xref: /linux/drivers/thermal/tegra/soctherm.c (revision 4f77c3462308c62ffe7129cc18b9ac937f44b5a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *	Mikko Perttunen <mperttunen@nvidia.com>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18 
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33 
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35 
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38 
39 #define SENSOR_CONFIG0				0
40 #define SENSOR_CONFIG0_STOP			BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
42 #define SENSOR_CONFIG0_OVER			BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT		8
46 
47 #define SENSOR_CONFIG1				4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
54 #define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
55 
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60 
61 #define SENSOR_STATUS0				0xc
62 #define SENSOR_STATUS0_VALID_MASK		BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK		0xffff
64 
65 #define SENSOR_STATUS1				0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK		0xffff
68 
69 #define READBACK_VALUE_MASK			0xff00
70 #define READBACK_VALUE_SHIFT			8
71 #define READBACK_ADD_HALF			BIT(7)
72 #define READBACK_NEGATE				BIT(0)
73 
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
87 
88 #define THERMCTL_LVL0_UP_STATS			0x10
89 #define THERMCTL_LVL0_DN_STATS			0x14
90 
91 #define THERMCTL_INTR_STATUS			0x84
92 
93 #define TH_INTR_MD0_MASK			BIT(25)
94 #define TH_INTR_MU0_MASK			BIT(24)
95 #define TH_INTR_GD0_MASK			BIT(17)
96 #define TH_INTR_GU0_MASK			BIT(16)
97 #define TH_INTR_CD0_MASK			BIT(9)
98 #define TH_INTR_CU0_MASK			BIT(8)
99 #define TH_INTR_PD0_MASK			BIT(1)
100 #define TH_INTR_PU0_MASK			BIT(0)
101 #define TH_INTR_IGNORE_MASK			0xFCFCFCFC
102 
103 #define THERMCTL_STATS_CTL			0x94
104 #define STATS_CTL_CLR_DN			0x8
105 #define STATS_CTL_EN_DN				0x4
106 #define STATS_CTL_CLR_UP			0x2
107 #define STATS_CTL_EN_UP				0x1
108 
109 #define OC1_CFG					0x310
110 #define OC1_CFG_LONG_LATENCY_MASK		BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK			BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK		BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK		(0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK		BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK		BIT(0)
116 
117 #define OC1_CNT_THRESHOLD			0x314
118 #define OC1_THROTTLE_PERIOD			0x318
119 #define OC1_ALARM_COUNT				0x31c
120 #define OC1_FILTER				0x320
121 #define OC1_STATS				0x3a8
122 
123 #define OC_INTR_STATUS				0x39c
124 #define OC_INTR_ENABLE				0x3a0
125 #define OC_INTR_DISABLE				0x3a4
126 #define OC_STATS_CTL				0x3c4
127 #define OC_STATS_CTL_CLR_ALL			0x2
128 #define OC_STATS_CTL_EN_ALL			0x1
129 
130 #define OC_INTR_OC1_MASK			BIT(0)
131 #define OC_INTR_OC2_MASK			BIT(1)
132 #define OC_INTR_OC3_MASK			BIT(2)
133 #define OC_INTR_OC4_MASK			BIT(3)
134 #define OC_INTR_OC5_MASK			BIT(4)
135 
136 #define THROT_GLOBAL_CFG			0x400
137 #define THROT_GLOBAL_ENB_MASK			BIT(0)
138 
139 #define CPU_PSKIP_STATUS			0x418
140 #define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
144 
145 #define THROT_PRIORITY_LOCK			0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
147 
148 #define THROT_STATUS				0x428
149 #define THROT_STATUS_BREACH_MASK		BIT(12)
150 #define THROT_STATUS_STATE_MASK			(0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK		BIT(0)
152 
153 #define THROT_PSKIP_CTRL_LITE_CPU		0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160 
161 #define THROT_VECT_NONE				0x0 /* 3'b000 */
162 #define THROT_VECT_LOW				0x1 /* 3'b001 */
163 #define THROT_VECT_MED				0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH				0x7 /* 3'b111 */
165 
166 #define THROT_PSKIP_RAMP_LITE_CPU		0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK		0xff
170 
171 #define THROT_PRIORITY_LITE			0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK		0xff
173 
174 #define THROT_DELAY_LITE			0x448
175 #define THROT_DELAY_LITE_DELAY_MASK		0xff
176 
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER			0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
180 
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER		0x024
183 
184 #define CCROC_GLOBAL_CFG			0x148
185 
186 #define CCROC_THROT_PSKIP_RAMP_CPU		0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
190 
191 #define CCROC_THROT_PSKIP_CTRL_CPU		0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
195 
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
200 				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201 
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
204 
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206  * level	vector
207  * NONE		3'b000
208  * LOW		3'b001
209  * MED		3'b011
210  * HIGH		3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)	((0x1 << (level)) - 1)
213 
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET			0x30
216 #define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
217 					(THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
219 					(THROT_OFFSET * throt) + (8 * dev))
220 
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
223 					(THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
225 					(THROT_OFFSET * throt))
226 
227 #define ALARM_OFFSET			0x14
228 #define ALARM_CFG(throt)		(OC1_CFG + \
229 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
230 
231 #define ALARM_CNT_THRESHOLD(throt)	(OC1_CNT_THRESHOLD + \
232 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
233 
234 #define ALARM_THROTTLE_PERIOD(throt)	(OC1_THROTTLE_PERIOD + \
235 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
236 
237 #define ALARM_ALARM_COUNT(throt)	(OC1_ALARM_COUNT + \
238 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
239 
240 #define ALARM_FILTER(throt)		(OC1_FILTER + \
241 					(ALARM_OFFSET * (throt - THROTTLE_OC1)))
242 
243 #define ALARM_STATS(throt)		(OC1_STATS + \
244 					(4 * (throt - THROTTLE_OC1)))
245 
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET			0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249 						(CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251 						(CCROC_THROT_OFFSET * vect))
252 
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE		0x20
255 #define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256 
257 #define OC_THROTTLE_MODE_DISABLED	0
258 #define OC_THROTTLE_MODE_BRIEF		2
259 
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262 
263 enum soctherm_throttle_id {
264 	THROTTLE_LIGHT = 0,
265 	THROTTLE_HEAVY,
266 	THROTTLE_OC1,
267 	THROTTLE_OC2,
268 	THROTTLE_OC3,
269 	THROTTLE_OC4,
270 	THROTTLE_OC5, /* OC5 is reserved */
271 	THROTTLE_SIZE,
272 };
273 
274 enum soctherm_oc_irq_id {
275 	TEGRA_SOC_OC_IRQ_1,
276 	TEGRA_SOC_OC_IRQ_2,
277 	TEGRA_SOC_OC_IRQ_3,
278 	TEGRA_SOC_OC_IRQ_4,
279 	TEGRA_SOC_OC_IRQ_5,
280 	TEGRA_SOC_OC_IRQ_MAX,
281 };
282 
283 enum soctherm_throttle_dev_id {
284 	THROTTLE_DEV_CPU = 0,
285 	THROTTLE_DEV_GPU,
286 	THROTTLE_DEV_SIZE,
287 };
288 
289 static const char *const throt_names[] = {
290 	[THROTTLE_LIGHT] = "light",
291 	[THROTTLE_HEAVY] = "heavy",
292 	[THROTTLE_OC1]   = "oc1",
293 	[THROTTLE_OC2]   = "oc2",
294 	[THROTTLE_OC3]   = "oc3",
295 	[THROTTLE_OC4]   = "oc4",
296 	[THROTTLE_OC5]   = "oc5",
297 };
298 
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301 	void __iomem *reg;
302 	struct device *dev;
303 	struct tegra_soctherm *ts;
304 	struct thermal_zone_device *tz;
305 	const struct tegra_tsensor_group *sg;
306 };
307 
308 struct soctherm_oc_cfg {
309 	u32 active_low;
310 	u32 throt_period;
311 	u32 alarm_cnt_thresh;
312 	u32 alarm_filter;
313 	u32 mode;
314 	bool intr_en;
315 };
316 
317 struct soctherm_throt_cfg {
