xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision fccfe0993b5dc550e5f9fbb716fb0b588c5fdbc1)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37 
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40 
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO		0x0
43 #define EXYNOS_TMU_REG_CONTROL		0x20
44 #define EXYNOS_TMU_REG_STATUS		0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP	0x40
46 #define EXYNOS_TMU_REG_INTEN		0x70
47 #define EXYNOS_TMU_REG_INTSTAT		0x74
48 #define EXYNOS_TMU_REG_INTCLEAR		0x78
49 
50 #define EXYNOS_TMU_TEMP_MASK		0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT	24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK	0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK	0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT	8
55 #define EXYNOS_TMU_CORE_EN_SHIFT	0
56 
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1	0x10
59 
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP	0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0	0x50
63 
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2	0x14
66 #define EXYNOS_THD_TEMP_RISE		0x50
67 #define EXYNOS_THD_TEMP_FALL		0x54
68 #define EXYNOS_EMUL_CON		0x80
69 
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE	1
71 #define EXYNOS_TRIMINFO_25_SHIFT	0
72 #define EXYNOS_TRIMINFO_85_SHIFT	8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT	13
74 #define EXYNOS_TMU_TRIP_MODE_MASK	0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT	12
76 
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT	0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT	4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT	8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT	12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT	16
82 
83 #define EXYNOS_EMUL_TIME	0x57F0
84 #define EXYNOS_EMUL_TIME_MASK	0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT	16
86 #define EXYNOS_EMUL_DATA_SHIFT	8
87 #define EXYNOS_EMUL_DATA_MASK	0xFF
88 #define EXYNOS_EMUL_ENABLE	0x1
89 
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN		0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT		0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR		0xC8
94 #define EXYNOS5260_EMUL_CON			0x100
95 
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99 
100 /* Exynos5433 specific registers */
101 #define EXYNOS5433_TMU_REG_CONTROL1		0x024
102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL	0x02c
103 #define EXYNOS5433_TMU_COUNTER_VALUE0		0x030
104 #define EXYNOS5433_TMU_COUNTER_VALUE1		0x034
105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1	0x044
106 #define EXYNOS5433_THD_TEMP_RISE3_0		0x050
107 #define EXYNOS5433_THD_TEMP_RISE7_4		0x054
108 #define EXYNOS5433_THD_TEMP_FALL3_0		0x060
109 #define EXYNOS5433_THD_TEMP_FALL7_4		0x064
110 #define EXYNOS5433_TMU_REG_INTEN		0x0c0
111 #define EXYNOS5433_TMU_REG_INTPEND		0x0c8
112 #define EXYNOS5433_TMU_EMUL_CON			0x110
113 #define EXYNOS5433_TMU_PD_DET_EN		0x130
114 
115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT	16
116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT	23
117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK	\
118 			(0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT)
119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK	BIT(23)
120 
121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING	0
122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING	1
123 
124 #define EXYNOS5433_PD_DET_EN			1
125 
126 #define EXYNOS5433_G3D_BASE			0x10070000
127 
128 /*exynos5440 specific registers*/
129 #define EXYNOS5440_TMU_S0_7_TRIM		0x000
130 #define EXYNOS5440_TMU_S0_7_CTRL		0x020
131 #define EXYNOS5440_TMU_S0_7_DEBUG		0x040
132 #define EXYNOS5440_TMU_S0_7_TEMP		0x0f0
133 #define EXYNOS5440_TMU_S0_7_TH0			0x110
134 #define EXYNOS5440_TMU_S0_7_TH1			0x130
135 #define EXYNOS5440_TMU_S0_7_TH2			0x150
136 #define EXYNOS5440_TMU_S0_7_IRQEN		0x210
137 #define EXYNOS5440_TMU_S0_7_IRQ			0x230
138 /* exynos5440 common registers */
139 #define EXYNOS5440_TMU_IRQ_STATUS		0x000
140 #define EXYNOS5440_TMU_PMIN			0x004
141 
142 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT	0
143 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT	1
144 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT	2
145 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT	3
146 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT	4
147 #define EXYNOS5440_TMU_TH_RISE4_SHIFT		24
148 #define EXYNOS5440_EFUSE_SWAP_OFFSET		8
149 
150 /* Exynos7 specific registers */
151 #define EXYNOS7_THD_TEMP_RISE7_6		0x50
152 #define EXYNOS7_THD_TEMP_FALL7_6		0x60
153 #define EXYNOS7_TMU_REG_INTEN			0x110
154 #define EXYNOS7_TMU_REG_INTPEND			0x118
155 #define EXYNOS7_TMU_REG_EMUL_CON		0x160
156 
157 #define EXYNOS7_TMU_TEMP_MASK			0x1ff
158 #define EXYNOS7_PD_DET_EN_SHIFT			23
159 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT		0
160 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT		1
161 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT		2
162 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT		3
163 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT		4
164 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT		5
165 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT		6
166 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT		7
167 #define EXYNOS7_EMUL_DATA_SHIFT			7
168 #define EXYNOS7_EMUL_DATA_MASK			0x1ff
169 
170 #define EXYNOS_FIRST_POINT_TRIM			25
171 #define EXYNOS_SECOND_POINT_TRIM		85
172 
173 #define EXYNOS_NOISE_CANCEL_MODE		4
174 
175 #define MCELSIUS	1000
176 /**
177  * struct exynos_tmu_data : A structure to hold the private data of the TMU
178 	driver
179  * @id: identifier of the one instance of the TMU controller.
