1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = tz->devdata; 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip, int temp) 586 { 587 struct tegra_thermctl_zone *zone = tz->devdata; 588 struct tegra_soctherm *ts = zone->ts; 589 const struct tegra_tsensor_group *sg = zone->sg; 590 struct device *dev = zone->dev; 591 enum thermal_trip_type type; 592 int ret; 593 594 if (!tz) 595 return -EINVAL; 596 597 ret = tz->ops->get_trip_type(tz, trip, &type); 598 if (ret) 599 return ret; 600 601 if (type == THERMAL_TRIP_CRITICAL) { 602 /* 603 * If thermtrips property is set in DT, 604 * doesn't need to program critical type trip to HW, 605 * if not, program critical trip to HW. 606 */ 607 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 608 return thermtrip_program(dev, sg, temp); 609 else 610 return 0; 611 612 } else if (type == THERMAL_TRIP_HOT) { 613 int i; 614 615 for (i = 0; i < THROTTLE_SIZE; i++) { 616 struct thermal_cooling_device *cdev; 617 struct soctherm_throt_cfg *stc; 618 619 if (!ts->throt_cfgs[i].init) 620 continue; 621 622 cdev = ts->throt_cfgs[i].cdev; 623 if (get_thermal_instance(tz, cdev, trip)) 624 stc = find_throttle_cfg_by_name(ts, cdev->type); 625 else 626 continue; 627 628 return throttrip_program(dev, sg, stc, temp); 629 } 630 } 631 632 return 0; 633 } 634 635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 636 { 637 u32 r; 638 639 /* multiple zones could be handling and setting trips at once */ 640 mutex_lock(&zn->ts->thermctl_lock); 641 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 642 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 643 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 644 mutex_unlock(&zn->ts->thermctl_lock); 645 } 646 647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 648 { 649 u32 r; 650 651 /* multiple zones could be handling and setting trips at once */ 652 mutex_lock(&zn->ts->thermctl_lock); 653 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 654 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 655 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 656 mutex_unlock(&zn->ts->thermctl_lock); 657 } 658 659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi) 660 { 661 struct tegra_thermctl_zone *zone = tz->devdata; 662 u32 r; 663 664 thermal_irq_disable(zone); 665 666 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 667 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 668 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 669 670 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 671 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 672 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 673 674 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 675 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 676 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 677 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 678 679 thermal_irq_enable(zone); 680 681 return 0; 682 } 683 684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = { 685 .get_temp = tegra_thermctl_get_temp, 686 .set_trip_temp = tegra_thermctl_set_trip_temp, 687 .set_trips = tegra_thermctl_set_trips, 688 }; 689 690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp) 691 { 692 int ntrips, i, ret; 693 enum thermal_trip_type type; 694 695 ntrips = of_thermal_get_ntrips(tz); 696 if (ntrips <= 0) 697 return -EINVAL; 698 699 for (i = 0; i < ntrips; i++) { 700 ret = tz->ops->get_trip_type(tz, i, &type); 701 if (ret) 702 return -EINVAL; 703 if (type == THERMAL_TRIP_HOT) { 704 ret = tz->ops->get_trip_temp(tz, i, temp); 705 if (!ret) 706 *trip = i; 707 708 return ret; 709 } 710 } 711 712 return -EINVAL; 713 } 714 715 /** 716 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 717 * @dev: struct device * of the SOC_THERM instance 718 * @sg: pointer to the sensor group to set the thermtrip temperature for 719 * @tz: struct thermal_zone_device * 720 * 721 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 722 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 723 * type trip_temp 724 * from thermal zone. 725 * After they have been configured, THERMTRIP or THROTTLE will take 726 * action when the configured SoC thermal sensor group reaches a 727 * certain temperature. 728 * 729 * Return: 0 upon success, or a negative error code on failure. 730 * "Success" does not mean that trips was enabled; it could also 731 * mean that no node was found in DT. 732 * THERMTRIP has been enabled successfully when a message similar to 733 * this one appears on the serial console: 734 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 735 * THROTTLE has been enabled successfully when a message similar to 736 * this one appears on the serial console: 737 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 738 */ 739 static int tegra_soctherm_set_hwtrips(struct device *dev, 740 const struct tegra_tsensor_group *sg, 741 struct thermal_zone_device *tz) 742 { 743 struct tegra_soctherm *ts = dev_get_drvdata(dev); 744 struct soctherm_throt_cfg *stc; 745 int i, trip, temperature, ret; 746 747 /* Get thermtrips. If missing, try to get critical trips. */ 748 temperature = tsensor_group_thermtrip_get(ts, sg->id); 749 if (min_low_temp == temperature) 750 if (tz->ops->get_crit_temp(tz, &temperature)) 751 temperature = max_high_temp; 752 753 ret = thermtrip_program(dev, sg, temperature); 754 if (ret) { 755 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 756 return ret; 757 } 758 759 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 760 sg->name, temperature); 761 762 ret = get_hot_temp(tz, &trip, &temperature); 763 if (ret) { 764 dev_info(dev, "throttrip: %s: missing hot temperature\n", 765 sg->name); 766 return 0; 767 } 768 769 for (i = 0; i < THROTTLE_OC1; i++) { 770 struct thermal_cooling_device *cdev; 771 772 if (!ts->throt_cfgs[i].init) 773 continue; 774 775 cdev = ts->throt_cfgs[i].cdev; 776 if (get_thermal_instance(tz, cdev, trip)) 777 stc = find_throttle_cfg_by_name(ts, cdev->type); 778 else 779 continue; 780 781 ret = throttrip_program(dev, sg, stc, temperature); 782 if (ret) { 783 dev_err(dev, "throttrip: %s: error during enable\n", 784 sg->name); 785 return ret; 786 } 787 788 dev_info(dev, 789 "throttrip: will throttle when %s reaches %d mC\n", 790 sg->name, temperature); 791 break; 792 } 793 794 if (i == THROTTLE_SIZE) 795 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 796 sg->name); 797 798 return 0; 799 } 800 801 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 802 { 803 struct tegra_soctherm *ts = dev_id; 804 u32 r; 805 806 /* Case for no lock: 807 * Although interrupts are enabled in set_trips, there is still no need 808 * to lock here because the interrupts are disabled before programming 809 * new trip points. Hence there cant be a interrupt on the same sensor. 