318 	const char *name;
319 	unsigned int id;
320 	u8 priority;
321 	u8 cpu_throt_level;
322 	u32 cpu_throt_depth;
323 	u32 gpu_throt_level;
324 	struct soctherm_oc_cfg oc_cfg;
325 	struct thermal_cooling_device *cdev;
326 	bool init;
327 };
328 
329 struct tegra_soctherm {
330 	struct reset_control *reset;
331 	struct clk *clock_tsensor;
332 	struct clk *clock_soctherm;
333 	void __iomem *regs;
334 	void __iomem *clk_regs;
335 	void __iomem *ccroc_regs;
336 
337 	int thermal_irq;
338 	int edp_irq;
339 
340 	u32 *calib;
341 	struct thermal_zone_device **thermctl_tzs;
342 	struct tegra_soctherm_soc *soc;
343 
344 	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345 
346 	struct dentry *debugfs_dir;
347 
348 	struct mutex thermctl_lock;
349 };
350 
351 struct soctherm_oc_irq_chip_data {
352 	struct mutex		irq_lock; /* serialize OC IRQs */
353 	struct irq_chip		irq_chip;
354 	struct irq_domain	*domain;
355 	int			irq_enable;
356 };
357 
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359 
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @value: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370 	writel(value, (ts->ccroc_regs + reg));
371 }
372 
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382 	return readl(ts->ccroc_regs + reg);
383 }
384 
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387 	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388 	void __iomem *base = tegra->regs + sensor->base;
389 	unsigned int val;
390 
391 	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392 	writel(val, base + SENSOR_CONFIG0);
393 
394 	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395 	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396 	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397 	val |= SENSOR_CONFIG1_TEMP_ENABLE;
398 	writel(val, base + SENSOR_CONFIG1);
399 
400 	writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402 
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413 	int t;
414 
415 	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416 	if (val & READBACK_ADD_HALF)
417 		t += 500;
418 	if (val & READBACK_NEGATE)
419 		t *= -1;
420 
421 	return t;
422 }
423 
424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426 	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
427 	u32 val;
428 
429 	val = readl(zone->reg);
430 	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431 	*out_temp = translate_temp(val);
432 
433 	return 0;
434 }
435 
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @dev: struct device * of the SOC_THERM instance
439  * @trip_temp: the trip temperature to check
440  *
441  * Checks and enforces the permitted temperature range that SOC_THERM
442  * HW can support This is
443  * done while taking care of precision.
444  *
445  * Return: The precision adjusted capped temperature in millicelsius.
446  */
447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449 	int temp;
450 
451 	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452 	if (temp != trip_temp)
453 		dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454 			trip_temp, temp);
455 	return temp;
456 }
457 
458 /**
459  * thermtrip_program() - Configures the hardware to shut down the
460  * system if a given sensor group reaches a given temperature
461  * @dev: ptr to the struct device for the SOC_THERM IP block
462  * @sg: pointer to the sensor group to set the thermtrip temperature for
463  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464  *
465  * Sets the thermal trip threshold of the given sensor group to be the
466  * @trip_temp.  If this threshold is crossed, the hardware will shut
467  * down.
468  *
469  * Note that, although @trip_temp is specified in millicelsius, the
470  * hardware is programmed in degrees Celsius.
471  *
472  * Return: 0 upon success, or %-EINVAL upon failure.
473  */
474 static int thermtrip_program(struct device *dev,
475 			     const struct tegra_tsensor_group *sg,
476 			     int trip_temp)
477 {
478 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
479 	int temp;
480 	u32 r;
481 
482 	if (!sg || !sg->thermtrip_threshold_mask)
483 		return -EINVAL;
484 
485 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486 
487 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488 	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489 	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490 	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491 	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492 
493 	return 0;
494 }
495 
496 /**
497  * throttrip_program() - Configures the hardware to throttle the
498  * pulse if a given sensor group reaches a given temperature
499  * @dev: ptr to the struct device for the SOC_THERM IP block
500  * @sg: pointer to the sensor group to set the thermtrip temperature for
501  * @stc: pointer to the throttle need to be triggered
502  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503  *
504  * Sets the thermal trip threshold and throttle event of the given sensor
505  * group. If this threshold is crossed, the hardware will trigger the
506  * throttle.
507  *
508  * Note that, although @trip_temp is specified in millicelsius, the
509  * hardware is programmed in degrees Celsius.
510  *
511  * Return: 0 upon success, or %-EINVAL upon failure.
512  */
513 static int throttrip_program(struct device *dev,
514 			     const struct tegra_tsensor_group *sg,
515 			     struct soctherm_throt_cfg *stc,
516 			     int trip_temp)
517 {
518 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
519 	int temp, cpu_throt, gpu_throt;
520 	unsigned int throt;
521 	u32 r, reg_off;
522 
523 	if (!sg || !stc || !stc->init)
524 		return -EINVAL;
525 
526 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527 
528 	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529 	throt = stc->id;
530 	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531 
532 	if (throt == THROTTLE_LIGHT) {
533 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535 	} else {
536 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538 		if (throt != THROTTLE_HEAVY)
539 			dev_warn(dev,
540 				 "invalid throt id %d - assuming HEAVY",
541 				 throt);
542 	}
543 
544 	r = readl(ts->regs + reg_off);
545 	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546 	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550 	writel(r, ts->regs + reg_off);
551 
552 	return 0;
553 }
554 
555 static struct soctherm_throt_cfg *
556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558 	unsigned int i;
559 
560 	for (i = 0; ts->throt_cfgs[i].name; i++)
561 		if (!strcmp(ts->throt_cfgs[i].name, name))
562 			return &ts->throt_cfgs[i];
563 
564 	return NULL;
565 }
566 
567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569 	int i, temp = min_low_temp;
570 	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571 
572 	if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573 		return temp;
574 
575 	if (tt) {
576 		for (i = 0; i < ts->soc->num_ttgs; i++) {
577 			if (tt[i].id == id)
578 				return tt[i].temp;
579 		}
580 	}
581 
582 	return temp;
583 }
584 
585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz,
586 					const struct thermal_trip *trip, int temp)
587 {
588 	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
589 	struct tegra_soctherm *ts = zone->ts;
590 	const struct tegra_tsensor_group *sg = zone->sg;
591 	struct device *dev = zone->dev;
592 
593 	if (!tz)
594 		return -EINVAL;
595 
596 	if (trip->type == THERMAL_TRIP_CRITICAL) {
597 		/*
598 		 * If thermtrips property is set in DT,
599 		 * doesn't need to program critical type trip to HW,
600 		 * if not, program critical trip to HW.