180  * @pdata: pointer to the tmu platform/configuration data
181  * @base: base address of the single instance of the TMU controller.
182  * @base_second: base address of the common registers of the TMU controller.
183  * @irq: irq number of the TMU controller.
184  * @soc: id of the SOC type.
185  * @irq_work: pointer to the irq work structure.
186  * @lock: lock to implement synchronization.
187  * @clk: pointer to the clock structure.
188  * @clk_sec: pointer to the clock structure for accessing the base_second.
189  * @sclk: pointer to the clock structure for accessing the tmu special clk.
190  * @efuse_value: SoC defined fuse value
191  * @min_efuse_value: minimum valid trimming data
192  * @max_efuse_value: maximum valid trimming data
193  * @temp_error1: fused value of the first point trim.
194  * @temp_error2: fused value of the second point trim.
195  * @gain: gain of amplifier in the positive-TC generator block
196  *	0 < gain <= 15
197  * @reference_voltage: reference voltage of amplifier
198  *	in the positive-TC generator block
199  *	0 < reference_voltage <= 31
200  * @regulator: pointer to the TMU regulator structure.
201  * @reg_conf: pointer to structure to register with core thermal.
202  * @ntrip: number of supported trip points.
203  * @enabled: current status of TMU device
204  * @tmu_initialize: SoC specific TMU initialization method
205  * @tmu_control: SoC specific TMU control method
206  * @tmu_read: SoC specific TMU temperature read method
207  * @tmu_set_emulation: SoC specific TMU emulation setting method
208  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
209  */
210 struct exynos_tmu_data {
211 	int id;
212 	struct exynos_tmu_platform_data *pdata;
213 	void __iomem *base;
214 	void __iomem *base_second;
215 	int irq;
216 	enum soc_type soc;
217 	struct work_struct irq_work;
218 	struct mutex lock;
219 	struct clk *clk, *clk_sec, *sclk;
220 	u32 efuse_value;
221 	u32 min_efuse_value;
222 	u32 max_efuse_value;
223 	u16 temp_error1, temp_error2;
224 	u8 gain;
225 	u8 reference_voltage;
226 	struct regulator *regulator;
227 	struct thermal_zone_device *tzd;
228 	unsigned int ntrip;
229 	bool enabled;
230 
231 	int (*tmu_initialize)(struct platform_device *pdev);
232 	void (*tmu_control)(struct platform_device *pdev, bool on);
233 	int (*tmu_read)(struct exynos_tmu_data *data);
234 	void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp);
235 	void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
236 };
237 
238 static void exynos_report_trigger(struct exynos_tmu_data *p)
239 {
240 	char data[10], *envp[] = { data, NULL };
241 	struct thermal_zone_device *tz = p->tzd;
242 	int temp;
243 	unsigned int i;
244 
245 	if (!tz) {
246 		pr_err("No thermal zone device defined\n");
247 		return;
248 	}
249 
250 	thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
251 
252 	mutex_lock(&tz->lock);
253 	/* Find the level for which trip happened */
254 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
255 		tz->ops->get_trip_temp(tz, i, &temp);
256 		if (tz->last_temperature < temp)
257 			break;
258 	}
259 
260 	snprintf(data, sizeof(data), "%u", i);
261 	kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
262 	mutex_unlock(&tz->lock);
263 }
264 
265 /*
266  * TMU treats temperature as a mapped temperature code.