810 * An interrupt can however occur on a sensor while trips are being 811 * programmed on a different one. This beign a LEVEL interrupt won't 812 * cause a new interrupt but this is taken care of by the re-reading of 813 * the STATUS register in the thread function. 814 */ 815 r = readl(ts->regs + THERMCTL_INTR_STATUS); 816 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 817 818 return IRQ_WAKE_THREAD; 819 } 820 821 /** 822 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 823 * @irq: The interrupt number being requested; not used 824 * @dev_id: Opaque pointer to tegra_soctherm; 825 * 826 * Clears the interrupt status register if there are expected 827 * interrupt bits set. 828 * The interrupt(s) are then handled by updating the corresponding 829 * thermal zones. 830 * 831 * An error is logged if any unexpected interrupt bits are set. 832 * 833 * Disabled interrupts are re-enabled. 834 * 835 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 836 * is needed. 837 */ 838 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 839 { 840 struct tegra_soctherm *ts = dev_id; 841 struct thermal_zone_device *tz; 842 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 843 844 st = readl(ts->regs + THERMCTL_INTR_STATUS); 845 846 /* deliberately clear expected interrupts handled in SW */ 847 cp |= st & TH_INTR_CD0_MASK; 848 cp |= st & TH_INTR_CU0_MASK; 849 850 gp |= st & TH_INTR_GD0_MASK; 851 gp |= st & TH_INTR_GU0_MASK; 852 853 pl |= st & TH_INTR_PD0_MASK; 854 pl |= st & TH_INTR_PU0_MASK; 855 856 me |= st & TH_INTR_MD0_MASK; 857 me |= st & TH_INTR_MU0_MASK; 858 859 ex |= cp | gp | pl | me; 860 if (ex) { 861 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 862 st &= ~ex; 863 864 if (cp) { 865 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 866 thermal_zone_device_update(tz, 867 THERMAL_EVENT_UNSPECIFIED); 868 } 869 870 if (gp) { 871 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 872 thermal_zone_device_update(tz, 873 THERMAL_EVENT_UNSPECIFIED); 874 } 875 876 if (pl) { 877 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 878 thermal_zone_device_update(tz, 879 THERMAL_EVENT_UNSPECIFIED); 880 } 881 882 if (me) { 883 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 884 thermal_zone_device_update(tz, 885 THERMAL_EVENT_UNSPECIFIED); 886 } 887 } 888 889 /* deliberately ignore expected interrupts NOT handled in SW */ 890 ex |= TH_INTR_IGNORE_MASK; 891 st &= ~ex; 892 893 if (st) { 894 /* Whine about any other unexpected INTR bits still set */ 895 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 896 writel(st, ts->regs + THERMCTL_INTR_STATUS); 897 } 898 899 return IRQ_HANDLED; 900 } 901 902 /** 903 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 904 * @ts: pointer to a struct tegra_soctherm 905 * @alarm: The soctherm throttle id 906 * @enable: Flag indicating enable the soctherm over-current 907 * interrupt or disable it 908 * 909 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 910 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 911 */ 912 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 913 enum soctherm_throttle_id alarm, 914 bool enable) 915 { 916 u32 r; 917 918 if (!enable) 919 return; 920 921 r = readl(ts->regs + OC_INTR_ENABLE); 922 switch (alarm) { 923 case THROTTLE_OC1: 924 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 925 break; 926 case THROTTLE_OC2: 927 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 928 break; 929 case THROTTLE_OC3: 930 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 931 break; 932 case THROTTLE_OC4: 933 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 934 break; 935 default: 936 r = 0; 937 break; 938 } 939 writel(r, ts->regs + OC_INTR_ENABLE); 940 } 941 942 /** 943 * soctherm_handle_alarm() - Handles soctherm alarms 944 * @alarm: The soctherm throttle id 945 * 946 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 947 * a warning or informative message. 948 * 949 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 950 */ 951 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 952 { 953 int rv = -EINVAL; 954 955 switch (alarm) { 956 case THROTTLE_OC1: 957 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 958 rv = 0; 959 break; 960 961 case THROTTLE_OC2: 962 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 963 rv = 0; 964 break; 965 966 case THROTTLE_OC3: 967 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 968 rv = 0; 969 break; 970 971 case THROTTLE_OC4: 972 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 973 rv = 0; 974 break; 975 976 default: 977 break; 978 } 979 980 if (rv) 981 pr_err("soctherm: ERROR in handling %s alarm\n", 982 throt_names[alarm]); 983 984 return rv; 985 } 986 987 /** 988 * soctherm_edp_isr_thread() - log an over-current interrupt request 989 * @irq: OC irq number. Currently not being used. See description 990 * @arg: a void pointer for callback, currently not being used 991 * 992 * Over-current events are handled in hardware. This function is called to log 993 * and handle any OC events that happened. Additionally, it checks every 994 * over-current interrupt registers for registers are set but 995 * was not expected (i.e. any discrepancy in interrupt status) by the function, 996 * the discrepancy will logged. 997 * 998 * Return: %IRQ_HANDLED 999 */ 1000 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 1001 { 1002 struct tegra_soctherm *ts = arg; 1003 u32 st, ex, oc1, oc2, oc3, oc4; 1004 1005 st = readl(ts->regs + OC_INTR_STATUS); 1006 1007 /* deliberately clear expected interrupts handled in SW */ 1008 oc1 = st & OC_INTR_OC1_MASK; 1009 oc2 = st & OC_INTR_OC2_MASK; 1010 oc3 = st & OC_INTR_OC3_MASK; 1011 oc4 = st & OC_INTR_OC4_MASK; 1012 ex = oc1 | oc2 | oc3 | oc4; 1013 1014 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1015 if (ex) { 1016 writel(st, ts->regs + OC_INTR_STATUS); 1017 st &= ~ex; 1018 1019 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1020 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1021 1022 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1023 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1024 1025 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1026 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1027 1028 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1029 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1030 