428 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1429 seq_printf(s, "enabled(%d)\n", state); 1430 1431 r = readl(ts->regs + CPU_PSKIP_STATUS); 1432 if (ts->soc->use_ccroc) { 1433 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1434 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1435 } else { 1436 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1437 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1438 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1439 seq_printf(s, "N(%d) ", state); 1440 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1441 seq_printf(s, "enabled(%d)\n", state); 1442 } 1443 1444 return 0; 1445 } 1446 1447 DEFINE_SHOW_ATTRIBUTE(regs); 1448 1449 static void soctherm_debug_init(struct platform_device *pdev) 1450 { 1451 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1452 struct dentry *root; 1453 1454 root = debugfs_create_dir("soctherm", NULL); 1455 1456 tegra->debugfs_dir = root; 1457 1458 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1459 } 1460 #else 1461 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1462 #endif 1463 1464 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1465 { 1466 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1467 int err; 1468 1469 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1470 return -EINVAL; 1471 1472 reset_control_assert(tegra->reset); 1473 1474 if (enable) { 1475 err = clk_prepare_enable(tegra->clock_soctherm); 1476 if (err) { 1477 reset_control_deassert(tegra->reset); 1478 return err; 1479 } 1480 1481 err = clk_prepare_enable(tegra->clock_tsensor); 1482 if (err) { 1483 clk_disable_unprepare(tegra->clock_soctherm); 1484 reset_control_deassert(tegra->reset); 1485 return err; 1486 } 1487 } else { 1488 clk_disable_unprepare(tegra->clock_tsensor); 1489 clk_disable_unprepare(tegra->clock_soctherm); 1490 } 1491 1492 reset_control_deassert(tegra->reset); 1493 1494 return 0; 1495 } 1496 1497 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1498 unsigned long *max_state) 1499 { 1500 *max_state = 1; 1501 return 0; 1502 } 1503 1504 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1505 unsigned long *cur_state) 1506 { 1507 struct tegra_soctherm *ts = cdev->devdata; 1508 u32 r; 1509 1510 r = readl(ts->regs + THROT_STATUS); 1511 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1512 *cur_state = 1; 1513 else 1514 *cur_state = 0; 1515 1516 return 0; 1517 } 1518 1519 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1520 unsigned long cur_state) 1521 { 1522 return 0; 1523 } 1524 1525 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1526 .get_max_state = throt_get_cdev_max_state, 1527 .get_cur_state = throt_get_cdev_cur_state, 1528 .set_cur_state = throt_set_cdev_state, 1529 }; 1530 1531 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1532 { 1533 struct device *dev = &pdev->dev; 1534 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1535 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1536 const int max_num_prop = ts->soc->num_ttgs * 2; 1537 u32 *tlb; 1538 int i, j, n, ret; 1539 1540 if (!tt) 1541 return -ENOMEM; 1542 1543 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1544 if (n <= 0) { 1545 dev_info(dev, 1546 "missing thermtrips, will use critical trips as shut down temp\n"); 1547 return n; 1548 } 1549 1550 n = min(max_num_prop, n); 1551 1552 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1553 if (!tlb) 1554 return -ENOMEM; 1555 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1556 tlb, n); 1557 if (ret) { 1558 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1559 return ret; 1560 } 1561 1562 i = 0; 1563 for (j = 0; j < n; j = j + 2) { 1564 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1565 continue; 1566 1567 tt[i].id = tlb[j]; 1568 tt[i].temp = tlb[j + 1]; 1569 i++; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static void soctherm_oc_cfg_parse(struct device *dev, 1576 struct device_node *np_oc, 1577 struct soctherm_throt_cfg *stc) 1578 { 1579 u32 val; 1580 1581 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1582 stc->oc_cfg.active_low = 1; 1583 else 1584 stc->oc_cfg.active_low = 0; 1585 1586 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1587 stc->oc_cfg.intr_en = 1; 1588 stc->oc_cfg.alarm_cnt_thresh = val; 1589 } 1590 1591 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1592 stc->oc_cfg.throt_period = val; 1593 1594 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1595 stc->oc_cfg.alarm_filter = val; 1596 1597 /* BRIEF throttling by default, do not support STICKY */ 1598 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1599 } 1600 1601 static int soctherm_throt_cfg_parse(struct device *dev, 1602 struct device_node *np, 1603 struct soctherm_throt_cfg *stc) 1604 { 1605 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1606 int ret; 1607 u32 val; 1608 1609 ret = of_property_read_u32(np, "nvidia,priority", &val); 1610 if (ret) { 1611 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1612 return -EINVAL; 1613 } 1614 stc->priority = val; 1615 1616 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1617 "nvidia,cpu-throt-level" : 1618 "nvidia,cpu-throt-percent", &val); 1619 if (!ret) { 1620 if (ts->soc->use_ccroc && 1621 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1622 stc->cpu_throt_level = val; 1623 else if (!ts->soc->use_ccroc && val <= 100) 1624 stc->cpu_throt_depth = val; 1625 else 1626 goto err; 1627 } else { 1628 goto err; 1629 } 1630 1631 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1632 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1633 stc->gpu_throt_level = val; 1634 else 1635 goto err; 1636 1637 return 0; 1638 1639 err: 1640 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1641 stc->name); 1642 return -EINVAL; 1643 } 1644 1645 /** 1646 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1647 * and register them as cooling devices. 1648 * @pdev: Pointer to platform_device struct 1649 */ 1650 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1651 { 1652 struct device *dev = &pdev->dev; 1653 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1654 struct device_node *np_stc, *np_stcc; 1655 const char *name; 1656 int i; 1657 1658 for (i = 0; i < THROTTLE_SIZE; i++) { 1659 ts->throt_cfgs[i].name = throt_names[i]; 1660 ts->throt_cfgs[i].id = i; 1661 ts->throt_cfgs[i].init = false; 1662 } 1663 1664 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1665 if (!np_stc) { 1666 dev_info(dev, 1667 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1668 return; 1669 } 1670 1671 for_each_child_of_node(np_stc, np_stcc) { 1672 struct soctherm_throt_cfg *stc; 1673 struct thermal_cooling_device *tcd; 1674 int err; 1675 1676 name = np_stcc->name; 1677 stc = find_throttle_cfg_by_name(ts, name); 1678 if (!stc) { 1679 dev_err(dev, 1680 "throttle-cfg: could not find %s\n", name); 1681 continue; 1682 } 1683 1684 if (stc->init) { 1685 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1686 of_node_put(np_stcc); 1687 break; 1688 } 1689 1690 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1691 if (err) 1692 continue; 1693 1694 if (stc->id >= THROTTLE_OC1) { 1695 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1696 stc->init = true; 1697 } else { 1698 1699 tcd = thermal_of_cooling_device_register(np_stcc, 1700 (char *)name, ts, 1701 &throt_cooling_ops); 1702 if (IS_ERR_OR_NULL(tcd)) { 1703 dev_err(dev, 1704 "throttle-cfg: %s: failed to register cooling device\n", 1705 name); 1706 continue; 1707 } 1708 stc->cdev = tcd; 1709 stc->init = true; 1710 } 1711 1712 } 1713 1714 of_node_put(np_stc); 1715 } 1716 1717 /** 1718 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1719 * @ts: pointer to a struct tegra_soctherm 1720 * @level: describing the level LOW/MED/HIGH of throttling 1721 * 1722 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1723 * the M/N values desired for each level. This function does this. 1724 * 1725 * This function pre-programs the CCROC NV_THERM levels in terms of 1726 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1727 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1728 */ 1729 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1730 { 1731 u8 depth, dividend; 1732 u32 r; 1733 1734 switch (level) { 1735 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1736 depth = 50; 1737 break; 1738 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1739 depth = 75; 1740 break; 1741 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1742 depth = 80; 1743 break; 1744 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1745 return; 1746 default: 1747 return; 1748 } 1749 1750 dividend = THROT_DEPTH_DIVIDEND(depth); 1751 1752 /* setup PSKIP in ccroc nv_therm registers */ 1753 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1754 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1755 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1756 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1757 1758 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1759 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1760 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1761 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1762 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1763 } 1764 1765 /** 1766 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1767 * @ts: pointer to a struct tegra_soctherm 1768 * @throt: the LIGHT/HEAVY of throttle event id 1769 * 1770 * Pulse skippers are used to throttle clock frequencies. This 1771 * function programs the pulse skippers based on @throt and platform 1772 * data. This function is used on SoCs which have CPU-local pulse 1773 * skipper control, such as T13x. It programs soctherm's interface to 1774 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1775 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1776 */ 1777 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1778 enum soctherm_throttle_id throt) 1779 { 1780 u32 r, throt_vect; 1781 1782 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1783 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1784 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1785 throt_vect = THROT_VECT_LOW; 1786 break; 1787 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1788 