601 		 */
602 		if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
603 			return thermtrip_program(dev, sg, temp);
604 		else
605 			return 0;
606 
607 	} else if (trip->type == THERMAL_TRIP_HOT) {
608 		int i;
609 
610 		for (i = 0; i < THROTTLE_SIZE; i++) {
611 			struct thermal_cooling_device *cdev;
612 			struct soctherm_throt_cfg *stc;
613 
614 			if (!ts->throt_cfgs[i].init)
615 				continue;
616 
617 			cdev = ts->throt_cfgs[i].cdev;
618 			if (thermal_trip_is_bound_to_cdev(tz, trip, cdev))
619 				stc = find_throttle_cfg_by_name(ts, cdev->type);
620 			else
621 				continue;
622 
623 			return throttrip_program(dev, sg, stc, temp);
624 		}
625 	}
626 
627 	return 0;
628 }
629 
630 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
631 {
632 	u32 r;
633 
634 	/* multiple zones could be handling and setting trips at once */
635 	mutex_lock(&zn->ts->thermctl_lock);
636 	r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
637 	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
638 	writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
639 	mutex_unlock(&zn->ts->thermctl_lock);
640 }
641 
642 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
643 {
644 	u32 r;
645 
646 	/* multiple zones could be handling and setting trips at once */
647 	mutex_lock(&zn->ts->thermctl_lock);
648 	r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
649 	r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
650 	writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
651 	mutex_unlock(&zn->ts->thermctl_lock);
652 }
653 
654 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
655 {
656 	struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
657 	u32 r;
658 
659 	thermal_irq_disable(zone);
660 
661 	r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
662 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
663 	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
664 
665 	lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
666 	hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
667 	dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
668 
669 	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
670 	r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
671 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
672 	writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
673 
674 	thermal_irq_enable(zone);
675 
676 	return 0;
677 }
678 
679 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
680 	.get_temp = tegra_thermctl_get_temp,
681 	.set_trip_temp = tegra_thermctl_set_trip_temp,
682 	.set_trips = tegra_thermctl_set_trips,
683 };
684 
685 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp)
686 {
687 	int i, ret;
688 	struct thermal_trip trip;
689 
690 	for (i = 0; i < thermal_zone_get_num_trips(tz); i++) {
691 
692 		ret = thermal_zone_get_trip(tz, i, &trip);
693 		if (ret)
694 			return -EINVAL;
695 
696 		if (trip.type == THERMAL_TRIP_HOT) {
697 			*trip_id = i;
698 			return 0;
699 		}
700 	}
701 
702 	return -EINVAL;
703 }
704 
705 /**
706  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
707  * @dev: struct device * of the SOC_THERM instance
708  * @sg: pointer to the sensor group to set the thermtrip temperature for
709  * @tz: struct thermal_zone_device *
710  *
711  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
712  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
713  * type trip_temp
714  * from thermal zone.
715  * After they have been configured, THERMTRIP or THROTTLE will take
716  * action when the configured SoC thermal sensor group reaches a
717  * certain temperature.
718  *
719  * Return: 0 upon success, or a negative error code on failure.
720  * "Success" does not mean that trips was enabled; it could also
721  * mean that no node was found in DT.
722  * THERMTRIP has been enabled successfully when a message similar to
723  * this one appears on the serial console:
724  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
725  * THROTTLE has been enabled successfully when a message similar to
726  * this one appears on the serial console:
727  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
728  */
729 static int tegra_soctherm_set_hwtrips(struct device *dev,
730 				      const struct tegra_tsensor_group *sg,
731 				      struct thermal_zone_device *tz)
732 {
733 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
734 	struct soctherm_throt_cfg *stc;
735 	int i, trip, temperature, ret;
736 
737 	/* Get thermtrips. If missing, try to get critical trips. */
738 	temperature = tsensor_group_thermtrip_get(ts, sg->id);
739 	if (min_low_temp == temperature)
740 		if (thermal_zone_get_crit_temp(tz, &temperature))
741 			temperature = max_high_temp;
742 
743 	ret = thermtrip_program(dev, sg, temperature);
744 	if (ret) {
745 		dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
746 		return ret;
747 	}
748 
749 	dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
750 		 sg->name, temperature);
751 
752 	ret = get_hot_temp(tz, &trip, &temperature);
753 	if (ret) {
754 		dev_info(dev, "throttrip: %s: missing hot temperature\n",
755 			 sg->name);
756 		return 0;
757 	}
758 
759 	for (i = 0; i < THROTTLE_OC1; i++) {
760 		struct thermal_cooling_device *cdev;
761 
762 		if (!ts->throt_cfgs[i].init)
763 			continue;
764 
765 		cdev = ts->throt_cfgs[i].cdev;
766 		if (get_thermal_instance(tz, cdev, trip))
767 			stc = find_throttle_cfg_by_name(ts, cdev->type);
768 		else
769 			continue;
770 
771 		ret = throttrip_program(dev, sg, stc, temperature);
772 		if (ret) {
773 			dev_err(dev, "throttrip: %s: error during enable\n",
774 				sg->name);
775 			return ret;
776 		}
777 
778 		dev_info(dev,
779 			 "throttrip: will throttle when %s reaches %d mC\n",
780 			 sg->name, temperature);
781 		break;
782 	}
783 
784 	if (i == THROTTLE_SIZE)
785 		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
786 			 sg->name);
787 
788 	return 0;
789 }
790 
791 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
792 {
793 	struct tegra_soctherm *ts = dev_id;
794 	u32 r;
795 
796 	/* Case for no lock:
797 	 * Although interrupts are enabled in set_trips, there is still no need
798 	 * to lock here because the interrupts are disabled before programming
799 	 * new trip points. Hence there cant be a interrupt on the same sensor.
800 	 * An interrupt can however occur on a sensor while trips are being
801 	 * programmed on a different one. This beign a LEVEL interrupt won't
802 	 * cause a new interrupt but this is taken care of by the re-reading of
803 	 * the STATUS register in the thread function.
804 	 */
805 	r = readl(ts->regs + THERMCTL_INTR_STATUS);
806 	writel(r, ts->regs + THERMCTL_INTR_DISABLE);
807 
808 	return IRQ_WAKE_THREAD;
809 }
810 
811 /**
812  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
813  * @irq:       The interrupt number being requested; not used
814  * @dev_id:    Opaque pointer to tegra_soctherm;
815  *
816  * Clears the interrupt status register if there are expected
817  * interrupt bits set.
818  * The interrupt(s) are then handled by updating the corresponding
819  * thermal zones.
820  *
821  * An error is logged if any unexpected interrupt bits are set.
822  *
823  * Disabled interrupts are re-enabled.
824  *
825  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
826  * is needed.
827  */
828 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
829 {
830 	struct tegra_soctherm *ts = dev_id;
831 	struct thermal_zone_device *tz;
832 	u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
833 
834 	st = readl(ts->regs + THERMCTL_INTR_STATUS);
835 
836 	/* deliberately clear expected interrupts handled in SW */
837 	cp |= st & TH_INTR_CD0_MASK;
838 	cp |= st & TH_INTR_CU0_MASK;
839 
840 	gp |= st & TH_INTR_GD0_MASK;
841 	gp |= st & TH_INTR_GU0_MASK;
842 
843 	pl |= st & TH_INTR_PD0_MASK;
844 	pl |= st & TH_INTR_PU0_MASK;
845 
846 	me |= st & TH_INTR_MD0_MASK;
847 	me |= st & TH_INTR_MU0_MASK;
848 
849 	ex |= cp | gp | pl | me;
850 	if (ex) {
851 		writel(ex, ts->regs + THERMCTL_INTR_STATUS);
852 		st &= ~ex;
853 
854 		if (cp) {
855 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
856 			thermal_zone_device_update(tz,
857 						   THERMAL_EVENT_UNSPECIFIED);
858 		}
859 
860 		if (gp) {
861 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
862 			thermal_zone_device_update(tz,
863 						   THERMAL_EVENT_UNSPECIFIED);
864 		}
865 
866 		if (pl) {
867 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
868 			thermal_zone_device_update(tz,
869 						   THERMAL_EVENT_UNSPECIFIED);
870 		}
871 
872 		if (me) {
873 			tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
874 			thermal_zone_device_update(tz,
875 						   THERMAL_EVENT_UNSPECIFIED);
876 		}
877 	}
878 
879 	/* deliberately ignore expected interrupts NOT handled in SW */
880 	ex |= TH_INTR_IGNORE_MASK;
881 	st &= ~ex;
882 
883 	if (st) {
884 		/* Whine about any other unexpected INTR bits still set */
885 		pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
886 		writel(st, ts->regs + THERMCTL_INTR_STATUS);
887 	}
888 
889 	return IRQ_HANDLED;
890 }
891 
892 /**
893  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
894  * @ts:		pointer to a struct tegra_soctherm
895  * @alarm:		The soctherm throttle id
896  * @enable:		Flag indicating enable the soctherm over-current
897  *			interrupt or disable it
898  *
899  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
900  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
901  */
902 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
903 				    enum soctherm_throttle_id alarm,
904 				    bool enable)
905 {
906 	u32 r;
907 
908 	if (!enable)
909 		return;
910 
911 	r = readl(ts->regs + OC_INTR_ENABLE);
912 	switch (alarm) {
913 	case THROTTLE_OC1:
914 		r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
915 		break;
916 	case THROTTLE_OC2:
917 		r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
918 		break;
919 	case THROTTLE_OC3:
920 		r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
921 		break;
922 	case THROTTLE_OC4:
923 		r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
924 		break;
925 	default:
926 		r = 0;
927 		break;
928 	}
929 	writel(r, ts->regs + OC_INTR_ENABLE);
930 }
931 
932 /**
933  * soctherm_handle_alarm() - Handles soctherm alarms
934  * @alarm:		The soctherm throttle id
935  *
936  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
937  * a warning or informative message.