1031 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1032 handle_nested_irq( 1033 irq_find_mapping(soc_irq_cdata.domain, 0)); 1034 1035 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1036 handle_nested_irq( 1037 irq_find_mapping(soc_irq_cdata.domain, 1)); 1038 1039 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1040 handle_nested_irq( 1041 irq_find_mapping(soc_irq_cdata.domain, 2)); 1042 1043 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1044 handle_nested_irq( 1045 irq_find_mapping(soc_irq_cdata.domain, 3)); 1046 } 1047 1048 if (st) { 1049 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1050 writel(st, ts->regs + OC_INTR_STATUS); 1051 } 1052 1053 return IRQ_HANDLED; 1054 } 1055 1056 /** 1057 * soctherm_edp_isr() - Disables any active interrupts 1058 * @irq: The interrupt request number 1059 * @arg: Opaque pointer to an argument 1060 * 1061 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1062 * masking any asserted interrupts. Doing this prevents the same interrupts 1063 * from triggering this isr repeatedly. The thread woken by this isr will 1064 * handle asserted interrupts and subsequently unmask/re-enable them. 1065 * 1066 * The OC_INTR_DISABLE register indicates which OC interrupts 1067 * have been disabled. 1068 * 1069 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1070 */ 1071 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1072 { 1073 struct tegra_soctherm *ts = arg; 1074 u32 r; 1075 1076 if (!ts) 1077 return IRQ_NONE; 1078 1079 r = readl(ts->regs + OC_INTR_STATUS); 1080 writel(r, ts->regs + OC_INTR_DISABLE); 1081 1082 return IRQ_WAKE_THREAD; 1083 } 1084 1085 /** 1086 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1087 * @data: Interrupt request data 1088 * 1089 * Looks up the chip data from @data and locks the mutex associated with 1090 * a particular over-current interrupt request. 1091 */ 1092 static void soctherm_oc_irq_lock(struct irq_data *data) 1093 { 1094 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1095 1096 mutex_lock(&d->irq_lock); 1097 } 1098 1099 /** 1100 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1101 * @data: Interrupt request data 1102 * 1103 * Looks up the interrupt request data @data and unlocks the mutex associated 1104 * with a particular over-current interrupt request. 1105 */ 1106 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1107 { 1108 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1109 1110 mutex_unlock(&d->irq_lock); 1111 } 1112 1113 /** 1114 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1115 * @data: irq_data structure of the chip 1116 * 1117 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1118 * to respond to over-current interrupts. 1119 * 1120 */ 1121 static void soctherm_oc_irq_enable(struct irq_data *data) 1122 { 1123 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1124 1125 d->irq_enable |= BIT(data->hwirq); 1126 } 1127 1128 /** 1129 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1130 * @data: The interrupt request information 1131 * 1132 * Clears the interrupt request enable bit of the overcurrent 1133 * interrupt request chip data. 1134 * 1135 * Return: Nothing is returned (void) 1136 */ 1137 static void soctherm_oc_irq_disable(struct irq_data *data) 1138 { 1139 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1140 1141 d->irq_enable &= ~BIT(data->hwirq); 1142 } 1143 1144 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1145 { 1146 return 0; 1147 } 1148 1149 /** 1150 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1151 * @h: Interrupt request domain 1152 * @virq: Virtual interrupt request number 1153 * @hw: Hardware interrupt request number 1154 * 1155 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1156 * interrupt request is called, the irq_domain takes the request's virtual 1157 * request number (much like a virtual memory address) and maps it to a 1158 * physical hardware request number. 1159 * 1160 * When a mapping doesn't already exist for a virtual request number, the 1161 * irq_domain calls this function to associate the virtual request number with 1162 * a hardware request number. 1163 * 1164 * Return: 0 1165 */ 1166 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1167 irq_hw_number_t hw) 1168 { 1169 struct soctherm_oc_irq_chip_data *data = h->host_data; 1170 1171 irq_set_chip_data(virq, data); 1172 irq_set_chip(virq, &data->irq_chip); 1173 irq_set_nested_thread(virq, 1); 1174 return 0; 1175 } 1176 1177 /** 1178 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1179 * @d: Interrupt request domain 1180 * @ctrlr: Controller device tree node 1181 * @intspec: Array of u32s from DTs "interrupt" property 1182 * @intsize: Number of values inside the intspec array 1183 * @out_hwirq: HW IRQ value associated with this interrupt 1184 * @out_type: The IRQ SENSE type for this interrupt. 1185 * 1186 * This Device Tree IRQ specifier translation function will translate a 1187 * specific "interrupt" as defined by 2 DT values where the cell values map 1188 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1189 * number, this function will subtract 1 from the value listed in DT. 1190 * 1191 * Return: 0 1192 */ 1193 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1194 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1195 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1196 { 1197 if (WARN_ON(intsize < 2)) 1198 return -EINVAL; 1199 1200 /* 1201 * The HW value is 1 index less than the DT IRQ values. 1202 * i.e. OC4 goes to HW index 3. 1203 */ 1204 *out_hwirq = intspec[0] - 1; 1205 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1206 return 0; 1207 } 1208 1209 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1210 .map = soctherm_oc_irq_map, 1211 .xlate = soctherm_irq_domain_xlate_twocell, 1212 }; 1213 1214 /** 1215 * soctherm_oc_int_init() - Initial enabling of the over 1216 * current interrupts 1217 * @np: The devicetree node for soctherm 1218 * @num_irqs: The number of new interrupt requests 1219 * 1220 * Sets the over current interrupt request chip data 1221 * 1222 * Return: 0 on success or if overcurrent interrupts are not enabled, 1223 * -ENOMEM (out of memory), or irq_base if the function failed to 1224 * allocate the irqs 1225 */ 1226 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1227 { 1228 if (!num_irqs) { 1229 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1230 return 0; 1231 } 1232 1233 mutex_init(&soc_irq_cdata.irq_lock); 1234 soc_irq_cdata.irq_enable = 0; 1235 1236 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1237 