267  * The temperature is converted differently depending on the calibration type.
268  */
269 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
270 {
271 	struct exynos_tmu_platform_data *pdata = data->pdata;
272 
273 	if (pdata->cal_type == TYPE_ONE_POINT_TRIMMING)
274 		return temp + data->temp_error1 - EXYNOS_FIRST_POINT_TRIM;
275 
276 	return (temp - EXYNOS_FIRST_POINT_TRIM) *
277 		(data->temp_error2 - data->temp_error1) /
278 		(EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) +
279 		data->temp_error1;
280 }
281 
282 /*
283  * Calculate a temperature value from a temperature code.
284  * The unit of the temperature is degree Celsius.
285  */
286 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
287 {
288 	struct exynos_tmu_platform_data *pdata = data->pdata;
289 
290 	if (pdata->cal_type == TYPE_ONE_POINT_TRIMMING)
291 		return temp_code - data->temp_error1 + EXYNOS_FIRST_POINT_TRIM;
292 
293 	return (temp_code - data->temp_error1) *
294 		(EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) /
295 		(data->temp_error2 - data->temp_error1) +
296 		EXYNOS_FIRST_POINT_TRIM;
297 }
298 
299 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
300 {
301 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
302 	data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
303 				EXYNOS_TMU_TEMP_MASK);
304 
305 	if (!data->temp_error1 ||
306 	    (data->min_efuse_value > data->temp_error1) ||
307 	    (data->temp_error1 > data->max_efuse_value))
308 		data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK;
309 
310 	if (!data->temp_error2)
311 		data->temp_error2 =
312 			(data->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
313 			EXYNOS_TMU_TEMP_MASK;
314 }
315 
316 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
317 {
318 	struct thermal_zone_device *tz = data->tzd;
319 	const struct thermal_trip * const trips =
320 		of_thermal_get_trip_points(tz);
321 	unsigned long temp;
322 	int i;
323 
324 	if (!trips) {
325 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
326 		       __func__);
327 		return 0;
328 	}
329 
330 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
331 		if (trips[i].type == THERMAL_TRIP_CRITICAL)
332 			continue;
333 
334 		temp = trips[i].temperature / MCELSIUS;
335 		if (falling)
336 			temp -= (trips[i].hysteresis / MCELSIUS);
337 		else
338 			threshold &= ~(0xff << 8 * i);
339 
340 		threshold |= temp_to_code(data, temp) << 8 * i;
341 	}
342 
343 	return threshold;
344 }
345 
346 static int exynos_tmu_initialize(struct platform_device *pdev)
347 {
348 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
349 	int ret;
350 
351 	if (of_thermal_get_ntrips(data->tzd) > data->ntrip) {
352 		dev_info(&pdev->dev,
353 			 "More trip points than supported by this TMU.\n");
354 		dev_info(&pdev->dev,
355 			 "%d trip points should be configured in polling mode.\n",
356 			 (of_thermal_get_ntrips(data->tzd) - data->ntrip));
357 	}
358 
359 	mutex_lock(&data->lock);
360 	clk_enable(data->clk);
361 	if (!IS_ERR(data->clk_sec))
362 		clk_enable(data->clk_sec);
363 	ret = data->tmu_initialize(pdev);
364 	clk_disable(data->clk);
365 	mutex_unlock(&data->lock);
366 	if (!IS_ERR(data->clk_sec))
367 		clk_disable(data->clk_sec);
368 
369 	return ret;
370 }
371 
372 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
373 {
374 	if (data->soc == SOC_ARCH_EXYNOS4412 ||
375 	    data->soc == SOC_ARCH_EXYNOS3250)
376 		con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
377 
378 	con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
379 	con |= data->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
380 
381 	con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
382 	con |= (data->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
383 
384 	con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
385 	con |= (EXYNOS_NOISE_CANCEL_MODE << EXYNOS_TMU_TRIP_MODE_SHIFT);
386 
387 	return con;
388 }
389 
390 static void exynos_tmu_control(struct platform_device *pdev, bool on)
391 {
392 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
393 
394 	mutex_lock(&data->lock);
395 	clk_enable(data->clk);
396 	data->tmu_control(pdev, on);
397 	data->enabled = on;
398 	clk_disable(data->clk);
399 	mutex_unlock(&data->lock);
400 }
401 
402 static int exynos4210_tmu_initialize(struct platform_device *pdev)
403 {
404 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
405 	struct thermal_zone_device *tz = data->tzd;
406 	const struct thermal_trip * const trips =
407 		of_thermal_get_trip_points(tz);
408 	int ret = 0, threshold_code, i;
409 	unsigned long reference, temp;
410 	unsigned int status;
411 
412 	if (!trips) {
413 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
414 		       __func__);
415 		ret = -ENODEV;
416 		goto out;
417 	}
418 
419 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
420 	if (!status) {
421 		ret = -EBUSY;
422 		goto out;
423 	}