938  *
939  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
940  */
941 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
942 {
943 	int rv = -EINVAL;
944 
945 	switch (alarm) {
946 	case THROTTLE_OC1:
947 		pr_debug("soctherm: Successfully handled OC1 alarm\n");
948 		rv = 0;
949 		break;
950 
951 	case THROTTLE_OC2:
952 		pr_debug("soctherm: Successfully handled OC2 alarm\n");
953 		rv = 0;
954 		break;
955 
956 	case THROTTLE_OC3:
957 		pr_debug("soctherm: Successfully handled OC3 alarm\n");
958 		rv = 0;
959 		break;
960 
961 	case THROTTLE_OC4:
962 		pr_debug("soctherm: Successfully handled OC4 alarm\n");
963 		rv = 0;
964 		break;
965 
966 	default:
967 		break;
968 	}
969 
970 	if (rv)
971 		pr_err("soctherm: ERROR in handling %s alarm\n",
972 		       throt_names[alarm]);
973 
974 	return rv;
975 }
976 
977 /**
978  * soctherm_edp_isr_thread() - log an over-current interrupt request
979  * @irq:	OC irq number. Currently not being used. See description
980  * @arg:	a void pointer for callback, currently not being used
981  *
982  * Over-current events are handled in hardware. This function is called to log
983  * and handle any OC events that happened. Additionally, it checks every
984  * over-current interrupt registers for registers are set but
985  * was not expected (i.e. any discrepancy in interrupt status) by the function,
986  * the discrepancy will logged.
987  *
988  * Return: %IRQ_HANDLED
989  */
990 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
991 {
992 	struct tegra_soctherm *ts = arg;
993 	u32 st, ex, oc1, oc2, oc3, oc4;
994 
995 	st = readl(ts->regs + OC_INTR_STATUS);
996 
997 	/* deliberately clear expected interrupts handled in SW */
998 	oc1 = st & OC_INTR_OC1_MASK;
999 	oc2 = st & OC_INTR_OC2_MASK;
1000 	oc3 = st & OC_INTR_OC3_MASK;
1001 	oc4 = st & OC_INTR_OC4_MASK;
1002 	ex = oc1 | oc2 | oc3 | oc4;
1003 
1004 	pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1005 	if (ex) {
1006 		writel(st, ts->regs + OC_INTR_STATUS);
1007 		st &= ~ex;
1008 
1009 		if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1010 			soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1011 
1012 		if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1013 			soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1014 
1015 		if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1016 			soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1017 
1018 		if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1019 			soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1020 
1021 		if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1022 			handle_nested_irq(
1023 				irq_find_mapping(soc_irq_cdata.domain, 0));
1024 
1025 		if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1026 			handle_nested_irq(
1027 				irq_find_mapping(soc_irq_cdata.domain, 1));
1028 
1029 		if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1030 			handle_nested_irq(
1031 				irq_find_mapping(soc_irq_cdata.domain, 2));
1032 
1033 		if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1034 			handle_nested_irq(
1035 				irq_find_mapping(soc_irq_cdata.domain, 3));
1036 	}
1037 
1038 	if (st) {
1039 		pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1040 		writel(st, ts->regs + OC_INTR_STATUS);
1041 	}
1042 
1043 	return IRQ_HANDLED;
1044 }
1045 
1046 /**
1047  * soctherm_edp_isr() - Disables any active interrupts
1048  * @irq:	The interrupt request number
1049  * @arg:	Opaque pointer to an argument
1050  *
1051  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1052  * masking any asserted interrupts. Doing this prevents the same interrupts
1053  * from triggering this isr repeatedly. The thread woken by this isr will
1054  * handle asserted interrupts and subsequently unmask/re-enable them.
1055  *
1056  * The OC_INTR_DISABLE register indicates which OC interrupts
1057  * have been disabled.
1058  *
1059  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1060  */
1061 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1062 {
1063 	struct tegra_soctherm *ts = arg;
1064 	u32 r;
1065 
1066 	if (!ts)
1067 		return IRQ_NONE;
1068 
1069 	r = readl(ts->regs + OC_INTR_STATUS);
1070 	writel(r, ts->regs + OC_INTR_DISABLE);
1071 
1072 	return IRQ_WAKE_THREAD;
1073 }
1074 
1075 /**
1076  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1077  * @data:	Interrupt request data
1078  *
1079  * Looks up the chip data from @data and locks the mutex associated with
1080  * a particular over-current interrupt request.
1081  */
1082 static void soctherm_oc_irq_lock(struct irq_data *data)
1083 {
1084 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1085 
1086 	mutex_lock(&d->irq_lock);
1087 }
1088 
1089 /**
1090  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1091  * @data:		Interrupt request data
1092  *
1093  * Looks up the interrupt request data @data and unlocks the mutex associated
1094  * with a particular over-current interrupt request.
1095  */
1096 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1097 {
1098 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1099 
1100 	mutex_unlock(&d->irq_lock);
1101 }
1102 
1103 /**
1104  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1105  * @data:       irq_data structure of the chip
1106  *
1107  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1108  * to respond to over-current interrupts.
1109  *
1110  */
1111 static void soctherm_oc_irq_enable(struct irq_data *data)
1112 {
1113 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1114 
1115 	d->irq_enable |= BIT(data->hwirq);
1116 }
1117 
1118 /**
1119  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1120  * @data:	The interrupt request information
1121  *
1122  * Clears the interrupt request enable bit of the overcurrent
1123  * interrupt request chip data.
1124  *
1125  * Return: Nothing is returned (void)
1126  */
1127 static void soctherm_oc_irq_disable(struct irq_data *data)
1128 {
1129 	struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1130 
1131 	d->irq_enable &= ~BIT(data->hwirq);
1132 }
1133 
1134 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1135 {
1136 	return 0;
1137 }
1138 
1139 /**
1140  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1141  * @h:		Interrupt request domain
1142  * @virq:	Virtual interrupt request number
1143  * @hw:		Hardware interrupt request number
1144  *
1145  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1146  * interrupt request is called, the irq_domain takes the request's virtual
1147  * request number (much like a virtual memory address) and maps it to a
1148  * physical hardware request number.
1149  *
1150  * When a mapping doesn't already exist for a virtual request number, the
1151  * irq_domain calls this function to associate the virtual request number with
1152  * a hardware request number.
1153  *
1154  * Return: 0
1155  */
1156 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1157 		irq_hw_number_t hw)
1158 {
1159 	struct soctherm_oc_irq_chip_data *data = h->host_data;
1160 
1161 	irq_set_chip_data(virq, data);
1162 	irq_set_chip(virq, &data->irq_chip);
1163 	irq_set_nested_thread(virq, 1);
1164 	return 0;
1165 }
1166 
1167 /**
1168  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1169  * @d:      Interrupt request domain
1170  * @ctrlr:      Controller device tree node
1171  * @intspec:    Array of u32s from DTs "interrupt" property
1172  * @intsize:    Number of values inside the intspec array
1173  * @out_hwirq:  HW IRQ value associated with this interrupt
1174  * @out_type:   The IRQ SENSE type for this interrupt.
1175  *
1176  * This Device Tree IRQ specifier translation function will translate a
1177  * specific "interrupt" as defined by 2 DT values where the cell values map
1178  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1179  * number, this function will subtract 1 from the value listed in DT.
1180  *
1181  * Return: 0
1182  */
1183 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1184 	struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1185 	irq_hw_number_t *out_hwirq, unsigned int *out_type)
1186 {
1187 	if (WARN_ON(intsize < 2))
1188 		return -EINVAL;
1189 
1190 	/*
1191 	 * The HW value is 1 index less than the DT IRQ values.