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1238 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1239 soctherm_oc_irq_sync_unlock; 1240 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1241 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1242 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1243 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1244 1245 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1246 &soctherm_oc_domain_ops, 1247 &soc_irq_cdata); 1248 1249 if (!soc_irq_cdata.domain) { 1250 pr_err("%s: Failed to create IRQ domain\n", __func__); 1251 return -ENOMEM; 1252 } 1253 1254 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1255 return 0; 1256 } 1257 1258 #ifdef CONFIG_DEBUG_FS 1259 static int regs_show(struct seq_file *s, void *data) 1260 { 1261 struct platform_device *pdev = s->private; 1262 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1263 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1264 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1265 u32 r, state; 1266 int i, level; 1267 1268 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1269 1270 for (i = 0; i < ts->soc->num_tsensors; i++) { 1271 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1272 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1273 1274 seq_printf(s, "%s: ", tsensors[i].name); 1275 seq_printf(s, "En(%d) ", state); 1276 1277 if (!state) { 1278 seq_puts(s, "\n"); 1279 continue; 1280 } 1281 1282 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1283 seq_printf(s, "tiddq(%d) ", state); 1284 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1285 seq_printf(s, "ten_count(%d) ", state); 1286 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1287 seq_printf(s, "tsample(%d) ", state + 1); 1288 1289 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1290 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1291 seq_printf(s, "Temp(%d/", state); 1292 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1293 seq_printf(s, "%d) ", translate_temp(state)); 1294 1295 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1296 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1297 seq_printf(s, "Capture(%d/", state); 1298 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1299 seq_printf(s, "%d) ", state); 1300 1301 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1302 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1303 seq_printf(s, "Stop(%d) ", state); 1304 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1305 seq_printf(s, "Tall(%d) ", state); 1306 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1307 seq_printf(s, "Over(%d/", state); 1308 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1309 seq_printf(s, "%d/", state); 1310 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1311 seq_printf(s, "%d) ", state); 1312 1313 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1314 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1315 seq_printf(s, "Therm_A/B(%d/", state); 1316 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1317 seq_printf(s, "%d)\n", (s16)state); 1318 } 1319 1320 r = readl(ts->regs + SENSOR_PDIV); 1321 seq_printf(s, "PDIV: 0x%x\n", r); 1322 1323 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1324 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1325 1326 seq_puts(s, "\n"); 1327 seq_puts(s, "-----SOC_THERM-----\n"); 1328 1329 r = readl(ts->regs + SENSOR_TEMP1); 1330 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1331 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1332 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1333 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1334 r = readl(ts->regs + SENSOR_TEMP2); 1335 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1336 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1337 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1338 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1339 1340 for (i = 0; i < ts->soc->num_ttgs; i++) { 1341 seq_printf(s, "%s:\n", ttgs[i]->name); 1342 for (level = 0; level < 4; level++) { 1343 s32 v; 1344 u32 mask; 1345 u16 off = ttgs[i]->thermctl_lvl0_offset; 1346 1347 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1348 1349 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1350 state = REG_GET_MASK(r, mask); 1351 v = sign_extend32(state, ts->soc->bptt - 1); 1352 v *= ts->soc->thresh_grain; 1353 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1354 1355 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1356 state = REG_GET_MASK(r, mask); 1357 v = sign_extend32(state, ts->soc->bptt - 1); 1358 v *= ts->soc->thresh_grain; 1359 seq_printf(s, "%d ) ", v); 1360 1361 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1362 state = REG_GET_MASK(r, mask); 1363 seq_printf(s, "En(%d) ", state); 1364 1365 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1366 state = REG_GET_MASK(r, mask); 1367 seq_puts(s, "CPU Throt"); 1368 if (!state) 1369 seq_printf(s, "(%s) ", "none"); 1370 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1371 seq_printf(s, "(%s) ", "L"); 1372 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1373 seq_printf(s, "(%s) ", "H"); 1374 else 1375 seq_printf(s, "(%s) ", "H+L"); 1376 1377 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1378 state = REG_GET_MASK(r, mask); 1379 seq_puts(s, "GPU Throt"); 1380 if (!state) 1381 seq_printf(s, "(%s) ", "none"); 1382 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1383 seq_printf(s, "(%s) ", "L"); 1384 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1385 seq_printf(s, "(%s) ", "H"); 1386 else 1387 seq_printf(s, "(%s) ", "H+L"); 1388 1389 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1390 state = REG_GET_MASK(r, mask); 1391 seq_printf(s, "Status(%s)\n", 1392 state == 0 ? "LO" : 1393 state == 1 ? "In" : 1394 state == 2 ? "Res" : "HI"); 1395 } 1396 } 1397 1398 r = readl(ts->regs + THERMCTL_STATS_CTL); 1399 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1400 r & STATS_CTL_EN_UP ? "En" : "--", 1401 r & STATS_CTL_EN_DN ? "En" : "--"); 1402 1403 for (level = 0; level < 4; level++) { 1404 u16 off; 1405 1406 off = THERMCTL_LVL0_UP_STATS; 1407 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1408 seq_printf(s, " Level_%d Up(%d) ", level, r); 1409 1410 off = THERMCTL_LVL0_DN_STATS; 1411 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1412 seq_printf(s, "Dn(%d)\n", r); 1413 } 1414 1415 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1416 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1417 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1418 for (i = 0; i < ts->soc->num_ttgs; i++) { 1419 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1420 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1421 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1422 state *= ts->soc->thresh_grain; 1423 seq_printf(s, "Thresh(%d)\n", state); 1424 } 1425 1426 r = readl(ts->regs + THROT_GLOBAL_CFG); 1427 seq_puts(s, "\n"); 1428 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1429 1430 seq_puts(s, "---------------------------------------------------\n"); 1431 r = readl(ts->regs + THROT_STATUS); 1432 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1433 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1434 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1435 seq_printf(s, "state(%d) ", state); 1436 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1437 seq_printf(s, "enabled(%d)\n", state); 1438 1439 r = readl(ts->regs + CPU_PSKIP_STATUS); 1440 if (ts->soc->use_ccroc) { 1441 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1442 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1443 } else { 1444 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1445 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1446 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1447 seq_printf(s, "N(%d) ", state); 1448 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1449 seq_printf(s, "enabled(%d)\n", state); 1450 } 1451 1452 return 0; 1453 } 1454 1455 DEFINE_SHOW_ATTRIBUTE(regs); 1456 1457 static void soctherm_debug_init(struct platform_device *pdev) 1458 { 1459 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1460 struct dentry *root; 1461 1462 root = debugfs_create_dir("soctherm", NULL); 1463 1464 tegra->debugfs_dir = root; 1465 1466 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1467 } 1468 #else 1469 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1470 #endif 1471 1472 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1473 { 1474 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1475 int err; 1476 1477 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1478 return -EINVAL; 1479 1480 reset_control_assert(tegra->reset); 1481 1482 if (enable) { 1483 err = clk_prepare_enable(tegra->clock_soctherm); 1484 if (err) { 1485 reset_control_deassert(tegra->reset); 1486 return err; 1487 } 1488 1489 err = clk_prepare_enable(tegra->clock_tsensor); 1490 if (err) { 1491 clk_disable_unprepare(tegra->clock_soctherm); 1492 reset_control_deassert(tegra->reset); 1493 return err; 1494 } 1495 } else { 1496 clk_disable_unprepare(tegra->clock_tsensor); 1497 clk_disable_unprepare(tegra->clock_soctherm); 1498 } 1499 1500 reset_control_deassert(tegra->reset); 1501 1502 return 0; 1503 } 1504 1505 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1506 unsigned long *max_state) 1507 { 1508 *max_state = 1; 1509 return 0; 1510 } 1511 1512 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1513 unsigned long *cur_state) 1514 { 1515 struct tegra_soctherm *ts = cdev->devdata; 1516 u32 r; 1517 1518 r = readl(ts->regs + THROT_STATUS); 1519 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1520 *cur_state = 1; 1521 else 1522 *cur_state = 0; 1523 1524 return 0; 1525 } 1526 1527 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1528 unsigned long cur_state) 1529 { 1530 return 0; 1531 } 1532 1533 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1534 .get_max_state = throt_get_cdev_max_state, 1535 .get_cur_state = throt_get_cdev_cur_state, 1536 .set_cur_state = throt_set_cdev_state, 1537 }; 1538 1539 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1540 { 1541 struct device *dev = &pdev->dev; 1542 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1543 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1544 const int max_num_prop = ts->soc->num_ttgs * 2; 1545 u32 *tlb; 1546 int i, j, n, ret; 1547 1548 if (!tt) 1549 return -ENOMEM; 1550 1551 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1552 if (n <= 0) { 1553 dev_info(dev, 1554 "missing thermtrips, will use critical trips as shut down temp\n"); 1555 return n; 1556 } 1557 1558 n = min(max_num_prop, n); 1559 1560 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1561 if (!tlb) 1562 return -ENOMEM; 1563 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1564 tlb, n); 1565 if (ret) { 1566 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1567 return ret; 1568 } 1569 1570 i = 0; 1571 for (j = 0; j < n; j = j + 2) { 1572 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1573 continue; 1574 1575 tt[i].id = tlb[j]; 1576 tt[i].temp = tlb[j + 1]; 1577 i++; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static void soctherm_oc_cfg_parse(struct device *dev, 1584 struct device_node *np_oc, 1585 struct soctherm_throt_cfg *stc) 1586 { 1587 u32 val; 1588 1589 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1590 stc->oc_cfg.active_low = 1; 1591 else 1592 stc->oc_cfg.active_low = 0; 1593 1594 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1595 stc->oc_cfg.intr_en = 1; 1596 stc->oc_cfg.alarm_cnt_thresh = val; 1597 } 1598 1599 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1600 stc->oc_cfg.throt_period = val; 1601 1602 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1603 stc->oc_cfg.alarm_filter = val; 1604 1605 /* BRIEF throttling by default, do not support STICKY */ 1606 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1607 } 1608 1609 static int soctherm_throt_cfg_parse(struct device *dev, 1610 struct device_node *np, 1611 struct soctherm_throt_cfg *stc) 1612 { 1613 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1614 int ret; 1615 u32 val; 1616 1617 ret = of_property_read_u32(np, "nvidia,priority", &val); 1618 if (ret) { 1619 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1620 return -EINVAL; 1621 } 1622 stc->priority = val; 1623 1624 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1625 "nvidia,cpu-throt-level" : 1626 "nvidia,cpu-throt-percent", &val); 1627 if (!ret) { 1628 if (ts->soc->use_ccroc && 1629 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1630 stc->cpu_throt_level = val; 1631 else if (!ts->soc->use_ccroc && val <= 100) 1632 stc->cpu_throt_depth = val; 1633 else 1634 goto err; 1635 } else { 1636 goto err; 1637 } 1638 1639 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1640 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1641 stc->gpu_throt_level = val; 1642 else 1643 goto err; 1644 1645 return 0; 1646 1647 err: 1648 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1649 stc->name); 1650 return -EINVAL; 1651 } 1652 1653 /** 1654 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1655 * and register them as cooling devices. 