424 
425 	sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
426 
427 	/* Write temperature code for threshold */
428 	reference = trips[0].temperature / MCELSIUS;
429 	threshold_code = temp_to_code(data, reference);
430 	if (threshold_code < 0) {
431 		ret = threshold_code;
432 		goto out;
433 	}
434 	writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
435 
436 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
437 		temp = trips[i].temperature / MCELSIUS;
438 		writeb(temp - reference, data->base +
439 		       EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
440 	}
441 
442 	data->tmu_clear_irqs(data);
443 out:
444 	return ret;
445 }
446 
447 static int exynos4412_tmu_initialize(struct platform_device *pdev)
448 {
449 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
450 	const struct thermal_trip * const trips =
451 		of_thermal_get_trip_points(data->tzd);
452 	unsigned int status, trim_info, con, ctrl, rising_threshold;
453 	int ret = 0, threshold_code, i;
454 	unsigned long crit_temp = 0;
455 
456 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
457 	if (!status) {
458 		ret = -EBUSY;
459 		goto out;
460 	}
461 
462 	if (data->soc == SOC_ARCH_EXYNOS3250 ||
463 	    data->soc == SOC_ARCH_EXYNOS4412 ||
464 	    data->soc == SOC_ARCH_EXYNOS5250) {
465 		if (data->soc == SOC_ARCH_EXYNOS3250) {
466 			ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
467 			ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
468 			writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
469 		}
470 		ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
471 		ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
472 		writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
473 	}
474 
475 	/* On exynos5420 the triminfo register is in the shared space */
476 	if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
477 		trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
478 	else
479 		trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
480 
481 	sanitize_temp_error(data, trim_info);
482 
483 	/* Write temperature code for rising and falling threshold */
484 	rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
485 	rising_threshold = get_th_reg(data, rising_threshold, false);
486 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
487 	writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
488 
489 	data->tmu_clear_irqs(data);
490 
491 	/* if last threshold limit is also present */
492 	for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
493 		if (trips[i].type == THERMAL_TRIP_CRITICAL) {
494 			crit_temp = trips[i].temperature;
495 			break;
496 		}
497 	}
498 
499 	if (i == of_thermal_get_ntrips(data->tzd)) {
500 		pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
501 		       __func__);
502 		ret = -EINVAL;
503 		goto out;
504 	}
505 
506 	threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
507 	/* 1-4 level to be assigned in th0 reg */
508 	rising_threshold &= ~(0xff << 8 * i);
509 	rising_threshold |= threshold_code << 8 * i;
510 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
511 	con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
512 	con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
513 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
514 
515 out:
516 	return ret;
517 }
518 
519 static int exynos5433_tmu_initialize(struct platform_device *pdev)
520 {
521 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
522 	struct exynos_tmu_platform_data *pdata = data->pdata;
523 	struct thermal_zone_device *tz = data->tzd;
524 	unsigned int status, trim_info;
525 	unsigned int rising_threshold = 0, falling_threshold = 0;
526 	int temp, temp_hist;
527 	int ret = 0, threshold_code, i, sensor_id, cal_type;
528 
529 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
530 	if (!status) {
531 		ret = -EBUSY;
532 		goto out;
533 	}
534 
535 	trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
536 	sanitize_temp_error(data, trim_info);
537 
538 	/* Read the temperature sensor id */
539 	sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK)
540 				>> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT;
541 	dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id);
542 
543 	/* Read the calibration mode */
544 	writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO);
545 	cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK)
546 				>> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT;
547 
548 	switch (cal_type) {
549 	case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING:
550 		pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
551 		break;
552 	case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING:
553 		pdata->cal_type = TYPE_TWO_POINT_TRIMMING;
554 		break;
555 	default:
556 		pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
557 		break;
558 	}
559 
560 	dev_info(&pdev->dev, "Calibration type is %d-point calibration\n",