1192 	 * i.e. OC4 goes to HW index 3.
1193 	 */
1194 	*out_hwirq = intspec[0] - 1;
1195 	*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1196 	return 0;
1197 }
1198 
1199 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1200 	.map	= soctherm_oc_irq_map,
1201 	.xlate	= soctherm_irq_domain_xlate_twocell,
1202 };
1203 
1204 /**
1205  * soctherm_oc_int_init() - Initial enabling of the over
1206  * current interrupts
1207  * @np:	The devicetree node for soctherm
1208  * @num_irqs:	The number of new interrupt requests
1209  *
1210  * Sets the over current interrupt request chip data
1211  *
1212  * Return: 0 on success or if overcurrent interrupts are not enabled,
1213  * -ENOMEM (out of memory), or irq_base if the function failed to
1214  * allocate the irqs
1215  */
1216 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1217 {
1218 	if (!num_irqs) {
1219 		pr_info("%s(): OC interrupts are not enabled\n", __func__);
1220 		return 0;
1221 	}
1222 
1223 	mutex_init(&soc_irq_cdata.irq_lock);
1224 	soc_irq_cdata.irq_enable = 0;
1225 
1226 	soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1227 	soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1228 	soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1229 		soctherm_oc_irq_sync_unlock;
1230 	soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1231 	soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1232 	soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1233 	soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1234 
1235 	soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1236 						     &soctherm_oc_domain_ops,
1237 						     &soc_irq_cdata);
1238 
1239 	if (!soc_irq_cdata.domain) {
1240 		pr_err("%s: Failed to create IRQ domain\n", __func__);
1241 		return -ENOMEM;
1242 	}
1243 
1244 	pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1245 	return 0;
1246 }
1247 
1248 #ifdef CONFIG_DEBUG_FS
1249 static int regs_show(struct seq_file *s, void *data)
1250 {
1251 	struct platform_device *pdev = s->private;
1252 	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1253 	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1254 	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1255 	u32 r, state;
1256 	int i, level;
1257 
1258 	seq_puts(s, "-----TSENSE (convert HW)-----\n");
1259 
1260 	for (i = 0; i < ts->soc->num_tsensors; i++) {
1261 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1262 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1263 
1264 		seq_printf(s, "%s: ", tsensors[i].name);
1265 		seq_printf(s, "En(%d) ", state);
1266 
1267 		if (!state) {
1268 			seq_puts(s, "\n");
1269 			continue;
1270 		}
1271 
1272 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1273 		seq_printf(s, "tiddq(%d) ", state);
1274 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1275 		seq_printf(s, "ten_count(%d) ", state);
1276 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1277 		seq_printf(s, "tsample(%d) ", state + 1);
1278 
1279 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1280 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1281 		seq_printf(s, "Temp(%d/", state);
1282 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1283 		seq_printf(s, "%d) ", translate_temp(state));
1284 
1285 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1286 		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1287 		seq_printf(s, "Capture(%d/", state);
1288 		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1289 		seq_printf(s, "%d) ", state);
1290 
1291 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1292 		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1293 		seq_printf(s, "Stop(%d) ", state);
1294 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1295 		seq_printf(s, "Tall(%d) ", state);
1296 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1297 		seq_printf(s, "Over(%d/", state);
1298 		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1299 		seq_printf(s, "%d/", state);
1300 		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1301 		seq_printf(s, "%d) ", state);
1302 
1303 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1304 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1305 		seq_printf(s, "Therm_A/B(%d/", state);
1306 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1307 		seq_printf(s, "%d)\n", (s16)state);
1308 	}
1309 
1310 	r = readl(ts->regs + SENSOR_PDIV);
1311 	seq_printf(s, "PDIV: 0x%x\n", r);
1312 
1313 	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1314 	seq_printf(s, "HOTSPOT: 0x%x\n", r);
1315 
1316 	seq_puts(s, "\n");
1317 	seq_puts(s, "-----SOC_THERM-----\n");
1318 
1319 	r = readl(ts->regs + SENSOR_TEMP1);
1320 	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1321 	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1322 	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1323 	seq_printf(s, " GPU(%d) ", translate_temp(state));
1324 	r = readl(ts->regs + SENSOR_TEMP2);
1325 	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1326 	seq_printf(s, " PLLX(%d) ", translate_temp(state));
1327 	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1328 	seq_printf(s, " MEM(%d)\n", translate_temp(state));
1329 
1330 	for (i = 0; i < ts->soc->num_ttgs; i++) {
1331 		seq_printf(s, "%s:\n", ttgs[i]->name);
1332 		for (level = 0; level < 4; level++) {
1333 			s32 v;
1334 			u32 mask;
1335 			u16 off = ttgs[i]->thermctl_lvl0_offset;
1336 
1337 			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1338 
1339 			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1340 			state = REG_GET_MASK(r, mask);
1341 			v = sign_extend32(state, ts->soc->bptt - 1);
1342 			v *= ts->soc->thresh_grain;
1343 			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1344 
1345 			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1346 			state = REG_GET_MASK(r, mask);
1347 			v = sign_extend32(state, ts->soc->bptt - 1);
1348 			v *= ts->soc->thresh_grain;
1349 			seq_printf(s, "%d ) ", v);
1350 
1351 			mask = THERMCTL_LVL0_CPU0_EN_MASK;
1352 			state = REG_GET_MASK(r, mask);
1353 			seq_printf(s, "En(%d) ", state);
1354 
1355 			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1356 			state = REG_GET_MASK(r, mask);
1357 			seq_puts(s, "CPU Throt");
1358 			if (!state)
1359 				seq_printf(s, "(%s) ", "none");
1360 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1361 				seq_printf(s, "(%s) ", "L");
1362 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1363 				seq_printf(s, "(%s) ", "H");
1364 			else
1365 				seq_printf(s, "(%s) ", "H+L");
1366 
1367 			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1368 			state = REG_GET_MASK(r, mask);
1369 			seq_puts(s, "GPU Throt");
1370 			if (!state)
1371 				seq_printf(s, "(%s) ", "none");
1372 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1373 				seq_printf(s, "(%s) ", "L");
1374 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1375 				seq_printf(s, "(%s) ", "H");
1376 			else
1377 				seq_printf(s, "(%s) ", "H+L");
1378 
1379 			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1380 			state = REG_GET_MASK(r, mask);
1381 			seq_printf(s, "Status(%s)\n",
1382 				   state == 0 ? "LO" :
1383 				   state == 1 ? "In" :
1384 				   state == 2 ? "Res" : "HI");
1385 		}
1386 	}
1387 
1388 	r = readl(ts->regs + THERMCTL_STATS_CTL);
1389 	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1390 		   r & STATS_CTL_EN_UP ? "En" : "--",
1391 		   r & STATS_CTL_EN_DN ? "En" : "--");
1392 
1393 	for (level = 0; level < 4; level++) {
1394 		u16 off;
1395 
1396 		off = THERMCTL_LVL0_UP_STATS;
1397 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1398 		seq_printf(s, "  Level_%d Up(%d) ", level, r);
1399 
1400 		off = THERMCTL_LVL0_DN_STATS;
1401 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1402 		seq_printf(s, "Dn(%d)\n", r);
1403 	}
1404 
1405 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1406 	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1407 	seq_printf(s, "Thermtrip Any En(%d)\n", state);
1408 	for (i = 0; i < ts->soc->num_ttgs; i++) {
1409 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1410 		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1411 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1412 		state *= ts->soc->thresh_grain;
1413 		seq_printf(s, "Thresh(%d)\n", state);
1414 	}
1415 
1416 	r = readl(ts->regs + THROT_GLOBAL_CFG);
1417 	seq_puts(s, "\n");
1418 	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1419 
1420 	seq_puts(s, "---------------------------------------------------\n");
1421 	r = readl(ts->regs + THROT_STATUS);
