1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, 586 const struct thermal_trip *trip, int temp) 587 { 588 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 589 struct tegra_soctherm *ts = zone->ts; 590 const struct tegra_tsensor_group *sg = zone->sg; 591 struct device *dev = zone->dev; 592 593 if (!tz) 594 return -EINVAL; 595 596 if (trip->type == THERMAL_TRIP_CRITICAL) { 597 /* 598 * If thermtrips property is set in DT, 599 * doesn't need to program critical type trip to HW, 600 * if not, program critical trip to HW. 601 */ 602 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 603 return thermtrip_program(dev, sg, temp); 604 else 605 return 0; 606 607 } else if (trip->type == THERMAL_TRIP_HOT) { 608 int i; 609 610 for (i = 0; i < THROTTLE_SIZE; i++) { 611 struct thermal_cooling_device *cdev; 612 struct soctherm_throt_cfg *stc; 613 614 if (!ts->throt_cfgs[i].init) 615 continue; 616 617 cdev = ts->throt_cfgs[i].cdev; 618 if (thermal_trip_is_bound_to_cdev(tz, trip, cdev)) 619 stc = find_throttle_cfg_by_name(ts, cdev->type); 620 else 621 continue; 622 623 return throttrip_program(dev, sg, stc, temp); 624 } 625 } 626 627 return 0; 628 } 629 630 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 631 { 632 u32 r; 633 634 /* multiple zones could be handling and setting trips at once */ 635 mutex_lock(&zn->ts->thermctl_lock); 636 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 637 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 638 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 639 mutex_unlock(&zn->ts->thermctl_lock); 640 } 641 642 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 643 { 644 u32 r; 645 646 /* multiple zones could be handling and setting trips at once */ 647 mutex_lock(&zn->ts->thermctl_lock); 648 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 649 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 650 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 651 mutex_unlock(&zn->ts->thermctl_lock); 652 } 653 654 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi) 655 { 656 struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz); 657 u32 r; 658 659 thermal_irq_disable(zone); 660 661 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 662 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 663 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 664 665 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 666 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 667 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 668 669 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 670 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 671 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 672 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 673 674 thermal_irq_enable(zone); 675 676 return 0; 677 } 678 679 static const struct thermal_zone_device_ops tegra_of_thermal_ops = { 680 .get_temp = tegra_thermctl_get_temp, 681 .set_trip_temp = tegra_thermctl_set_trip_temp, 682 .set_trips = tegra_thermctl_set_trips, 683 }; 684 685 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp) 686 { 687 int i, ret; 688 struct thermal_trip trip; 689 690 for (i = 0; i < thermal_zone_get_num_trips(tz); i++) { 691 692 ret = thermal_zone_get_trip(tz, i, &trip); 693 if (ret) 694 return -EINVAL; 695 696 if (trip.type == THERMAL_TRIP_HOT) { 697 *trip_id = i; 698 return 0; 699 } 700 } 701 702 return -EINVAL; 703 } 704 705 /** 706 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 707 * @dev: struct device * of the SOC_THERM instance 708 * @sg: pointer to the sensor group to set the thermtrip temperature for 709 * @tz: struct thermal_zone_device * 710 * 711 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 712 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 713 * type trip_temp 714 * from thermal zone. 715 * After they have been configured, THERMTRIP or THROTTLE will take 716 * action when the configured SoC thermal sensor group reaches a 717 * certain temperature. 718 * 719 * Return: 0 upon success, or a negative error code on failure. 720 * "Success" does not mean that trips was enabled; it could also 721 * mean that no node was found in DT. 722 * THERMTRIP has been enabled successfully when a message similar to 723 * this one appears on the serial console: 724 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 725 * THROTTLE has been enabled successfully when a message similar to 726 * this one appears on the serial console: 727 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 728 */ 729 static int tegra_soctherm_set_hwtrips(struct device *dev, 730 const struct tegra_tsensor_group *sg, 731 struct thermal_zone_device *tz) 732 { 733 struct tegra_soctherm *ts = dev_get_drvdata(dev); 734 struct soctherm_throt_cfg *stc; 735 int i, trip, temperature, ret; 736 737 /* Get thermtrips. If missing, try to get critical trips. */ 738 temperature = tsensor_group_thermtrip_get(ts, sg->id); 739 if (min_low_temp == temperature) 740 if (thermal_zone_get_crit_temp(tz, &temperature)) 741 temperature = max_high_temp; 742 743 ret = thermtrip_program(dev, sg, temperature); 744 if (ret) { 745 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 746 return ret; 747 } 748 749 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 750 sg->name, temperature); 751 752 ret = get_hot_temp(tz, &trip, &temperature); 753 if (ret) { 754 dev_info(dev, "throttrip: %s: missing hot temperature\n", 755 sg->name); 756 return 0; 757 } 758 759 for (i = 0; i < THROTTLE_OC1; i++) { 760 struct thermal_cooling_device *cdev; 761 762 if (!ts->throt_cfgs[i].init) 763 continue; 764 765 cdev = ts->throt_cfgs[i].cdev; 766 if (get_thermal_instance(tz, cdev, trip)) 767 stc = find_throttle_cfg_by_name(ts, cdev->type); 768 else 769 continue; 770 771 ret = throttrip_program(dev, sg, stc, temperature); 772 if (ret) { 773 dev_err(dev, "throttrip: %s: error during enable\n", 774 sg->name); 775 return ret; 776 } 777 778 dev_info(dev, 779 "throttrip: will throttle when %s reaches %d mC\n", 780 sg->name, temperature); 781 break; 782 } 783 784 if (i == THROTTLE_SIZE) 785 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 786 sg->name); 787 788 return 0; 789 } 790 791 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 792 { 793 struct tegra_soctherm *ts = dev_id; 794 u32 r; 795 796 /* Case for no lock: 797 * Although interrupts are enabled in set_trips, there is still no need 798 * to lock here because the interrupts are disabled before programming 799 * new trip points. Hence there cant be a interrupt on the same sensor. 