561 			cal_type ?  2 : 1);
562 
563 	/* Write temperature code for rising and falling threshold */
564 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
565 		int rising_reg_offset, falling_reg_offset;
566 		int j = 0;
567 
568 		switch (i) {
569 		case 0:
570 		case 1:
571 		case 2:
572 		case 3:
573 			rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0;
574 			falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0;
575 			j = i;
576 			break;
577 		case 4:
578 		case 5:
579 		case 6:
580 		case 7:
581 			rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4;
582 			falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4;
583 			j = i - 4;
584 			break;
585 		default:
586 			continue;
587 		}
588 
589 		/* Write temperature code for rising threshold */
590 		tz->ops->get_trip_temp(tz, i, &temp);
591 		temp /= MCELSIUS;
592 		threshold_code = temp_to_code(data, temp);
593 
594 		rising_threshold = readl(data->base + rising_reg_offset);
595 		rising_threshold |= (threshold_code << j * 8);
596 		writel(rising_threshold, data->base + rising_reg_offset);
597 
598 		/* Write temperature code for falling threshold */
599 		tz->ops->get_trip_hyst(tz, i, &temp_hist);
600 		temp_hist = temp - (temp_hist / MCELSIUS);
601 		threshold_code = temp_to_code(data, temp_hist);
602 
603 		falling_threshold = readl(data->base + falling_reg_offset);
604 		falling_threshold &= ~(0xff << j * 8);
605 		falling_threshold |= (threshold_code << j * 8);
606 		writel(falling_threshold, data->base + falling_reg_offset);
607 	}
608 
609 	data->tmu_clear_irqs(data);
610 out:
611 	return ret;
612 }
613 
614 static int exynos5440_tmu_initialize(struct platform_device *pdev)
615 {
616 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
617 	unsigned int trim_info = 0, con, rising_threshold;
618 	int threshold_code;
619 	int crit_temp = 0;
620 
621 	/*
622 	 * For exynos5440 soc triminfo value is swapped between TMU0 and
623 	 * TMU2, so the below logic is needed.
624 	 */
625 	switch (data->id) {
626 	case 0:
627 		trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
628 				 EXYNOS5440_TMU_S0_7_TRIM);
629 		break;
630 	case 1:
631 		trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
632 		break;
633 	case 2:
634 		trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
635 				  EXYNOS5440_TMU_S0_7_TRIM);
636 	}
637 	sanitize_temp_error(data, trim_info);
638 
639 	/* Write temperature code for rising and falling threshold */
640 	rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
641 	rising_threshold = get_th_reg(data, rising_threshold, false);
642 	writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
643 	writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
644 
645 	data->tmu_clear_irqs(data);
646 
647 	/* if last threshold limit is also present */
648 	if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
649 		threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
650 		/* 5th level to be assigned in th2 reg */
651 		rising_threshold =
652 			threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
653 		writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
654 		con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
655 		con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
656 		writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
657 	}
658 	/* Clear the PMIN in the common TMU register */
659 	if (!data->id)
660 		writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
661 
662 	return 0;
663 }
664 
665 static int exynos7_tmu_initialize(struct platform_device *pdev)
666 {
667 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
668 	struct thermal_zone_device *tz = data->tzd;
669 	unsigned int status, trim_info;
670 	unsigned int rising_threshold = 0, falling_threshold = 0;
671 	int ret = 0, threshold_code, i;
672 	int temp, temp_hist;
673 	unsigned int reg_off, bit_off;
674 
675 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
676 	if (!status) {
677 		ret = -EBUSY;
678 		goto out;
679 	}
680 
681 	trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
682 
683 	data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
684 	if (!data->temp_error1 ||
685 	    (data->min_efuse_value > data->temp_error1) ||
686 	    (data->temp_error1 > data->max_efuse_value))
687 		data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK;
688 
689 	/* Write temperature code for rising and falling threshold */
690 	for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
691 		/*
692 		 * On exynos7 there are 4 rising and 4 falling threshold
693 		 * registers (0x50-0x5c and 0x60-0x6c respectively). Each
694 		 * register holds the value of two threshold levels (at bit
695 		 * offsets 0 and 16). Based on the fact that there are atmost
696 		 * eight possible trigger levels, calculate the register and
697 		 * bit offsets where the threshold levels are to be written.