1422 	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1423 	seq_printf(s, "THROT STATUS: breach(%d) ", state);
1424 	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1425 	seq_printf(s, "state(%d) ", state);
1426 	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1427 	seq_printf(s, "enabled(%d)\n", state);
1428 
1429 	r = readl(ts->regs + CPU_PSKIP_STATUS);
1430 	if (ts->soc->use_ccroc) {
1431 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1432 		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1433 	} else {
1434 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1435 		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1436 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1437 		seq_printf(s, "N(%d) ", state);
1438 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1439 		seq_printf(s, "enabled(%d)\n", state);
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 DEFINE_SHOW_ATTRIBUTE(regs);
1446 
1447 static void soctherm_debug_init(struct platform_device *pdev)
1448 {
1449 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1450 	struct dentry *root;
1451 
1452 	root = debugfs_create_dir("soctherm", NULL);
1453 
1454 	tegra->debugfs_dir = root;
1455 
1456 	debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1457 }
1458 #else
1459 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1460 #endif
1461 
1462 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1463 {
1464 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1465 	int err;
1466 
1467 	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1468 		return -EINVAL;
1469 
1470 	reset_control_assert(tegra->reset);
1471 
1472 	if (enable) {
1473 		err = clk_prepare_enable(tegra->clock_soctherm);
1474 		if (err) {
1475 			reset_control_deassert(tegra->reset);
1476 			return err;
1477 		}
1478 
1479 		err = clk_prepare_enable(tegra->clock_tsensor);
1480 		if (err) {
1481 			clk_disable_unprepare(tegra->clock_soctherm);
1482 			reset_control_deassert(tegra->reset);
1483 			return err;
1484 		}
1485 	} else {
1486 		clk_disable_unprepare(tegra->clock_tsensor);
1487 		clk_disable_unprepare(tegra->clock_soctherm);
1488 	}
1489 
1490 	reset_control_deassert(tegra->reset);
1491 
1492 	return 0;
1493 }
1494 
1495 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1496 				    unsigned long *max_state)
1497 {
1498 	*max_state = 1;
1499 	return 0;
1500 }
1501 
1502 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1503 				    unsigned long *cur_state)
1504 {
1505 	struct tegra_soctherm *ts = cdev->devdata;
1506 	u32 r;
1507 
1508 	r = readl(ts->regs + THROT_STATUS);
1509 	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1510 		*cur_state = 1;
1511 	else
1512 		*cur_state = 0;
1513 
1514 	return 0;
1515 }
1516 
1517 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1518 				unsigned long cur_state)
1519 {
1520 	return 0;
1521 }
1522 
1523 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1524 	.get_max_state = throt_get_cdev_max_state,
1525 	.get_cur_state = throt_get_cdev_cur_state,
1526 	.set_cur_state = throt_set_cdev_state,
1527 };
1528 
1529 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1530 {
1531 	struct device *dev = &pdev->dev;
1532 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1533 	struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1534 	const int max_num_prop = ts->soc->num_ttgs * 2;
1535 	u32 *tlb;
1536 	int i, j, n, ret;
1537 
1538 	if (!tt)
1539 		return -ENOMEM;
1540 
1541 	n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1542 	if (n <= 0) {
1543 		dev_info(dev,
1544 			 "missing thermtrips, will use critical trips as shut down temp\n");
1545 		return n;
1546 	}
1547 
1548 	n = min(max_num_prop, n);
1549 
1550 	tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1551 	if (!tlb)
1552 		return -ENOMEM;
1553 	ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1554 					 tlb, n);
1555 	if (ret) {
1556 		dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1557 		return ret;
1558 	}
1559 
1560 	i = 0;
1561 	for (j = 0; j < n; j = j + 2) {
1562 		if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1563 			continue;
1564 
1565 		tt[i].id = tlb[j];
1566 		tt[i].temp = tlb[j + 1];
1567 		i++;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static void soctherm_oc_cfg_parse(struct device *dev,
1574 				struct device_node *np_oc,
1575 				struct soctherm_throt_cfg *stc)
1576 {
1577 	u32 val;
1578 
1579 	if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1580 		stc->oc_cfg.active_low = 1;
1581 	else
1582 		stc->oc_cfg.active_low = 0;
1583 
1584 	if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1585 		stc->oc_cfg.intr_en = 1;
1586 		stc->oc_cfg.alarm_cnt_thresh = val;
1587 	}
1588 
1589 	if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1590 		stc->oc_cfg.throt_period = val;
1591 
1592 	if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1593 		stc->oc_cfg.alarm_filter = val;
1594 
1595 	/* BRIEF throttling by default, do not support STICKY */
1596 	stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1597 }
1598 
1599 static int soctherm_throt_cfg_parse(struct device *dev,
1600 				    struct device_node *np,
1601 				    struct soctherm_throt_cfg *stc)
1602 {
1603 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1604 	int ret;
1605 	u32 val;
1606 
1607 	ret = of_property_read_u32(np, "nvidia,priority", &val);
1608 	if (ret) {
1609 		dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1610 		return -EINVAL;
1611 	}
1612 	stc->priority = val;
1613 
1614 	ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1615 				   "nvidia,cpu-throt-level" :
1616 				   "nvidia,cpu-throt-percent", &val);
1617 	if (!ret) {
1618 		if (ts->soc->use_ccroc &&
1619 		    val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1620 			stc->cpu_throt_level = val;
1621 		else if (!ts->soc->use_ccroc && val <= 100)
1622 			stc->cpu_throt_depth = val;
1623 		else
1624 			goto err;
1625 	} else {
1626 		goto err;
1627 	}
1628 
1629 	ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1630 	if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1631 		stc->gpu_throt_level = val;
1632 	else
1633 		goto err;
1634 
1635 	return 0;
1636 
1637 err:
1638 	dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1639 		stc->name);
1640 	return -EINVAL;
1641 }
1642 
1643 /**
1644  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1645  * and register them as cooling devices.
1646  * @pdev: Pointer to platform_device struct
1647  */
1648 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1649 {
1650 	struct device *dev = &pdev->dev;
1651 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1652 	struct device_node *np_stc, *np_stcc;
1653 	const char *name;
1654 	int i;
1655 
1656 	for (i = 0; i < THROTTLE_SIZE; i++) {
1657 		ts->throt_cfgs[i].name = throt_names[i];
1658 		ts->throt_cfgs[i].id = i;
1659 		ts->throt_cfgs[i].init = false;
1660 	}
1661 
1662 	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1663 	if (!np_stc) {
1664 		dev_info(dev,
1665 			 "throttle-cfg: no throttle-cfgs - not enabling\n");
1666 		return;
1667 	}
1668 
1669 	for_each_child_of_node(np_stc, np_stcc) {
1670 		struct soctherm_throt_cfg *stc;
1671 		struct thermal_cooling_device *tcd;
1672 		int err;
1673 
1674 		name = np_stcc->name;
1675 		stc = find_throttle_cfg_by_name(ts, name);
1676 		if (!stc) {
1677 			dev_err(dev,
1678 				"throttle-cfg: could not find %s\n", name);
1679 			continue;
1680 		}
1681 
1682 		if (stc->init) {
1683 			dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1684 			of_node_put(np_stcc);
1685 			break;
1686 		}
1687 
1688 		err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1689 		if (err)
1690 			continue;
1691 
1692 		if (stc->id >= THROTTLE_OC1) {
1693 			soctherm_oc_cfg_parse(dev, np_stcc, stc);
1694 			stc->init = true;
1695 		} else {
1696 
1697 			tcd = thermal_of_cooling_device_register(np_stcc,
1698 							 (char *)name, ts,
1699 							 &throt_cooling_ops);
1700 			if (IS_ERR_OR_NULL(tcd)) {
1701 				dev_err(dev,
1702 					"throttle-cfg: %s: failed to register cooling device\n",
1703 					name);
1704 				continue;
1705 			}
1706 			stc->cdev = tcd;
1707 			stc->init = true;
1708 		}
1709 
1710 	}
1711 
1712 	of_node_put(np_stc);
1713 }
1714 
1715 /**
1716  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1717  * @ts: pointer to a struct tegra_soctherm
1718  * @level: describing the level LOW/MED/HIGH of throttling
1719  *
1720  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1721  * the M/N values desired for each level. This function does this.