800 * An interrupt can however occur on a sensor while trips are being 801 * programmed on a different one. This beign a LEVEL interrupt won't 802 * cause a new interrupt but this is taken care of by the re-reading of 803 * the STATUS register in the thread function. 804 */ 805 r = readl(ts->regs + THERMCTL_INTR_STATUS); 806 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 807 808 return IRQ_WAKE_THREAD; 809 } 810 811 /** 812 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 813 * @irq: The interrupt number being requested; not used 814 * @dev_id: Opaque pointer to tegra_soctherm; 815 * 816 * Clears the interrupt status register if there are expected 817 * interrupt bits set. 818 * The interrupt(s) are then handled by updating the corresponding 819 * thermal zones. 820 * 821 * An error is logged if any unexpected interrupt bits are set. 822 * 823 * Disabled interrupts are re-enabled. 824 * 825 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 826 * is needed. 827 */ 828 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 829 { 830 struct tegra_soctherm *ts = dev_id; 831 struct thermal_zone_device *tz; 832 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 833 834 st = readl(ts->regs + THERMCTL_INTR_STATUS); 835 836 /* deliberately clear expected interrupts handled in SW */ 837 cp |= st & TH_INTR_CD0_MASK; 838 cp |= st & TH_INTR_CU0_MASK; 839 840 gp |= st & TH_INTR_GD0_MASK; 841 gp |= st & TH_INTR_GU0_MASK; 842 843 pl |= st & TH_INTR_PD0_MASK; 844 pl |= st & TH_INTR_PU0_MASK; 845 846 me |= st & TH_INTR_MD0_MASK; 847 me |= st & TH_INTR_MU0_MASK; 848 849 ex |= cp | gp | pl | me; 850 if (ex) { 851 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 852 st &= ~ex; 853 854 if (cp) { 855 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 856 thermal_zone_device_update(tz, 857 THERMAL_EVENT_UNSPECIFIED); 858 } 859 860 if (gp) { 861 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 862 thermal_zone_device_update(tz, 863 THERMAL_EVENT_UNSPECIFIED); 864 } 865 866 if (pl) { 867 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 868 thermal_zone_device_update(tz, 869 THERMAL_EVENT_UNSPECIFIED); 870 } 871 872 if (me) { 873 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 874 thermal_zone_device_update(tz, 875 THERMAL_EVENT_UNSPECIFIED); 876 } 877 } 878 879 /* deliberately ignore expected interrupts NOT handled in SW */ 880 ex |= TH_INTR_IGNORE_MASK; 881 st &= ~ex; 882 883 if (st) { 884 /* Whine about any other unexpected INTR bits still set */ 885 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 886 writel(st, ts->regs + THERMCTL_INTR_STATUS); 887 } 888 889 return IRQ_HANDLED; 890 } 891 892 /** 893 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 894 * @ts: pointer to a struct tegra_soctherm 895 * @alarm: The soctherm throttle id 896 * @enable: Flag indicating enable the soctherm over-current 897 * interrupt or disable it 898 * 899 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 900 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 901 */ 902 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 903 enum soctherm_throttle_id alarm, 904 bool enable) 905 { 906 u32 r; 907 908 if (!enable) 909 return; 910 911 r = readl(ts->regs + OC_INTR_ENABLE); 912 switch (alarm) { 913 case THROTTLE_OC1: 914 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 915 break; 916 case THROTTLE_OC2: 917 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 918 break; 919 case THROTTLE_OC3: 920 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 921 break; 922 case THROTTLE_OC4: 923 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 924 break; 925 default: 926 r = 0; 927 break; 928 } 929 writel(r, ts->regs + OC_INTR_ENABLE); 930 } 931 932 /** 933 * soctherm_handle_alarm() - Handles soctherm alarms 934 * @alarm: The soctherm throttle id 935 * 936 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 937 * a warning or informative message. 938 * 939 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 940 */ 941 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 942 { 943 int rv = -EINVAL; 944 945 switch (alarm) { 946 case THROTTLE_OC1: 947 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 948 rv = 0; 949 break; 950 951 case THROTTLE_OC2: 952 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 953 rv = 0; 954 break; 955 956 case THROTTLE_OC3: 957 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 958 rv = 0; 959 break; 960 961 case THROTTLE_OC4: 962 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 963 rv = 0; 964 break; 965 966 default: 967 break; 968 } 969 970 if (rv) 971 pr_err("soctherm: ERROR in handling %s alarm\n", 972 throt_names[alarm]); 973 974 return rv; 975 } 976 977 /** 978 * soctherm_edp_isr_thread() - log an over-current interrupt request 979 * @irq: OC irq number. Currently not being used. See description 980 * @arg: a void pointer for callback, currently not being used 981 * 982 * Over-current events are handled in hardware. This function is called to log 983 * and handle any OC events that happened. Additionally, it checks every 984 * over-current interrupt registers for registers are set but 985 * was not expected (i.e. any discrepancy in interrupt status) by the function, 986 * the discrepancy will logged. 987 * 988 * Return: %IRQ_HANDLED 989 */ 990 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 991 { 992 struct tegra_soctherm *ts = arg; 993 u32 st, ex, oc1, oc2, oc3, oc4; 994 995 st = readl(ts->regs + OC_INTR_STATUS); 996 997 /* deliberately clear expected interrupts handled in SW */ 998 oc1 = st & OC_INTR_OC1_MASK; 999 oc2 = st & OC_INTR_OC2_MASK; 1000 oc3 = st & OC_INTR_OC3_MASK; 1001 oc4 = st & OC_INTR_OC4_MASK; 1002 ex = oc1 | oc2 | oc3 | oc4; 1003 1004 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1005 if (ex) { 1006 writel(st, ts->regs + OC_INTR_STATUS); 1007 st &= ~ex; 1008 1009 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1010 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1011 1012 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1013 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1014 1015 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1016 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1017 1018 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1019 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1020 1021 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1022 handle_nested_irq( 1023 irq_find_mapping(soc_irq_cdata.domain, 0)); 1024 1025 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1026 