1656 * @pdev: Pointer to platform_device struct 1657 */ 1658 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1659 { 1660 struct device *dev = &pdev->dev; 1661 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1662 struct device_node *np_stc, *np_stcc; 1663 const char *name; 1664 int i; 1665 1666 for (i = 0; i < THROTTLE_SIZE; i++) { 1667 ts->throt_cfgs[i].name = throt_names[i]; 1668 ts->throt_cfgs[i].id = i; 1669 ts->throt_cfgs[i].init = false; 1670 } 1671 1672 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1673 if (!np_stc) { 1674 dev_info(dev, 1675 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1676 return; 1677 } 1678 1679 for_each_child_of_node(np_stc, np_stcc) { 1680 struct soctherm_throt_cfg *stc; 1681 struct thermal_cooling_device *tcd; 1682 int err; 1683 1684 name = np_stcc->name; 1685 stc = find_throttle_cfg_by_name(ts, name); 1686 if (!stc) { 1687 dev_err(dev, 1688 "throttle-cfg: could not find %s\n", name); 1689 continue; 1690 } 1691 1692 if (stc->init) { 1693 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1694 of_node_put(np_stcc); 1695 break; 1696 } 1697 1698 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1699 if (err) 1700 continue; 1701 1702 if (stc->id >= THROTTLE_OC1) { 1703 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1704 stc->init = true; 1705 } else { 1706 1707 tcd = thermal_of_cooling_device_register(np_stcc, 1708 (char *)name, ts, 1709 &throt_cooling_ops); 1710 if (IS_ERR_OR_NULL(tcd)) { 1711 dev_err(dev, 1712 "throttle-cfg: %s: failed to register cooling device\n", 1713 name); 1714 continue; 1715 } 1716 stc->cdev = tcd; 1717 stc->init = true; 1718 } 1719 1720 } 1721 1722 of_node_put(np_stc); 1723 } 1724 1725 /** 1726 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1727 * @ts: pointer to a struct tegra_soctherm 1728 * @level: describing the level LOW/MED/HIGH of throttling 1729 * 1730 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1731 * the M/N values desired for each level. This function does this. 1732 * 1733 * This function pre-programs the CCROC NV_THERM levels in terms of 1734 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1735 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1736 */ 1737 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1738 { 1739 u8 depth, dividend; 1740 u32 r; 1741 1742 switch (level) { 1743 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1744 depth = 50; 1745 break; 1746 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1747 depth = 75; 1748 break; 1749 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1750 depth = 80; 1751 break; 1752 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1753 return; 1754 default: 1755 return; 1756 } 1757 1758 dividend = THROT_DEPTH_DIVIDEND(depth); 1759 1760 /* setup PSKIP in ccroc nv_therm registers */ 1761 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1762 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1763 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1764 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1765 1766 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1767 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1768 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1769 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1770 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1771 } 1772 1773 /** 1774 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1775 * @ts: pointer to a struct tegra_soctherm 1776 * @throt: the LIGHT/HEAVY of throttle event id 1777 * 1778 * Pulse skippers are used to throttle clock frequencies. This 1779 * function programs the pulse skippers based on @throt and platform 1780 * data. This function is used on SoCs which have CPU-local pulse 1781 * skipper control, such as T13x. It programs soctherm's interface to 1782 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1783 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1784 */ 1785 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1786 enum soctherm_throttle_id throt) 1787 { 1788 u32 r, throt_vect; 1789 1790 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1791 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1792 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1793 throt_vect = THROT_VECT_LOW; 1794 break; 1795 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1796 throt_vect = THROT_VECT_MED; 1797 break; 1798 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1799 throt_vect = THROT_VECT_HIGH; 1800 break; 1801 default: 1802 throt_vect = THROT_VECT_NONE; 1803 break; 1804 } 1805 1806 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1807 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1808 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1809 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1810 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1811 1812 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1813 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1814 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1815 } 1816 1817 /** 1818 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1819 * @ts: pointer to a struct tegra_soctherm 1820 * @throt: the LIGHT/HEAVY of throttle event id 1821 * 1822 * Pulse skippers are used to throttle clock frequencies. This 1823 * function programs the pulse skippers based on @throt and platform 1824 * data. This function is used for CPUs that have "remote" pulse 1825 * skipper control, e.g., the CPU pulse skipper is controlled by the 1826 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1827 * complex.) 