1722  *
1723  * This function pre-programs the CCROC NV_THERM levels in terms of
1724  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1725  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1726  */
1727 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1728 {
1729 	u8 depth, dividend;
1730 	u32 r;
1731 
1732 	switch (level) {
1733 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1734 		depth = 50;
1735 		break;
1736 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1737 		depth = 75;
1738 		break;
1739 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1740 		depth = 80;
1741 		break;
1742 	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1743 		return;
1744 	default:
1745 		return;
1746 	}
1747 
1748 	dividend = THROT_DEPTH_DIVIDEND(depth);
1749 
1750 	/* setup PSKIP in ccroc nv_therm registers */
1751 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1752 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1753 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1754 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1755 
1756 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1757 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1758 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1759 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1760 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1761 }
1762 
1763 /**
1764  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1765  * @ts: pointer to a struct tegra_soctherm
1766  * @throt: the LIGHT/HEAVY of throttle event id
1767  *
1768  * Pulse skippers are used to throttle clock frequencies.  This
1769  * function programs the pulse skippers based on @throt and platform
1770  * data.  This function is used on SoCs which have CPU-local pulse
1771  * skipper control, such as T13x. It programs soctherm's interface to
1772  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1773  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1774  */
1775 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1776 					 enum soctherm_throttle_id throt)
1777 {
1778 	u32 r, throt_vect;
1779 
1780 	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1781 	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1782 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1783 		throt_vect = THROT_VECT_LOW;
1784 		break;
1785 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1786 		throt_vect = THROT_VECT_MED;
1787 		break;
1788 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1789 		throt_vect = THROT_VECT_HIGH;
1790 		break;
1791 	default:
1792 		throt_vect = THROT_VECT_NONE;
1793 		break;
1794 	}
1795 
1796 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1797 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1798 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1799 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1800 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1801 
1802 	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1803 	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1804 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1805 }
1806 
1807 /**
1808  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1809  * @ts: pointer to a struct tegra_soctherm
1810  * @throt: the LIGHT/HEAVY of throttle event id
1811  *
1812  * Pulse skippers are used to throttle clock frequencies.  This
1813  * function programs the pulse skippers based on @throt and platform
1814  * data.  This function is used for CPUs that have "remote" pulse
1815  * skipper control, e.g., the CPU pulse skipper is controlled by the
1816  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1817  * complex.)
1818  */
1819 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1820 			       enum soctherm_throttle_id throt)
1821 {
1822 	u32 r;
1823 	int depth;
1824 	u8 dividend;
1825 
1826 	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1827 	dividend = THROT_DEPTH_DIVIDEND(depth);
1828 
1829 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1830 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1831 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1832 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1833 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1834 
1835 	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1836 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1837 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1838 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1839 }
1840 
1841 /**
1842  * throttlectl_gpu_level_select() - selects throttling level for GPU
1843  * @ts: pointer to a struct tegra_soctherm
1844  * @throt: the LIGHT/HEAVY of throttle event id
1845  *
1846  * This function programs soctherm's interface to GK20a NV_THERM to select
1847  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1848  *
1849  * Return: boolean true if HW was programmed
1850  */
1851 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1852 					 enum soctherm_throttle_id throt)
1853 {
1854 	u32 r, level, throt_vect;
1855 
1856 	level = ts->throt_cfgs[throt].gpu_throt_level;
1857 	throt_vect = THROT_LEVEL_TO_DEPTH(level);
1858 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1859 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1860 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1861 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1862 }
1863 
1864 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1865 				      enum soctherm_throttle_id throt)
1866 {
1867 	u32 r;
1868 	struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1869 
1870 	if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1871 		return -EINVAL;
1872 
1873 	r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1874 	r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1875 	r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1876 	r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1877 	writel(r, ts->regs + ALARM_CFG(throt));
1878 	writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1879 	writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1880 	writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1881 	soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1882 
1883 	return 0;
1884 }
1885 
1886 /**
1887  * soctherm_throttle_program() - programs pulse skippers' configuration
1888  * @ts: pointer to a struct tegra_soctherm
1889  * @throt: the LIGHT/HEAVY of the throttle event id.
1890  *
1891  * Pulse skippers are used to throttle clock frequencies.
1892  * This function programs the pulse skippers.
1893  */
1894 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1895 				      enum soctherm_throttle_id throt)
1896 {
1897 	u32 r;
1898 	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1899 
1900 	if (!stc.init)
1901 		return;
1902 
1903 	if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1904 		return;
1905 
1906 	/* Setup PSKIP parameters */
1907 	if (ts->soc->use_ccroc)
1908 		throttlectl_cpu_level_select(ts, throt);
1909 	else
1910 		throttlectl_cpu_mn(ts, throt);
1911 
1912 	throttlectl_gpu_level_select(ts, throt);
1913 
1914 	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1915 	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1916 
1917 	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1918 	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1919 
1920 	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1921 	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1922 	if (r >= stc.priority)
1923 		return;
1924 	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1925 			 stc.priority);
1926 	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1927 }
1928 
1929 static void tegra_soctherm_throttle(struct device *dev)
1930 {
1931 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1932 	u32 v;
1933 	int i;
1934 
1935 	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1936 	if (ts->soc->use_ccroc) {
1937 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1938 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1939 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1940 	}
1941 
1942 	/* Thermal HW throttle programming */
1943 	for (i = 0; i < THROTTLE_SIZE; i++)
1944 		soctherm_throttle_program(ts, i);
1945 
1946 	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1947 	if (ts->soc->use_ccroc) {
1948 		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1949 
1950 		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1951 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1952 		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1953 	} else {
1954 		writel(v, ts->regs + THROT_GLOBAL_CFG);
1955 
1956 		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1957 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1958 		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1959 	}
1960 
1961 	/* initialize stats collection */
1962 	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1963 	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1964 	writel(v, ts->regs + THERMCTL_STATS_CTL);
1965 }
1966 
1967 static int soctherm_interrupts_init(struct platform_device *pdev,
1968 				    struct tegra_soctherm *tegra)
1969 {