handle_nested_irq( 1027 irq_find_mapping(soc_irq_cdata.domain, 1)); 1028 1029 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1030 handle_nested_irq( 1031 irq_find_mapping(soc_irq_cdata.domain, 2)); 1032 1033 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1034 handle_nested_irq( 1035 irq_find_mapping(soc_irq_cdata.domain, 3)); 1036 } 1037 1038 if (st) { 1039 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1040 writel(st, ts->regs + OC_INTR_STATUS); 1041 } 1042 1043 return IRQ_HANDLED; 1044 } 1045 1046 /** 1047 * soctherm_edp_isr() - Disables any active interrupts 1048 * @irq: The interrupt request number 1049 * @arg: Opaque pointer to an argument 1050 * 1051 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1052 * masking any asserted interrupts. Doing this prevents the same interrupts 1053 * from triggering this isr repeatedly. The thread woken by this isr will 1054 * handle asserted interrupts and subsequently unmask/re-enable them. 1055 * 1056 * The OC_INTR_DISABLE register indicates which OC interrupts 1057 * have been disabled. 1058 * 1059 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1060 */ 1061 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1062 { 1063 struct tegra_soctherm *ts = arg; 1064 u32 r; 1065 1066 if (!ts) 1067 return IRQ_NONE; 1068 1069 r = readl(ts->regs + OC_INTR_STATUS); 1070 writel(r, ts->regs + OC_INTR_DISABLE); 1071 1072 return IRQ_WAKE_THREAD; 1073 } 1074 1075 /** 1076 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1077 * @data: Interrupt request data 1078 * 1079 * Looks up the chip data from @data and locks the mutex associated with 1080 * a particular over-current interrupt request. 1081 */ 1082 static void soctherm_oc_irq_lock(struct irq_data *data) 1083 { 1084 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1085 1086 mutex_lock(&d->irq_lock); 1087 } 1088 1089 /** 1090 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1091 * @data: Interrupt request data 1092 * 1093 * Looks up the interrupt request data @data and unlocks the mutex associated 1094 * with a particular over-current interrupt request. 1095 */ 1096 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1097 { 1098 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1099 1100 mutex_unlock(&d->irq_lock); 1101 } 1102 1103 /** 1104 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1105 * @data: irq_data structure of the chip 1106 * 1107 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1108 * to respond to over-current interrupts. 1109 * 1110 */ 1111 static void soctherm_oc_irq_enable(struct irq_data *data) 1112 { 1113 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1114 1115 d->irq_enable |= BIT(data->hwirq); 1116 } 1117 1118 /** 1119 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1120 * @data: The interrupt request information 1121 * 1122 * Clears the interrupt request enable bit of the overcurrent 1123 * interrupt request chip data. 1124 * 1125 * Return: Nothing is returned (void) 1126 */ 1127 static void soctherm_oc_irq_disable(struct irq_data *data) 1128 { 1129 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1130 1131 d->irq_enable &= ~BIT(data->hwirq); 1132 } 1133 1134 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1135 { 1136 return 0; 1137 } 1138 1139 /** 1140 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1141 * @h: Interrupt request domain 1142 * @virq: Virtual interrupt request number 1143 * @hw: Hardware interrupt request number 1144 * 1145 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1146 * interrupt request is called, the irq_domain takes the request's virtual 1147 * request number (much like a virtual memory address) and maps it to a 1148 * physical hardware request number. 1149 * 1150 * When a mapping doesn't already exist for a virtual request number, the 1151 * irq_domain calls this function to associate the virtual request number with 1152 * a hardware request number. 1153 * 1154 * Return: 0 1155 */ 1156 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1157 irq_hw_number_t hw) 1158 { 1159 struct soctherm_oc_irq_chip_data *data = h->host_data; 1160 1161 irq_set_chip_data(virq, data); 1162 irq_set_chip(virq, &data->irq_chip); 1163 irq_set_nested_thread(virq, 1); 1164 return 0; 1165 } 1166 1167 /** 1168 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1169 * @d: Interrupt request domain 1170 * @ctrlr: Controller device tree node 1171 * @intspec: Array of u32s from DTs "interrupt" property 1172 * @intsize: Number of values inside the intspec array 1173 * @out_hwirq: HW IRQ value associated with this interrupt 1174 * @out_type: The IRQ SENSE type for this interrupt. 1175 * 1176 * This Device Tree IRQ specifier translation function will translate a 1177 * specific "interrupt" as defined by 2 DT values where the cell values map 1178 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1179 * number, this function will subtract 1 from the value listed in DT. 1180 * 1181 * Return: 0 1182 */ 1183 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1184 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1185 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1186 { 1187 if (WARN_ON(intsize < 2)) 1188 return -EINVAL; 1189 1190 /* 1191 * The HW value is 1 index less than the DT IRQ values. 1192 * i.e. OC4 goes to HW index 3. 1193 */ 1194 *out_hwirq = intspec[0] - 1; 1195 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1196 return 0; 1197 } 1198 1199 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1200 .map = soctherm_oc_irq_map, 1201 .xlate = soctherm_irq_domain_xlate_twocell, 1202 }; 1203 1204 /** 1205 * soctherm_oc_int_init() - Initial enabling of the over 1206 * current interrupts 1207 * @np: The devicetree node for soctherm 1208 * @num_irqs: The number of new interrupt requests 1209 * 1210 * Sets the over current interrupt request chip data 1211 * 1212 * Return: 0 on success or if overcurrent interrupts are not enabled, 1213 * -ENOMEM (out of memory), or irq_base if the function failed to 1214 * allocate the irqs 1215 */ 1216 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1217 { 1218 if (!num_irqs) { 1219 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1220 return 0; 1221 } 1222 1223 mutex_init(&soc_irq_cdata.irq_lock); 1224 soc_irq_cdata.irq_enable = 0; 1225 1226 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1227 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1228 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1229 soctherm_oc_irq_sync_unlock; 1230 