698 		 *
699 		 * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
700 		 * [24:16] - Threshold level 7
701 		 * [8:0] - Threshold level 6
702 		 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
703 		 * [24:16] - Threshold level 5
704 		 * [8:0] - Threshold level 4
705 		 *
706 		 * and similarly for falling thresholds.
707 		 *
708 		 * Based on the above, calculate the register and bit offsets
709 		 * for rising/falling threshold levels and populate them.
710 		 */
711 		reg_off = ((7 - i) / 2) * 4;
712 		bit_off = ((8 - i) % 2);
713 
714 		tz->ops->get_trip_temp(tz, i, &temp);
715 		temp /= MCELSIUS;
716 
717 		tz->ops->get_trip_hyst(tz, i, &temp_hist);
718 		temp_hist = temp - (temp_hist / MCELSIUS);
719 
720 		/* Set 9-bit temperature code for rising threshold levels */
721 		threshold_code = temp_to_code(data, temp);
722 		rising_threshold = readl(data->base +
723 			EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
724 		rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
725 		rising_threshold |= threshold_code << (16 * bit_off);
726 		writel(rising_threshold,
727 		       data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
728 
729 		/* Set 9-bit temperature code for falling threshold levels */
730 		threshold_code = temp_to_code(data, temp_hist);
731 		falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
732 		falling_threshold |= threshold_code << (16 * bit_off);
733 		writel(falling_threshold,
734 		       data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
735 	}
736 
737 	data->tmu_clear_irqs(data);
738 out:
739 	return ret;
740 }
741 
742 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
743 {
744 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
745 	struct thermal_zone_device *tz = data->tzd;
746 	unsigned int con, interrupt_en;
747 
748 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
749 
750 	if (on) {
751 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
752 		interrupt_en =
753 			(of_thermal_is_trip_valid(tz, 3)
754 			 << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
755 			(of_thermal_is_trip_valid(tz, 2)
756 			 << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
757 			(of_thermal_is_trip_valid(tz, 1)
758 			 << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
759 			(of_thermal_is_trip_valid(tz, 0)
760 			 << EXYNOS_TMU_INTEN_RISE0_SHIFT);
761 
762 		if (data->soc != SOC_ARCH_EXYNOS4210)
763 			interrupt_en |=
764 				interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
765 	} else {
766 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
767 		interrupt_en = 0; /* Disable all interrupts */
768 	}
769 	writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
770 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
771 }
772 
773 static void exynos5433_tmu_control(struct platform_device *pdev, bool on)
774 {
775 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
776 	struct thermal_zone_device *tz = data->tzd;
777 	unsigned int con, interrupt_en, pd_det_en;
778 
779 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
780 
781 	if (on) {
782 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
783 		interrupt_en =
784 			(of_thermal_is_trip_valid(tz, 7)
785 			<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
786 			(of_thermal_is_trip_valid(tz, 6)
787 			<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
788 			(of_thermal_is_trip_valid(tz, 5)
789 			<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
790 			(of_thermal_is_trip_valid(tz, 4)
791 			<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
792 			(of_thermal_is_trip_valid(tz, 3)
793 			<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
794 			(of_thermal_is_trip_valid(tz, 2)
795 			<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
796 			(of_thermal_is_trip_valid(tz, 1)
797 			<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
798 			(of_thermal_is_trip_valid(tz, 0)
799 			<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
800 
801 		interrupt_en |=
802 			interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
803 	} else {
804 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
805 		interrupt_en = 0; /* Disable all interrupts */
806 	}
807 
808 	pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0;
809 
810 	writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN);
811 	writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN);
812 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
813 }
814 
815 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