throt_vect = THROT_VECT_MED; 1789 break; 1790 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1791 throt_vect = THROT_VECT_HIGH; 1792 break; 1793 default: 1794 throt_vect = THROT_VECT_NONE; 1795 break; 1796 } 1797 1798 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1799 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1800 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1801 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1802 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1803 1804 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1805 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1806 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1807 } 1808 1809 /** 1810 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1811 * @ts: pointer to a struct tegra_soctherm 1812 * @throt: the LIGHT/HEAVY of throttle event id 1813 * 1814 * Pulse skippers are used to throttle clock frequencies. This 1815 * function programs the pulse skippers based on @throt and platform 1816 * data. This function is used for CPUs that have "remote" pulse 1817 * skipper control, e.g., the CPU pulse skipper is controlled by the 1818 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1819 * complex.) 1820 */ 1821 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1822 enum soctherm_throttle_id throt) 1823 { 1824 u32 r; 1825 int depth; 1826 u8 dividend; 1827 1828 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1829 dividend = THROT_DEPTH_DIVIDEND(depth); 1830 1831 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1832 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1833 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1834 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1835 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1836 1837 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1838 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1839 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1840 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1841 } 1842 1843 /** 1844 * throttlectl_gpu_level_select() - selects throttling level for GPU 1845 * @ts: pointer to a struct tegra_soctherm 1846 * @throt: the LIGHT/HEAVY of throttle event id 1847 * 1848 * This function programs soctherm's interface to GK20a NV_THERM to select 1849 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1850 * 1851 * Return: boolean true if HW was programmed 1852 */ 1853 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1854 enum soctherm_throttle_id throt) 1855 { 1856 u32 r, level, throt_vect; 1857 1858 level = ts->throt_cfgs[throt].gpu_throt_level; 1859 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1860 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1861 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1862 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1863 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1864 } 1865 1866 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1867 enum soctherm_throttle_id throt) 1868 { 1869 u32 r; 1870 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1871 1872 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1873 return -EINVAL; 1874 1875 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1876 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1877 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1878 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1879 writel(r, ts->regs + ALARM_CFG(throt)); 1880 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1881 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1882 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1883 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1884 1885 return 0; 1886 } 1887 1888 /** 1889 * soctherm_throttle_program() - programs pulse skippers' configuration 1890 * @ts: pointer to a struct tegra_soctherm 1891 * @throt: the LIGHT/HEAVY of the throttle event id. 1892 * 1893 * Pulse skippers are used to throttle clock frequencies. 1894 * This function programs the pulse skippers. 1895 */ 1896 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1897 enum soctherm_throttle_id throt) 1898 { 1899 u32 r; 1900 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1901 1902 if (!stc.init) 1903 return; 1904 1905 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1906 return; 1907 1908 /* Setup PSKIP parameters */ 1909 if (ts->soc->use_ccroc) 1910 throttlectl_cpu_level_select(ts, throt); 1911 else 1912 throttlectl_cpu_mn(ts, throt); 1913 1914 throttlectl_gpu_level_select(ts, throt); 1915 1916 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1917 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1918 1919 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1920 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1921 1922 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1923 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1924 if (r >= stc.priority) 1925 return; 1926 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1927 stc.priority); 1928 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1929 } 1930 1931 static void tegra_soctherm_throttle(struct device *dev) 1932 { 1933 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1934 u32 v; 1935 int i; 1936 1937 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1938 if (ts->soc->use_ccroc) { 1939 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1940 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1941 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1942 } 1943 1944 /* Thermal HW throttle programming */ 1945 for (i = 0; i < THROTTLE_SIZE; i++) 1946 soctherm_throttle_program(ts, i); 1947 1948 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1949 if (ts->soc->use_ccroc) { 1950 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1951 1952 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1953 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1954 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1955 } else { 1956 writel(v, ts->regs + THROT_GLOBAL_CFG); 1957 1958 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1959 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1960 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1961 } 1962 1963 /* initialize stats collection */ 1964 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1965 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1966 writel(v, ts->regs + THERMCTL_STATS_CTL); 1967 } 1968 1969 static int soctherm_interrupts_init(struct platform_device *pdev, 1970 struct tegra_soctherm *tegra) 1971 { 1972 struct device_node *np = pdev->dev.of_node; 1973 int ret; 1974 1975 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 1976 if (ret < 0) { 1977 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 1978 return ret; 1979 } 1980 1981 tegra->thermal_irq = platform_get_irq(pdev, 0); 1982 if (tegra->thermal_irq < 0) { 1983 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 1984 return 0; 1985 } 1986 1987 tegra->edp_irq = platform_get_irq(pdev, 1); 1988 if (tegra->edp_irq < 0) { 1989 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 1990 return 0; 1991 } 1992 1993 ret = devm_request_threaded_irq(&pdev->dev, 1994 tegra->thermal_irq, 1995 soctherm_thermal_isr, 1996 soctherm_thermal_isr_thread, 1997 IRQF_ONESHOT, 1998 dev_name(&pdev->dev), 1999 tegra); 2000 if (ret < 0) { 2001 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2002 return ret; 2003 } 2004 2005 ret = devm_request_threaded_irq(&pdev->dev, 2006 tegra->edp_irq, 2007 soctherm_edp_isr, 2008 soctherm_edp_isr_thread, 2009 IRQF_ONESHOT, 2010 "soctherm_edp", 2011 tegra); 2012 if (ret < 0) { 2013 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2014 return ret; 2015 } 2016 2017 return 0; 2018 } 2019 2020 static void soctherm_init(struct platform_device *pdev) 2021 { 2022 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2023 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2024 int i; 2025 u32 pdiv, hotspot; 2026 2027 /* Initialize raw sensors */ 2028 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2029 enable_tsensor(tegra, i); 2030 2031 /* program pdiv and hotspot offsets per THERM */ 2032 pdiv = readl(tegra->regs + SENSOR_PDIV); 2033 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2034 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2035 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2036 ttgs[i]->pdiv); 2037 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2038 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2039 continue; 2040 hotspot = REG_SET_MASK(hotspot, 2041 ttgs[i]->pllx_hotspot_mask, 2042 ttgs[i]->pllx_hotspot_diff); 2043 } 2044 writel(pdiv, tegra->regs + SENSOR_PDIV); 2045 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2046 2047 /* Configure hw throttle */ 2048 tegra_soctherm_throttle(&pdev->dev); 2049 } 2050 2051 static const struct of_device_id tegra_soctherm_of_match[] = { 2052 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2053 { 2054 .compatible = "nvidia,tegra124-soctherm", 2055 .data = &tegra124_soctherm, 2056 }, 2057 #endif 2058 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2059 { 2060 .compatible = "nvidia,tegra132-soctherm", 2061 .data = &tegra132_soctherm, 2062 }, 2063 #endif 2064 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2065 { 2066 .compatible = "nvidia,tegra210-soctherm", 2067 .data = &tegra210_soctherm, 2068 }, 2069 #endif 2070 { }, 2071 }; 2072 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2073 2074 static int tegra_soctherm_probe(struct platform_device *pdev) 2075 { 2076 const struct of_device_id *match; 2077 struct tegra_soctherm *tegra; 2078 struct thermal_zone_device *z; 2079 struct tsensor_shared_calib shared_calib; 2080 struct tegra_soctherm_soc *soc; 2081 unsigned int i; 2082 int err; 2083 2084 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2085 if (!match) 2086 return -ENODEV; 2087 2088 soc = (struct tegra_soctherm_soc *)match->data; 2089 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2090 return -EINVAL; 2091 2092 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2093 if (!tegra) 2094 return -ENOMEM; 2095 2096 mutex_init(&tegra->thermctl_lock); 2097 