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1231 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1232 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1233 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1234 1235 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1236 &soctherm_oc_domain_ops, 1237 &soc_irq_cdata); 1238 1239 if (!soc_irq_cdata.domain) { 1240 pr_err("%s: Failed to create IRQ domain\n", __func__); 1241 return -ENOMEM; 1242 } 1243 1244 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1245 return 0; 1246 } 1247 1248 #ifdef CONFIG_DEBUG_FS 1249 static int regs_show(struct seq_file *s, void *data) 1250 { 1251 struct platform_device *pdev = s->private; 1252 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1253 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1254 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1255 u32 r, state; 1256 int i, level; 1257 1258 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1259 1260 for (i = 0; i < ts->soc->num_tsensors; i++) { 1261 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1262 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1263 1264 seq_printf(s, "%s: ", tsensors[i].name); 1265 seq_printf(s, "En(%d) ", state); 1266 1267 if (!state) { 1268 seq_puts(s, "\n"); 1269 continue; 1270 } 1271 1272 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1273 seq_printf(s, "tiddq(%d) ", state); 1274 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1275 seq_printf(s, "ten_count(%d) ", state); 1276 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1277 seq_printf(s, "tsample(%d) ", state + 1); 1278 1279 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1280 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1281 seq_printf(s, "Temp(%d/", state); 1282 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1283 seq_printf(s, "%d) ", translate_temp(state)); 1284 1285 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1286 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1287 seq_printf(s, "Capture(%d/", state); 1288 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1289 seq_printf(s, "%d) ", state); 1290 1291 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1292 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1293 seq_printf(s, "Stop(%d) ", state); 1294 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1295 seq_printf(s, "Tall(%d) ", state); 1296 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1297 seq_printf(s, "Over(%d/", state); 1298 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1299 seq_printf(s, "%d/", state); 1300 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1301 seq_printf(s, "%d) ", state); 1302 1303 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1304 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1305 seq_printf(s, "Therm_A/B(%d/", state); 1306 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1307 seq_printf(s, "%d)\n", (s16)state); 1308 } 1309 1310 r = readl(ts->regs + SENSOR_PDIV); 1311 seq_printf(s, "PDIV: 0x%x\n", r); 1312 1313 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1314 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1315 1316 seq_puts(s, "\n"); 1317 seq_puts(s, "-----SOC_THERM-----\n"); 1318 1319 r = readl(ts->regs + SENSOR_TEMP1); 1320 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1321 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1322 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1323 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1324 r = readl(ts->regs + SENSOR_TEMP2); 1325 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1326 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1327 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1328 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1329 1330 for (i = 0; i < ts->soc->num_ttgs; i++) { 1331 seq_printf(s, "%s:\n", ttgs[i]->name); 1332 for (level = 0; level < 4; level++) { 1333 s32 v; 1334 u32 mask; 1335 u16 off = ttgs[i]->thermctl_lvl0_offset; 1336 1337 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1338 1339 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1340 state = REG_GET_MASK(r, mask); 1341 v = sign_extend32(state, ts->soc->bptt - 1); 1342 v *= ts->soc->thresh_grain; 1343 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1344 1345 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1346 state = REG_GET_MASK(r, mask); 1347 v = sign_extend32(state, ts->soc->bptt - 1); 1348 v *= ts->soc->thresh_grain; 1349 seq_printf(s, "%d ) ", v); 1350 1351 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1352 state = REG_GET_MASK(r, mask); 1353 seq_printf(s, "En(%d) ", state); 1354 1355 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1356 state = REG_GET_MASK(r, mask); 1357 seq_puts(s, "CPU Throt"); 1358 if (!state) 1359 seq_printf(s, "(%s) ", "none"); 1360 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1361 seq_printf(s, "(%s) ", "L"); 1362 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1363 seq_printf(s, "(%s) ", "H"); 1364 else 1365 seq_printf(s, "(%s) ", "H+L"); 1366 1367 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1368 state = REG_GET_MASK(r, mask); 1369 seq_puts(s, "GPU Throt"); 1370 if (!state) 1371 seq_printf(s, "(%s) ", "none"); 1372 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1373 seq_printf(s, "(%s) ", "L"); 1374 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1375 seq_printf(s, "(%s) ", "H"); 1376 else 1377 seq_printf(s, "(%s) ", "H+L"); 1378 1379 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1380 state = REG_GET_MASK(r, mask); 1381 seq_printf(s, "Status(%s)\n", 1382 state == 0 ? "LO" : 1383 state == 1 ? "In" : 1384 state == 2 ? "Res" : "HI"); 1385 } 1386 } 1387 1388 r = readl(ts->regs + THERMCTL_STATS_CTL); 1389 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1390 r & STATS_CTL_EN_UP ? "En" : "--", 1391 r & STATS_CTL_EN_DN ? "En" : "--"); 1392 1393 for (level = 0; level < 4; level++) { 1394 u16 off; 1395 1396 off = THERMCTL_LVL0_UP_STATS; 1397 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1398 seq_printf(s, " Level_%d Up(%d) ", level, r); 1399 1400 off = THERMCTL_LVL0_DN_STATS; 1401 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1402 seq_printf(s, "Dn(%d)\n", r); 1403 } 1404 1405 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1406 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1407 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1408 for (i = 0; i < ts->soc->num_ttgs; i++) { 1409 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1410 