1828 */ 1829 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1830 enum soctherm_throttle_id throt) 1831 { 1832 u32 r; 1833 int depth; 1834 u8 dividend; 1835 1836 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1837 dividend = THROT_DEPTH_DIVIDEND(depth); 1838 1839 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1840 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1841 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1842 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1843 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1844 1845 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1846 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1847 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1848 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1849 } 1850 1851 /** 1852 * throttlectl_gpu_level_select() - selects throttling level for GPU 1853 * @ts: pointer to a struct tegra_soctherm 1854 * @throt: the LIGHT/HEAVY of throttle event id 1855 * 1856 * This function programs soctherm's interface to GK20a NV_THERM to select 1857 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1858 * 1859 * Return: boolean true if HW was programmed 1860 */ 1861 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1862 enum soctherm_throttle_id throt) 1863 { 1864 u32 r, level, throt_vect; 1865 1866 level = ts->throt_cfgs[throt].gpu_throt_level; 1867 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1868 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1869 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1870 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1871 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1872 } 1873 1874 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1875 enum soctherm_throttle_id throt) 1876 { 1877 u32 r; 1878 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1879 1880 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1881 return -EINVAL; 1882 1883 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1884 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1885 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1886 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1887 writel(r, ts->regs + ALARM_CFG(throt)); 1888 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1889 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1890 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1891 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1892 1893 return 0; 1894 } 1895 1896 /** 1897 * soctherm_throttle_program() - programs pulse skippers' configuration 1898 * @ts: pointer to a struct tegra_soctherm 1899 * @throt: the LIGHT/HEAVY of the throttle event id. 1900 * 1901 * Pulse skippers are used to throttle clock frequencies. 1902 * This function programs the pulse skippers. 1903 */ 1904 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1905 enum soctherm_throttle_id throt) 1906 { 1907 u32 r; 1908 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1909 1910 if (!stc.init) 1911 return; 1912 1913 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1914 return; 1915 1916 /* Setup PSKIP parameters */ 1917 if (ts->soc->use_ccroc) 1918 throttlectl_cpu_level_select(ts, throt); 1919 else 1920 throttlectl_cpu_mn(ts, throt); 1921 1922 throttlectl_gpu_level_select(ts, throt); 1923 1924 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1925 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1926 1927 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1928 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1929 1930 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1931 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1932 if (r >= stc.priority) 1933 return; 1934 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1935 stc.priority); 1936 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1937 } 1938 1939 static void tegra_soctherm_throttle(struct device *dev) 1940 { 1941 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1942 u32 v; 1943 int i; 1944 1945 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1946 if (ts->soc->use_ccroc) { 1947 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1948 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1949 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1950 } 1951 1952 /* Thermal HW throttle programming */ 1953 for (i = 0; i < THROTTLE_SIZE; i++) 1954 soctherm_throttle_program(ts, i); 1955 1956 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1957 if (ts->soc->use_ccroc) { 1958 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1959 1960 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1961 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1962 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1963 } else { 1964 writel(v, ts->regs + THROT_GLOBAL_CFG); 1965 1966 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1967 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1968 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1969 } 1970 1971 /* initialize stats collection */ 1972 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1973 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1974 writel(v, ts->regs + THERMCTL_STATS_CTL); 1975 } 1976 1977 static int soctherm_interrupts_init(struct platform_device *pdev, 1978 struct tegra_soctherm *tegra) 1979 { 1980 struct device_node *np = pdev->dev.of_node; 1981 int ret; 1982 1983 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 1984 if (ret < 0) { 1985 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 1986 return ret; 1987 } 1988 1989 tegra->thermal_irq = platform_get_irq(pdev, 0); 1990 if (tegra->thermal_irq < 0) { 1991 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 1992 return 0; 1993 } 1994 1995 tegra->edp_irq = platform_get_irq(pdev, 1); 1996 if (tegra->edp_irq < 0) { 1997 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 1998 return 0; 1999 } 2000 2001 ret = devm_request_threaded_irq(&pdev->dev, 2002 tegra->thermal_irq, 2003 soctherm_thermal_isr, 2004 soctherm_thermal_isr_thread, 2005 IRQF_ONESHOT, 2006 dev_name(&pdev->dev), 2007 tegra); 2008 if (ret < 0) { 2009 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2010 return ret; 2011 } 2012 2013 ret = devm_request_threaded_irq(&pdev->dev, 2014 tegra->edp_irq, 2015 soctherm_edp_isr, 2016 soctherm_edp_isr_thread, 2017 IRQF_ONESHOT, 2018 "soctherm_edp", 2019 tegra); 2020 if (ret < 0) { 2021 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2022 return ret; 2023 } 2024 2025 return 0; 2026 } 2027 2028 static void soctherm_init(struct platform_device *pdev) 2029 { 2030 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2031 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2032 int i; 2033 u32 pdiv, hotspot; 2034 2035 /* Initialize raw sensors */ 2036 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2037 enable_tsensor(tegra, i); 2038 2039 /* program pdiv and hotspot offsets per THERM */ 2040 pdiv = readl(tegra->regs + SENSOR_PDIV); 2041 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2042 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2043 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2044 ttgs[i]->pdiv); 2045 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2046 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2047 continue; 2048 hotspot = REG_SET_MASK(hotspot, 2049 ttgs[i]->pllx_hotspot_mask, 2050 ttgs[i]->pllx_hotspot_diff); 2051 } 2052 writel(pdiv, tegra->regs + SENSOR_PDIV); 2053 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2054 