816 {
817 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
818 	struct thermal_zone_device *tz = data->tzd;
819 	unsigned int con, interrupt_en;
820 
821 	con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
822 
823 	if (on) {
824 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
825 		interrupt_en =
826 			(of_thermal_is_trip_valid(tz, 3)
827 			 << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
828 			(of_thermal_is_trip_valid(tz, 2)
829 			 << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
830 			(of_thermal_is_trip_valid(tz, 1)
831 			 << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
832 			(of_thermal_is_trip_valid(tz, 0)
833 			 << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
834 		interrupt_en |=
835 			interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
836 	} else {
837 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
838 		interrupt_en = 0; /* Disable all interrupts */
839 	}
840 	writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
841 	writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
842 }
843 
844 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
845 {
846 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
847 	struct thermal_zone_device *tz = data->tzd;
848 	unsigned int con, interrupt_en;
849 
850 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
851 
852 	if (on) {
853 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
854 		con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
855 		interrupt_en =
856 			(of_thermal_is_trip_valid(tz, 7)
857 			<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
858 			(of_thermal_is_trip_valid(tz, 6)
859 			<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
860 			(of_thermal_is_trip_valid(tz, 5)
861 			<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
862 			(of_thermal_is_trip_valid(tz, 4)
863 			<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
864 			(of_thermal_is_trip_valid(tz, 3)
865 			<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
866 			(of_thermal_is_trip_valid(tz, 2)
867 			<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
868 			(of_thermal_is_trip_valid(tz, 1)
869 			<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
870 			(of_thermal_is_trip_valid(tz, 0)
871 			<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
872 
873 		interrupt_en |=
874 			interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
875 	} else {
876 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
877 		con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
878 		interrupt_en = 0; /* Disable all interrupts */
879 	}
880 
881 	writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
882 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
883 }
884 
885 static int exynos_get_temp(void *p, int *temp)
886 {
887 	struct exynos_tmu_data *data = p;
888 	int value, ret = 0;
889 
890 	if (!data || !data->tmu_read || !data->enabled)
891 		return -EINVAL;
892 
893 	mutex_lock(&data->lock);
894 	clk_enable(data->clk);
895 
896 	value = data->tmu_read(data);
897 	if (value < 0)
898 		ret = value;
899 	else
900 		*temp = code_to_temp(data, value) * MCELSIUS;
901 
902 	clk_disable(data->clk);
903 	mutex_unlock(&data->lock);
904 
905 	return ret;
906 }
907 
908 #ifdef CONFIG_THERMAL_EMULATION
909 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
910 			    int temp)
911 {
912 	if (temp) {
913 		temp /= MCELSIUS;
914 
915 		if (data->soc != SOC_ARCH_EXYNOS5440) {
916 			val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
917 			val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
918 		}
919 		if (data->soc == SOC_ARCH_EXYNOS7) {
920 			val &= ~(EXYNOS7_EMUL_DATA_MASK <<
921 				EXYNOS7_EMUL_DATA_SHIFT);
922 			val |= (temp_to_code(data, temp) <<
923 				EXYNOS7_EMUL_DATA_SHIFT) |
924 				EXYNOS_EMUL_ENABLE;
925 		} else {
926 			val &= ~(EXYNOS_EMUL_DATA_MASK <<
927 				EXYNOS_EMUL_DATA_SHIFT);
928 			val |= (temp_to_code(data, temp) <<
929 				EXYNOS_EMUL_DATA_SHIFT) |
930 				EXYNOS_EMUL_ENABLE;
931 		}
932 	} else {
933 		val &= ~EXYNOS_EMUL_ENABLE;
934 	}
935 
936 	return val;
937 }
938 
939 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
940 					 int temp)
941 {
942 	unsigned int val;
943 	u32 emul_con;
944 
945 	if (data->soc == SOC_ARCH_EXYNOS5260)
946 		emul_con = EXYNOS5260_EMUL_CON;
947 	else if (data->soc == SOC_ARCH_EXYNOS5433)
948 		emul_con = EXYNOS5433_TMU_EMUL_CON;
949 	else if (data->soc == SOC_ARCH_EXYNOS7)
950 		emul_con = EXYNOS7_TMU_REG_EMUL_CON;