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1411 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1412 state *= ts->soc->thresh_grain; 1413 seq_printf(s, "Thresh(%d)\n", state); 1414 } 1415 1416 r = readl(ts->regs + THROT_GLOBAL_CFG); 1417 seq_puts(s, "\n"); 1418 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1419 1420 seq_puts(s, "---------------------------------------------------\n"); 1421 r = readl(ts->regs + THROT_STATUS); 1422 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1423 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1424 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1425 seq_printf(s, "state(%d) ", state); 1426 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1427 seq_printf(s, "enabled(%d)\n", state); 1428 1429 r = readl(ts->regs + CPU_PSKIP_STATUS); 1430 if (ts->soc->use_ccroc) { 1431 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1432 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1433 } else { 1434 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1435 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1436 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1437 seq_printf(s, "N(%d) ", state); 1438 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1439 seq_printf(s, "enabled(%d)\n", state); 1440 } 1441 1442 return 0; 1443 } 1444 1445 DEFINE_SHOW_ATTRIBUTE(regs); 1446 1447 static void soctherm_debug_init(struct platform_device *pdev) 1448 { 1449 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1450 struct dentry *root; 1451 1452 root = debugfs_create_dir("soctherm", NULL); 1453 1454 tegra->debugfs_dir = root; 1455 1456 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1457 } 1458 #else 1459 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1460 #endif 1461 1462 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1463 { 1464 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1465 int err; 1466 1467 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1468 return -EINVAL; 1469 1470 reset_control_assert(tegra->reset); 1471 1472 if (enable) { 1473 err = clk_prepare_enable(tegra->clock_soctherm); 1474 if (err) { 1475 reset_control_deassert(tegra->reset); 1476 return err; 1477 } 1478 1479 err = clk_prepare_enable(tegra->clock_tsensor); 1480 if (err) { 1481 clk_disable_unprepare(tegra->clock_soctherm); 1482 reset_control_deassert(tegra->reset); 1483 return err; 1484 } 1485 } else { 1486 clk_disable_unprepare(tegra->clock_tsensor); 1487 clk_disable_unprepare(tegra->clock_soctherm); 1488 } 1489 1490 reset_control_deassert(tegra->reset); 1491 1492 return 0; 1493 } 1494 1495 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1496 unsigned long *max_state) 1497 { 1498 *max_state = 1; 1499 return 0; 1500 } 1501 1502 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1503 unsigned long *cur_state) 1504 { 1505 struct tegra_soctherm *ts = cdev->devdata; 1506 u32 r; 1507 1508 r = readl(ts->regs + THROT_STATUS); 1509 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1510 *cur_state = 1; 1511 else 1512 *cur_state = 0; 1513 1514 return 0; 1515 } 1516 1517 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1518 unsigned long cur_state) 1519 { 1520 return 0; 1521 } 1522 1523 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1524 .get_max_state = throt_get_cdev_max_state, 1525 .get_cur_state = throt_get_cdev_cur_state, 1526 .set_cur_state = throt_set_cdev_state, 1527 }; 1528 1529 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1530 { 1531 struct device *dev = &pdev->dev; 1532 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1533 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1534 const int max_num_prop = ts->soc->num_ttgs * 2; 1535 u32 *tlb; 1536 int i, j, n, ret; 1537 1538 if (!tt) 1539 return -ENOMEM; 1540 1541 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1542 if (n <= 0) { 1543 dev_info(dev, 1544 "missing thermtrips, will use critical trips as shut down temp\n"); 1545 return n; 1546 } 1547 1548 n = min(max_num_prop, n); 1549 1550 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1551 if (!tlb) 1552 return -ENOMEM; 1553 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1554 tlb, n); 1555 if (ret) { 1556 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1557 return ret; 1558 } 1559 1560 i = 0; 1561 for (j = 0; j < n; j = j + 2) { 1562 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1563 continue; 1564 1565 tt[i].id = tlb[j]; 1566 tt[i].temp = tlb[j + 1]; 1567 i++; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static void soctherm_oc_cfg_parse(struct device *dev, 1574 struct device_node *np_oc, 1575 struct soctherm_throt_cfg *stc) 1576 { 1577 u32 val; 1578 1579 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1580 stc->oc_cfg.active_low = 1; 1581 else 1582 stc->oc_cfg.active_low = 0; 1583 1584 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1585 stc->oc_cfg.intr_en = 1; 1586 stc->oc_cfg.alarm_cnt_thresh = val; 1587 } 1588 1589 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1590 stc->oc_cfg.throt_period = val; 1591 1592 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1593 stc->oc_cfg.alarm_filter = val; 1594 1595 /* BRIEF throttling by default, do not support STICKY */ 1596 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1597 } 1598 1599 static int soctherm_throt_cfg_parse(struct device *dev, 1600 struct device_node *np, 1601 struct soctherm_throt_cfg *stc) 1602 { 1603 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1604 int ret; 1605 u32 val; 1606 1607 ret = of_property_read_u32(np, "nvidia,priority", &val); 1608 if (ret) { 1609 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1610 return -EINVAL; 1611 } 1612 stc->priority = val; 1613 1614 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1615 "nvidia,cpu-throt-level" : 1616 "nvidia,cpu-throt-percent", &val); 1617 if (!ret) { 1618 if (ts->soc->use_ccroc && 1619 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1620 stc->cpu_throt_level = val; 1621 else if (!ts->soc->use_ccroc && val <= 100) 1622 stc->cpu_throt_depth = val; 1623 else 1624 goto err; 1625 } else { 1626 goto err; 1627 } 1628 1629 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1630 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1631 stc->gpu_throt_level = val; 1632 else 1633 goto err; 1634 1635 return 0; 1636 1637 err: 1638 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1639 stc->name); 1640 return -EINVAL; 1641 } 1642 1643 /** 1644 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1645 * and register them as cooling devices. 