dev_set_drvdata(&pdev->dev, tegra); 2098 2099 tegra->soc = soc; 2100 2101 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg"); 2102 if (IS_ERR(tegra->regs)) { 2103 dev_err(&pdev->dev, "can't get soctherm registers"); 2104 return PTR_ERR(tegra->regs); 2105 } 2106 2107 if (!tegra->soc->use_ccroc) { 2108 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg"); 2109 if (IS_ERR(tegra->clk_regs)) { 2110 dev_err(&pdev->dev, "can't get car clk registers"); 2111 return PTR_ERR(tegra->clk_regs); 2112 } 2113 } else { 2114 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg"); 2115 if (IS_ERR(tegra->ccroc_regs)) { 2116 dev_err(&pdev->dev, "can't get ccroc registers"); 2117 return PTR_ERR(tegra->ccroc_regs); 2118 } 2119 } 2120 2121 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2122 if (IS_ERR(tegra->reset)) { 2123 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2124 return PTR_ERR(tegra->reset); 2125 } 2126 2127 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2128 if (IS_ERR(tegra->clock_tsensor)) { 2129 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2130 return PTR_ERR(tegra->clock_tsensor); 2131 } 2132 2133 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2134 if (IS_ERR(tegra->clock_soctherm)) { 2135 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2136 return PTR_ERR(tegra->clock_soctherm); 2137 } 2138 2139 tegra->calib = devm_kcalloc(&pdev->dev, 2140 soc->num_tsensors, sizeof(u32), 2141 GFP_KERNEL); 2142 if (!tegra->calib) 2143 return -ENOMEM; 2144 2145 /* calculate shared calibration data */ 2146 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2147 if (err) 2148 return err; 2149 2150 /* calculate tsensor calibration data */ 2151 for (i = 0; i < soc->num_tsensors; ++i) { 2152 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2153 &shared_calib, 2154 &tegra->calib[i]); 2155 if (err) 2156 return err; 2157 } 2158 2159 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2160 soc->num_ttgs, sizeof(z), 2161 GFP_KERNEL); 2162 if (!tegra->thermctl_tzs) 2163 return -ENOMEM; 2164 2165 err = soctherm_clk_enable(pdev, true); 2166 if (err) 2167 return err; 2168 2169 soctherm_thermtrips_parse(pdev); 2170 2171 soctherm_init_hw_throt_cdev(pdev); 2172 2173 soctherm_init(pdev); 2174 2175 for (i = 0; i < soc->num_ttgs; ++i) { 2176 struct tegra_thermctl_zone *zone = 2177 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2178 if (!zone) { 2179 err = -ENOMEM; 2180 goto disable_clocks; 2181 } 2182 2183 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2184 zone->dev = &pdev->dev; 2185 zone->sg = soc->ttgs[i]; 2186 zone->ts = tegra; 2187 2188 z = devm_thermal_of_zone_register(&pdev->dev, 2189 soc->ttgs[i]->id, zone, 2190 &tegra_of_thermal_ops); 2191 if (IS_ERR(z)) { 2192 err = PTR_ERR(z); 2193 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2194 err); 2195 goto disable_clocks; 2196 } 2197 2198 zone->tz = z; 2199 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2200 2201 /* Configure hw trip points */ 2202 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2203 if (err) 2204 goto disable_clocks; 2205 } 2206 2207 err = soctherm_interrupts_init(pdev, tegra); 2208 2209 soctherm_debug_init(pdev); 2210 2211 return 0; 2212 2213 disable_clocks: 2214 soctherm_clk_enable(pdev, false); 2215 2216 return err; 2217 } 2218 2219 static void tegra_soctherm_remove(struct platform_device *pdev) 2220 { 2221 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2222 2223 debugfs_remove_recursive(tegra->debugfs_dir); 2224 2225 soctherm_clk_enable(pdev, false); 2226 } 2227 2228 static int __maybe_unused soctherm_suspend(struct device *dev) 2229 { 2230 struct platform_device *pdev = to_platform_device(dev); 2231 2232 soctherm_clk_enable(pdev, false); 2233 2234 return 0; 2235 } 2236 2237 static int __maybe_unused soctherm_resume(struct device *dev) 2238 { 2239 struct platform_device *pdev = to_platform_device(dev); 2240 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2241 struct tegra_soctherm_soc *soc = tegra->soc; 2242 int err, i; 2243 2244 err = soctherm_clk_enable(pdev, true); 2245 if (err) { 2246 dev_err(&pdev->dev, 2247 "Resume failed: enable clocks failed\n"); 2248 return err; 2249 } 2250 2251 soctherm_init(pdev); 2252 2253 for (i = 0; i < soc->num_ttgs; ++i) { 2254 struct thermal_zone_device *tz; 2255 2256 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2257 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2258 if (err) { 2259 dev_err(&pdev->dev, 2260 "Resume failed: set hwtrips failed\n"); 2261 return err; 2262 } 2263 } 2264 2265 return 0; 2266 } 2267 2268 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2269 2270 static struct platform_driver tegra_soctherm_driver = { 2271 .probe = tegra_soctherm_probe, 2272 .remove = tegra_soctherm_remove, 2273 .driver = { 2274 .name = "tegra_soctherm", 2275 .pm = &tegra_soctherm_pm, 2276 .of_match_table = tegra_soctherm_of_match, 2277 }, 2278 }; 2279 module_platform_driver(tegra_soctherm_driver); 2280 2281 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2282 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2283 MODULE_LICENSE("GPL v2"); 2284