1970 	struct device_node *np = pdev->dev.of_node;
1971 	int ret;
1972 
1973 	ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1974 	if (ret < 0) {
1975 		dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1976 		return ret;
1977 	}
1978 
1979 	tegra->thermal_irq = platform_get_irq(pdev, 0);
1980 	if (tegra->thermal_irq < 0) {
1981 		dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1982 		return 0;
1983 	}
1984 
1985 	tegra->edp_irq = platform_get_irq(pdev, 1);
1986 	if (tegra->edp_irq < 0) {
1987 		dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1988 		return 0;
1989 	}
1990 
1991 	ret = devm_request_threaded_irq(&pdev->dev,
1992 					tegra->thermal_irq,
1993 					soctherm_thermal_isr,
1994 					soctherm_thermal_isr_thread,
1995 					IRQF_ONESHOT,
1996 					dev_name(&pdev->dev),
1997 					tegra);
1998 	if (ret < 0) {
1999 		dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2000 		return ret;
2001 	}
2002 
2003 	ret = devm_request_threaded_irq(&pdev->dev,
2004 					tegra->edp_irq,
2005 					soctherm_edp_isr,
2006 					soctherm_edp_isr_thread,
2007 					IRQF_ONESHOT,
2008 					"soctherm_edp",
2009 					tegra);
2010 	if (ret < 0) {
2011 		dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2012 		return ret;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static void soctherm_init(struct platform_device *pdev)
2019 {
2020 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2021 	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2022 	int i;
2023 	u32 pdiv, hotspot;
2024 
2025 	/* Initialize raw sensors */
2026 	for (i = 0; i < tegra->soc->num_tsensors; ++i)
2027 		enable_tsensor(tegra, i);
2028 
2029 	/* program pdiv and hotspot offsets per THERM */
2030 	pdiv = readl(tegra->regs + SENSOR_PDIV);
2031 	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2032 	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2033 		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2034 				    ttgs[i]->pdiv);
2035 		/* hotspot offset from PLLX, doesn't need to configure PLLX */
2036 		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2037 			continue;
2038 		hotspot =  REG_SET_MASK(hotspot,
2039 					ttgs[i]->pllx_hotspot_mask,
2040 					ttgs[i]->pllx_hotspot_diff);
2041 	}
2042 	writel(pdiv, tegra->regs + SENSOR_PDIV);
2043 	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2044 
2045 	/* Configure hw throttle */
2046 	tegra_soctherm_throttle(&pdev->dev);
2047 }
2048 
2049 static const struct of_device_id tegra_soctherm_of_match[] = {
2050 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2051 	{
2052 		.compatible = "nvidia,tegra124-soctherm",
2053 		.data = &tegra124_soctherm,
2054 	},
2055 #endif
2056 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2057 	{
2058 		.compatible = "nvidia,tegra132-soctherm",
2059 		.data = &tegra132_soctherm,
2060 	},
2061 #endif
2062 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2063 	{
2064 		.compatible = "nvidia,tegra210-soctherm",
2065 		.data = &tegra210_soctherm,
2066 	},
2067 #endif
2068 	{ },
2069 };
2070 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2071 
2072 static int tegra_soctherm_probe(struct platform_device *pdev)
2073 {
2074 	const struct of_device_id *match;
2075 	struct tegra_soctherm *tegra;
2076 	struct thermal_zone_device *z;
2077 	struct tsensor_shared_calib shared_calib;
2078 	struct tegra_soctherm_soc *soc;
2079 	unsigned int i;
2080 	int err;
2081 
2082 	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2083 	if (!match)
2084 		return -ENODEV;
2085 
2086 	soc = (struct tegra_soctherm_soc *)match->data;
2087 	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2088 		return -EINVAL;
2089 
2090 	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2091 	if (!tegra)
2092 		return -ENOMEM;
2093 
2094 	mutex_init(&tegra->thermctl_lock);
2095 	dev_set_drvdata(&pdev->dev, tegra);
2096 
2097 	tegra->soc = soc;
2098 
2099 	tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2100 	if (IS_ERR(tegra->regs)) {
2101 		dev_err(&pdev->dev, "can't get soctherm registers");
2102 		return PTR_ERR(tegra->regs);
2103 	}
2104 
2105 	if (!tegra->soc->use_ccroc) {
2106 		tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2107 		if (IS_ERR(tegra->clk_regs)) {
2108 			dev_err(&pdev->dev, "can't get car clk registers");
2109 			return PTR_ERR(tegra->clk_regs);
2110 		}
2111 	} else {
2112 		tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2113 		if (IS_ERR(tegra->ccroc_regs)) {
2114 			dev_err(&pdev->dev, "can't get ccroc registers");
2115 			return PTR_ERR(tegra->ccroc_regs);
2116 		}
2117 	}
2118 
2119 	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2120 	if (IS_ERR(tegra->reset)) {
2121 		dev_err(&pdev->dev, "can't get soctherm reset\n");
2122 		return PTR_ERR(tegra->reset);
2123 	}
2124 
2125 	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2126 	if (IS_ERR(tegra->clock_tsensor)) {
2127 		dev_err(&pdev->dev, "can't get tsensor clock\n");
2128 		return PTR_ERR(tegra->clock_tsensor);
2129 	}
2130 
2131 	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2132 	if (IS_ERR(tegra->clock_soctherm)) {
2133 		dev_err(&pdev->dev, "can't get soctherm clock\n");
2134 		return PTR_ERR(tegra->clock_soctherm);
2135 	}
2136 
2137 	tegra->calib = devm_kcalloc(&pdev->dev,
2138 				    soc->num_tsensors, sizeof(u32),
2139 				    GFP_KERNEL);
2140 	if (!tegra->calib)
2141 		return -ENOMEM;
2142 
2143 	/* calculate shared calibration data */
2144 	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2145 	if (err)
2146 		return err;
2147 
2148 	/* calculate tsensor calibration data */
2149 	for (i = 0; i < soc->num_tsensors; ++i) {
2150 		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2151 					       &shared_calib,
2152 					       &tegra->calib[i]);
2153 		if (err)
2154 			return err;
2155 	}
2156 
2157 	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2158 					   soc->num_ttgs, sizeof(z),
2159 					   GFP_KERNEL);
2160 	if (!tegra->thermctl_tzs)
2161 		return -ENOMEM;
2162 
2163 	err = soctherm_clk_enable(pdev, true);
2164 	if (err)
2165 		return err;
2166 
2167 	soctherm_thermtrips_parse(pdev);
2168 
2169 	soctherm_init_hw_throt_cdev(pdev);
2170 
2171 	soctherm_init(pdev);
2172 
2173 	for (i = 0; i < soc->num_ttgs; ++i) {
2174 		struct tegra_thermctl_zone *zone =
2175 			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2176 		if (!zone) {
2177 			err = -ENOMEM;
2178 			goto disable_clocks;
2179 		}
2180 
2181 		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2182 		zone->dev = &pdev->dev;
2183 		zone->sg = soc->ttgs[i];
2184 		zone->ts = tegra;
2185 
2186 		z = devm_thermal_of_zone_register(&pdev->dev,
2187 						  soc->ttgs[i]->id, zone,
2188 						  &tegra_of_thermal_ops);
2189 		if (IS_ERR(z)) {
2190 			err = PTR_ERR(z);
2191 			dev_err(&pdev->dev, "failed to register sensor: %d\n",
2192 				err);
2193 			goto disable_clocks;
2194 		}
2195 
2196 		zone->tz = z;
2197 		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2198 
2199 		/* Configure hw trip points */
2200 		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2201 		if (err)
2202 			goto disable_clocks;
2203 	}
2204 
2205 	err = soctherm_interrupts_init(pdev, tegra);
2206 
2207 	soctherm_debug_init(pdev);
2208 
2209 	return 0;
2210 
2211 disable_clocks:
2212 	soctherm_clk_enable(pdev, false);
2213 
2214 	return err;
2215 }
2216 
2217 static void tegra_soctherm_remove(struct platform_device *pdev)
2218 {
2219 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2220 
2221 	debugfs_remove_recursive(tegra->debugfs_dir);
2222 
2223 	soctherm_clk_enable(pdev, false);
2224 }
2225 
2226 static int __maybe_unused soctherm_suspend(struct device *dev)
2227 {
2228 	struct platform_device *pdev = to_platform_device(dev);
2229 
2230 	soctherm_clk_enable(pdev, false);
2231 
2232 	return 0;
2233 }
2234 
2235 static int __maybe_unused soctherm_resume(struct device *dev)
2236 {
2237 	struct platform_device *pdev = to_platform_device(dev);
2238 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2239 	struct tegra_soctherm_soc *soc = tegra->soc;
2240 	int err, i;
2241 
2242 	err = soctherm_clk_enable(pdev, true);
2243 	if (err) {
2244 		dev_err(&pdev->dev,
2245 			"Resume failed: enable clocks failed\n");
2246 		return err;
2247 	}
2248 
2249 	soctherm_init(pdev);
2250 
2251 	for (i = 0; i < soc->num_ttgs; ++i) {
2252 		struct thermal_zone_device *tz;
2253 
2254 		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2255 		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2256 		if (err) {
2257 			dev_err(&pdev->dev,
2258 				"Resume failed: set hwtrips failed\n");
2259 			return err;
2260 		}
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2267 
2268 static struct platform_driver tegra_soctherm_driver = {
2269 	.probe = tegra_soctherm_probe,
2270 	.remove_new = tegra_soctherm_remove,
2271 	.driver = {
2272 		.name = "tegra_soctherm",
2273 		.pm = &tegra_soctherm_pm,
2274 		.of_match_table = tegra_soctherm_of_match,
2275 	},
2276 };
2277 module_platform_driver(tegra_soctherm_driver);
2278 
2279 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2280 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2281 MODULE_LICENSE("GPL v2");
2282