1646 * @pdev: Pointer to platform_device struct 1647 */ 1648 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1649 { 1650 struct device *dev = &pdev->dev; 1651 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1652 struct device_node *np_stc, *np_stcc; 1653 const char *name; 1654 int i; 1655 1656 for (i = 0; i < THROTTLE_SIZE; i++) { 1657 ts->throt_cfgs[i].name = throt_names[i]; 1658 ts->throt_cfgs[i].id = i; 1659 ts->throt_cfgs[i].init = false; 1660 } 1661 1662 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1663 if (!np_stc) { 1664 dev_info(dev, 1665 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1666 return; 1667 } 1668 1669 for_each_child_of_node(np_stc, np_stcc) { 1670 struct soctherm_throt_cfg *stc; 1671 struct thermal_cooling_device *tcd; 1672 int err; 1673 1674 name = np_stcc->name; 1675 stc = find_throttle_cfg_by_name(ts, name); 1676 if (!stc) { 1677 dev_err(dev, 1678 "throttle-cfg: could not find %s\n", name); 1679 continue; 1680 } 1681 1682 if (stc->init) { 1683 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1684 of_node_put(np_stcc); 1685 break; 1686 } 1687 1688 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1689 if (err) 1690 continue; 1691 1692 if (stc->id >= THROTTLE_OC1) { 1693 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1694 stc->init = true; 1695 } else { 1696 1697 tcd = thermal_of_cooling_device_register(np_stcc, 1698 (char *)name, ts, 1699 &throt_cooling_ops); 1700 if (IS_ERR_OR_NULL(tcd)) { 1701 dev_err(dev, 1702 "throttle-cfg: %s: failed to register cooling device\n", 1703 name); 1704 continue; 1705 } 1706 stc->cdev = tcd; 1707 stc->init = true; 1708 } 1709 1710 } 1711 1712 of_node_put(np_stc); 1713 } 1714 1715 /** 1716 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1717 * @ts: pointer to a struct tegra_soctherm 1718 * @level: describing the level LOW/MED/HIGH of throttling 1719 * 1720 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1721 * the M/N values desired for each level. This function does this. 1722 * 1723 * This function pre-programs the CCROC NV_THERM levels in terms of 1724 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1725 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1726 */ 1727 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1728 { 1729 u8 depth, dividend; 1730 u32 r; 1731 1732 switch (level) { 1733 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1734 depth = 50; 1735 break; 1736 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1737 depth = 75; 1738 break; 1739 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1740 depth = 80; 1741 break; 1742 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1743 return; 1744 default: 1745 return; 1746 } 1747 1748 dividend = THROT_DEPTH_DIVIDEND(depth); 1749 1750 /* setup PSKIP in ccroc nv_therm registers */ 1751 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1752 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1753 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1754 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1755 1756 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1757 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1758 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1759 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1760 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1761 } 1762 1763 /** 1764 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1765 * @ts: pointer to a struct tegra_soctherm 1766 * @throt: the LIGHT/HEAVY of throttle event id 1767 * 1768 * Pulse skippers are used to throttle clock frequencies. This 1769 * function programs the pulse skippers based on @throt and platform 1770 * data. This function is used on SoCs which have CPU-local pulse 1771 * skipper control, such as T13x. It programs soctherm's interface to 1772 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1773 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1774 */ 1775 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1776 enum soctherm_throttle_id throt) 1777 { 1778 u32 r, throt_vect; 1779 1780 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1781 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1782 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1783 throt_vect = THROT_VECT_LOW; 1784 break; 1785 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1786 throt_vect = THROT_VECT_MED; 1787 break; 1788 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1789 throt_vect = THROT_VECT_HIGH; 1790 break; 1791 default: 1792 throt_vect = THROT_VECT_NONE; 1793 break; 1794 } 1795 1796 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1797 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1798 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1799 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1800 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1801 1802 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1803 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1804 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1805 } 1806 1807 /** 1808 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1809 * @ts: pointer to a struct tegra_soctherm 1810 * @throt: the LIGHT/HEAVY of throttle event id 1811 * 1812 * Pulse skippers are used to throttle clock frequencies. This 1813 * function programs the pulse skippers based on @throt and platform 1814 * data. This function is used for CPUs that have "remote" pulse 1815 * skipper control, e.g., the CPU pulse skipper is controlled by the 1816 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1817 * complex.) 