2055 /* Configure hw throttle */ 2056 tegra_soctherm_throttle(&pdev->dev); 2057 } 2058 2059 static const struct of_device_id tegra_soctherm_of_match[] = { 2060 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2061 { 2062 .compatible = "nvidia,tegra124-soctherm", 2063 .data = &tegra124_soctherm, 2064 }, 2065 #endif 2066 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2067 { 2068 .compatible = "nvidia,tegra132-soctherm", 2069 .data = &tegra132_soctherm, 2070 }, 2071 #endif 2072 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2073 { 2074 .compatible = "nvidia,tegra210-soctherm", 2075 .data = &tegra210_soctherm, 2076 }, 2077 #endif 2078 { }, 2079 }; 2080 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2081 2082 static int tegra_soctherm_probe(struct platform_device *pdev) 2083 { 2084 const struct of_device_id *match; 2085 struct tegra_soctherm *tegra; 2086 struct thermal_zone_device *z; 2087 struct tsensor_shared_calib shared_calib; 2088 struct tegra_soctherm_soc *soc; 2089 unsigned int i; 2090 int err; 2091 2092 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2093 if (!match) 2094 return -ENODEV; 2095 2096 soc = (struct tegra_soctherm_soc *)match->data; 2097 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2098 return -EINVAL; 2099 2100 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2101 if (!tegra) 2102 return -ENOMEM; 2103 2104 mutex_init(&tegra->thermctl_lock); 2105 dev_set_drvdata(&pdev->dev, tegra); 2106 2107 tegra->soc = soc; 2108 2109 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg"); 2110 if (IS_ERR(tegra->regs)) { 2111 dev_err(&pdev->dev, "can't get soctherm registers"); 2112 return PTR_ERR(tegra->regs); 2113 } 2114 2115 if (!tegra->soc->use_ccroc) { 2116 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg"); 2117 if (IS_ERR(tegra->clk_regs)) { 2118 dev_err(&pdev->dev, "can't get car clk registers"); 2119 return PTR_ERR(tegra->clk_regs); 2120 } 2121 } else { 2122 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg"); 2123 if (IS_ERR(tegra->ccroc_regs)) { 2124 dev_err(&pdev->dev, "can't get ccroc registers"); 2125 return PTR_ERR(tegra->ccroc_regs); 2126 } 2127 } 2128 2129 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2130 if (IS_ERR(tegra->reset)) { 2131 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2132 return PTR_ERR(tegra->reset); 2133 } 2134 2135 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2136 if (IS_ERR(tegra->clock_tsensor)) { 2137 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2138 return PTR_ERR(tegra->clock_tsensor); 2139 } 2140 2141 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2142 if (IS_ERR(tegra->clock_soctherm)) { 2143 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2144 return PTR_ERR(tegra->clock_soctherm); 2145 } 2146 2147 tegra->calib = devm_kcalloc(&pdev->dev, 2148 soc->num_tsensors, sizeof(u32), 2149 GFP_KERNEL); 2150 if (!tegra->calib) 2151 return -ENOMEM; 2152 2153 /* calculate shared calibration data */ 2154 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2155 if (err) 2156 return err; 2157 2158 /* calculate tsensor calibration data */ 2159 for (i = 0; i < soc->num_tsensors; ++i) { 2160 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2161 &shared_calib, 2162 &tegra->calib[i]); 2163 if (err) 2164 return err; 2165 } 2166 2167 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2168 soc->num_ttgs, sizeof(z), 2169 GFP_KERNEL); 2170 if (!tegra->thermctl_tzs) 2171 return -ENOMEM; 2172 2173 err = soctherm_clk_enable(pdev, true); 2174 if (err) 2175 return err; 2176 2177 soctherm_thermtrips_parse(pdev); 2178 2179 soctherm_init_hw_throt_cdev(pdev); 2180 2181 soctherm_init(pdev); 2182 2183 for (i = 0; i < soc->num_ttgs; ++i) { 2184 struct tegra_thermctl_zone *zone = 2185 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2186 if (!zone) { 2187 err = -ENOMEM; 2188 goto disable_clocks; 2189 } 2190 2191 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2192 zone->dev = &pdev->dev; 2193 zone->sg = soc->ttgs[i]; 2194 zone->ts = tegra; 2195 2196 z = devm_thermal_of_zone_register(&pdev->dev, 2197 soc->ttgs[i]->id, zone, 2198 &tegra_of_thermal_ops); 2199 if (IS_ERR(z)) { 2200 err = PTR_ERR(z); 2201 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2202 err); 2203 goto disable_clocks; 2204 } 2205 2206 zone->tz = z; 2207 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2208 2209 /* Configure hw trip points */ 2210 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2211 if (err) 2212 goto disable_clocks; 2213 } 2214 2215 err = soctherm_interrupts_init(pdev, tegra); 2216 2217 soctherm_debug_init(pdev); 2218 2219 return 0; 2220 2221 disable_clocks: 2222 soctherm_clk_enable(pdev, false); 2223 2224 return err; 2225 } 2226 2227 static int tegra_soctherm_remove(struct platform_device *pdev) 2228 { 2229 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2230 2231 debugfs_remove_recursive(tegra->debugfs_dir); 2232 2233 soctherm_clk_enable(pdev, false); 2234 2235 return 0; 2236 } 2237 2238 static int __maybe_unused soctherm_suspend(struct device *dev) 2239 { 2240 struct platform_device *pdev = to_platform_device(dev); 2241 2242 soctherm_clk_enable(pdev, false); 2243 2244 return 0; 2245 } 2246 2247 static int __maybe_unused soctherm_resume(struct device *dev) 2248 { 2249 struct platform_device *pdev = to_platform_device(dev); 2250 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2251 struct tegra_soctherm_soc *soc = tegra->soc; 2252 int err, i; 2253 2254 err = soctherm_clk_enable(pdev, true); 2255 if (err) { 2256 dev_err(&pdev->dev, 2257 "Resume failed: enable clocks failed\n"); 2258 return err; 2259 } 2260 2261 soctherm_init(pdev); 2262 2263 for (i = 0; i < soc->num_ttgs; ++i) { 2264 struct thermal_zone_device *tz; 2265 2266 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2267 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2268 if (err) { 2269 dev_err(&pdev->dev, 2270 "Resume failed: set hwtrips failed\n"); 2271 return err; 2272 } 2273 } 2274 2275 return 0; 2276 } 2277 2278 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2279 2280 static struct platform_driver tegra_soctherm_driver = { 2281 .probe = tegra_soctherm_probe, 2282 .remove = tegra_soctherm_remove, 2283 .driver = { 2284 .name = "tegra_soctherm", 2285 .pm = &tegra_soctherm_pm, 2286 .of_match_table = tegra_soctherm_of_match, 2287 }, 2288 }; 2289 module_platform_driver(tegra_soctherm_driver); 2290 2291 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2292 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2293 MODULE_LICENSE("GPL v2"); 2294