1818 */ 1819 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1820 enum soctherm_throttle_id throt) 1821 { 1822 u32 r; 1823 int depth; 1824 u8 dividend; 1825 1826 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1827 dividend = THROT_DEPTH_DIVIDEND(depth); 1828 1829 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1830 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1831 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1832 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1833 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1834 1835 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1836 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1837 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1838 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1839 } 1840 1841 /** 1842 * throttlectl_gpu_level_select() - selects throttling level for GPU 1843 * @ts: pointer to a struct tegra_soctherm 1844 * @throt: the LIGHT/HEAVY of throttle event id 1845 * 1846 * This function programs soctherm's interface to GK20a NV_THERM to select 1847 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1848 * 1849 * Return: boolean true if HW was programmed 1850 */ 1851 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1852 enum soctherm_throttle_id throt) 1853 { 1854 u32 r, level, throt_vect; 1855 1856 level = ts->throt_cfgs[throt].gpu_throt_level; 1857 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1858 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1859 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1860 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1861 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1862 } 1863 1864 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1865 enum soctherm_throttle_id throt) 1866 { 1867 u32 r; 1868 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1869 1870 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1871 return -EINVAL; 1872 1873 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1874 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1875 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1876 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1877 writel(r, ts->regs + ALARM_CFG(throt)); 1878 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1879 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1880 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1881 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1882 1883 return 0; 1884 } 1885 1886 /** 1887 * soctherm_throttle_program() - programs pulse skippers' configuration 1888 * @ts: pointer to a struct tegra_soctherm 1889 * @throt: the LIGHT/HEAVY of the throttle event id. 1890 * 1891 * Pulse skippers are used to throttle clock frequencies. 1892 * This function programs the pulse skippers. 1893 */ 1894 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1895 enum soctherm_throttle_id throt) 1896 { 1897 u32 r; 1898 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1899 1900 if (!stc.init) 1901 return; 1902 1903 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1904 return; 1905 1906 /* Setup PSKIP parameters */ 1907 if (ts->soc->use_ccroc) 1908 throttlectl_cpu_level_select(ts, throt); 1909 else 1910 throttlectl_cpu_mn(ts, throt); 1911 1912 throttlectl_gpu_level_select(ts, throt); 1913 1914 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1915 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1916 1917 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1918 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1919 1920 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1921 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1922 if (r >= stc.priority) 1923 return; 1924 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1925 stc.priority); 1926 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1927 } 1928 1929 static void tegra_soctherm_throttle(struct device *dev) 1930 { 1931 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1932 u32 v; 1933 int i; 1934 1935 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1936 if (ts->soc->use_ccroc) { 1937 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1938 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1939 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1940 } 1941 1942 /* Thermal HW throttle programming */ 1943 for (i = 0; i < THROTTLE_SIZE; i++) 1944 soctherm_throttle_program(ts, i); 1945 1946 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1947 if (ts->soc->use_ccroc) { 1948 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1949 1950 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1951 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1952 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1953 } else { 1954 writel(v, ts->regs + THROT_GLOBAL_CFG); 1955 1956 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1957 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1958 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1959 } 1960 1961 /* initialize stats collection */ 1962 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1963 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1964 writel(v, ts->regs + THERMCTL_STATS_CTL); 1965 } 1966 1967 static int soctherm_interrupts_init(struct platform_device *pdev, 1968 struct tegra_soctherm *tegra) 1969 { 1970 struct device_node *np = pdev->dev.of_node; 1971 int ret; 1972 1973 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 1974 if (ret < 0) { 1975 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 1976 return ret; 1977 } 1978 1979 tegra->thermal_irq = platform_get_irq(pdev, 0); 1980 if (tegra->thermal_irq < 0) { 1981 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 1982 return 0; 1983 } 1984 1985 tegra->edp_irq = platform_get_irq(pdev, 1); 1986 if (tegra->edp_irq < 0) { 1987 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 1988 return 0; 1989 } 1990 1991 ret = devm_request_threaded_irq(&pdev->dev, 1992 tegra->thermal_irq, 1993 soctherm_thermal_isr, 1994 soctherm_thermal_isr_thread, 1995 IRQF_ONESHOT, 1996 dev_name(&pdev->dev), 1997 tegra); 1998 if (ret < 0) { 1999 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2000 return ret; 2001 } 2002 2003 ret = devm_request_threaded_irq(&pdev->dev, 2004 tegra->edp_irq, 2005 soctherm_edp_isr, 2006 soctherm_edp_isr_thread, 2007 IRQF_ONESHOT, 2008 "soctherm_edp", 2009 tegra); 2010 if (ret < 0) { 2011 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2012 return ret; 2013 } 2014 2015 return 0; 2016 } 2017 2018 static void soctherm_init(struct platform_device *pdev) 2019 { 2020 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2021 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2022 int i; 2023 u32 pdiv, hotspot; 2024 2025 /* Initialize raw sensors */ 2026 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2027 enable_tsensor(tegra, i); 2028 2029 /* program pdiv and hotspot offsets per THERM */ 2030 pdiv = readl(tegra->regs + SENSOR_PDIV); 2031 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2032 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2033 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2034 ttgs[i]->pdiv); 2035 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2036 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2037 continue; 2038 hotspot = REG_SET_MASK(hotspot, 2039 ttgs[i]->pllx_hotspot_mask, 2040 ttgs[i]->pllx_hotspot_diff); 2041 } 2042 writel(pdiv, tegra->regs + SENSOR_PDIV); 2043 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2044 2045 /* Configure hw throttle */ 2046 tegra_soctherm_throttle(&pdev->dev); 2047 } 2048 2049 static const struct of_device_id tegra_soctherm_of_match[] = { 2050 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2051 { 2052 .compatible = "nvidia,tegra124-soctherm", 2053 .data = &tegra124_soctherm, 2054 }, 2055 #endif 2056 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2057 { 2058 .compatible = "nvidia,tegra132-soctherm", 2059 .data = &tegra132_soctherm, 2060 }, 2061 #endif 2062 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2063 { 2064 .compatible = "nvidia,tegra210-soctherm", 2065 .data = &tegra210_soctherm, 2066 }, 2067 #endif 2068 { }, 2069 }; 2070 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2071 2072 static int tegra_soctherm_probe(struct platform_device *pdev) 2073 { 2074 const struct of_device_id *match; 2075 struct tegra_soctherm *tegra; 2076 struct thermal_zone_device *z; 2077 struct tsensor_shared_calib shared_calib; 2078 struct tegra_soctherm_soc *soc; 2079 unsigned int i; 2080 int err; 2081 2082 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2083 if (!match) 2084 return -ENODEV; 2085 2086 soc = (struct tegra_soctherm_soc *)match->data; 2087 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2088 return -EINVAL; 2089 2090 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2091 if (!tegra) 2092 return -ENOMEM; 2093 2094 mutex_init(&tegra->thermctl_lock); 2095 dev_set_drvdata(&pdev->dev, tegra); 2096 2097 tegra->soc = soc; 2098 2099 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg"); 2100 if (IS_ERR(tegra->regs)) { 2101 dev_err(&pdev->dev, "can't get soctherm registers"); 2102 return PTR_ERR(tegra->regs); 2103 } 2104 2105 if (!tegra->soc->use_ccroc) { 2106 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg"); 2107 if (IS_ERR(tegra->clk_regs)) { 2108 dev_err(&pdev->dev, "can't get car clk registers"); 2109 return PTR_ERR(tegra->clk_regs); 2110 } 2111 } else { 2112 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg"); 2113 if (IS_ERR(tegra->ccroc_regs)) { 2114 dev_err(&pdev->dev, "can't get ccroc registers"); 2115 return PTR_ERR(tegra->ccroc_regs); 2116 } 2117 } 2118 2119 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2120 if (IS_ERR(tegra->reset)) { 2121 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2122 return PTR_ERR(tegra->reset); 2123 } 2124 2125 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2126 if (IS_ERR(tegra->clock_tsensor)) { 2127 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2128 return PTR_ERR(tegra->clock_tsensor); 2129 } 2130 2131 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2132 if (IS_ERR(tegra->clock_soctherm)) { 2133 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2134 return PTR_ERR(tegra->clock_soctherm); 2135 } 2136 2137 tegra->calib = devm_kcalloc(&pdev->dev, 2138 soc->num_tsensors, sizeof(u32), 2139 GFP_KERNEL); 2140 if (!tegra->calib) 2141 return -ENOMEM; 2142 2143 /* calculate shared calibration data */ 2144 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2145 if (err) 2146 return err; 2147 2148 /* calculate tsensor calibration data */ 2149 for (i = 0; i < soc->num_tsensors; ++i) { 2150 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2151 &shared_calib, 2152 &tegra->calib[i]); 2153 if (err) 2154 return err; 2155 } 2156 2157 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2158 soc->num_ttgs, sizeof(z), 2159 GFP_KERNEL); 2160 if (!tegra->thermctl_tzs) 2161 return -ENOMEM; 2162 2163 err = soctherm_clk_enable(pdev, true); 2164 if (err) 2165 return err; 2166 2167 soctherm_thermtrips_parse(pdev); 2168 2169 soctherm_init_hw_throt_cdev(pdev); 2170 2171 soctherm_init(pdev); 2172 2173 for (i = 0; i < soc->num_ttgs; ++i) { 2174 struct tegra_thermctl_zone *zone = 2175 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2176 if (!zone) { 2177 err = -ENOMEM; 2178 goto disable_clocks; 2179 } 2180 2181 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2182 zone->dev = &pdev->dev; 2183 zone->sg = soc->ttgs[i]; 2184 zone->ts = tegra; 2185 2186 z = devm_thermal_of_zone_register(&pdev->dev, 2187 soc->ttgs[i]->id, zone, 2188 &tegra_of_thermal_ops); 2189 if (IS_ERR(z)) { 2190 err = PTR_ERR(z); 2191 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2192 err); 2193 goto disable_clocks; 2194 } 2195 2196 zone->tz = z; 2197 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2198 2199 /* Configure hw trip points */ 2200 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2201 if (err) 2202 goto disable_clocks; 2203 } 2204 2205 err = soctherm_interrupts_init(pdev, tegra); 2206 2207 soctherm_debug_init(pdev); 2208 2209 return 0; 2210 2211 disable_clocks: 2212 soctherm_clk_enable(pdev, false); 2213 2214 return err; 2215 } 2216 2217 static void tegra_soctherm_remove(struct platform_device *pdev) 2218 { 2219 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2220 2221 debugfs_remove_recursive(tegra->debugfs_dir); 2222 2223 soctherm_clk_enable(pdev, false); 2224 } 2225 2226 static int __maybe_unused soctherm_suspend(struct device *dev) 2227 { 2228 struct platform_device *pdev = to_platform_device(dev); 2229 2230 soctherm_clk_enable(pdev, false); 2231 2232 return 0; 2233 } 2234 2235 static int __maybe_unused soctherm_resume(struct device *dev) 2236 { 2237 struct platform_device *pdev = to_platform_device(dev); 2238 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2239 struct tegra_soctherm_soc *soc = tegra->soc; 2240 int err, i; 2241 2242 err = soctherm_clk_enable(pdev, true); 2243 if (err) { 2244 dev_err(&pdev->dev, 2245 "Resume failed: enable clocks failed\n"); 2246 return err; 2247 } 2248 2249 soctherm_init(pdev); 2250 2251 for (i = 0; i < soc->num_ttgs; ++i) { 2252 struct thermal_zone_device *tz; 2253 2254 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2255 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2256 if (err) { 2257 dev_err(&pdev->dev, 2258 "Resume failed: set hwtrips failed\n"); 2259 return err; 2260 } 2261 } 2262 2263 return 0; 2264 } 2265 2266 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2267 2268 static struct platform_driver tegra_soctherm_driver = { 2269 .probe = tegra_soctherm_probe, 2270 .remove_new = tegra_soctherm_remove, 2271 .driver = { 2272 .name = "tegra_soctherm", 2273 .pm = &tegra_soctherm_pm, 2274 .of_match_table = tegra_soctherm_of_match, 2275 }, 2276 }; 2277 module_platform_driver(tegra_soctherm_driver); 2278 2279 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2280 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2281 MODULE_LICENSE("GPL v2"); 2282