951 	else
952 		emul_con = EXYNOS_EMUL_CON;
953 
954 	val = readl(data->base + emul_con);
955 	val = get_emul_con_reg(data, val, temp);
956 	writel(val, data->base + emul_con);
957 }
958 
959 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
960 					 int temp)
961 {
962 	unsigned int val;
963 
964 	val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
965 	val = get_emul_con_reg(data, val, temp);
966 	writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
967 }
968 
969 static int exynos_tmu_set_emulation(void *drv_data, int temp)
970 {
971 	struct exynos_tmu_data *data = drv_data;
972 	int ret = -EINVAL;
973 
974 	if (data->soc == SOC_ARCH_EXYNOS4210)
975 		goto out;
976 
977 	if (temp && temp < MCELSIUS)
978 		goto out;
979 
980 	mutex_lock(&data->lock);
981 	clk_enable(data->clk);
982 	data->tmu_set_emulation(data, temp);
983 	clk_disable(data->clk);
984 	mutex_unlock(&data->lock);
985 	return 0;
986 out:
987 	return ret;
988 }
989 #else
990 #define exynos4412_tmu_set_emulation NULL
991 #define exynos5440_tmu_set_emulation NULL
992 static int exynos_tmu_set_emulation(void *drv_data, int temp)
993 	{ return -EINVAL; }
994 #endif /* CONFIG_THERMAL_EMULATION */
995 
996 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
997 {
998 	int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
999 
1000 	/* "temp_code" should range between 75 and 175 */
1001 	return (ret < 75 || ret > 175) ? -ENODATA : ret;
1002 }
1003 
1004 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
1005 {
1006 	return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1007 }
1008 
1009 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
1010 {
1011 	return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
1012 }
1013 
1014 static int exynos7_tmu_read(struct exynos_tmu_data *data)
1015 {
1016 	return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
1017 		EXYNOS7_TMU_TEMP_MASK;
1018 }
1019 
1020 static void exynos_tmu_work(struct work_struct *work)
1021 {
1022 	struct exynos_tmu_data *data = container_of(work,
1023 			struct exynos_tmu_data, irq_work);
1024 	unsigned int val_type;
1025 
1026 	if (!IS_ERR(data->clk_sec))
1027 		clk_enable(data->clk_sec);
1028 	/* Find which sensor generated this interrupt */
1029 	if (data->soc == SOC_ARCH_EXYNOS5440) {
1030 		val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
1031 		if (!((val_type >> data->id) & 0x1))
1032 			goto out;
1033 	}
1034 	if (!IS_ERR(data->clk_sec))
1035 		clk_disable(data->clk_sec);
1036 
1037 	exynos_report_trigger(data);
1038 	mutex_lock(&data->lock);
1039 	clk_enable(data->clk);
1040 
1041 	/* TODO: take action based on particular interrupt */
1042 	data->tmu_clear_irqs(data);
1043 
1044 	clk_disable(data->clk);
1045 	mutex_unlock(&data->lock);
1046 out:
1047 	enable_irq(data->irq);
1048 }
1049 
1050 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
1051 {
1052 	unsigned int val_irq;
1053 	u32 tmu_intstat, tmu_intclear;
1054 
1055 	if (data->soc == SOC_ARCH_EXYNOS5260) {
1056 		tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
1057 		tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
1058 	} else if (data->soc == SOC_ARCH_EXYNOS7) {
1059 		tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
1060 		tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
1061 	} else if (data->soc == SOC_ARCH_EXYNOS5433) {
1062 		tmu_intstat = EXYNOS5433_TMU_REG_INTPEND;
1063 		tmu_intclear = EXYNOS5433_TMU_REG_INTPEND;
1064 	} else {
1065 		tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
1066 		tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
1067 	}
1068 
1069 	val_irq = readl(data->base + tmu_intstat);
1070 	/*
1071 	 * Clear the interrupts.  Please note that the documentation for
1072 	 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
1073 	 * states that INTCLEAR register has a different placing of bits
1074 	 * responsible for FALL IRQs than INTSTAT register.  Exynos5420
1075 	 * and Exynos5440 documentation is correct (Exynos4210 doesn't
1076 	 * support FALL IRQs at all).
1077 	 */
1078 	writel(val_irq, data->base + tmu_intclear);
1079 }
1080 
1081 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
1082 {
1083 	unsigned int val_irq;
1084 
1085 	val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
1086 	/* clear the interrupts */
1087 	writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
1088 }
1089 
1090 static irqreturn_t exynos_tmu_irq(int irq, void *id)
1091 {
1092 	struct exynos_tmu_data *data = id;
1093 
1094 	disable_irq_nosync(irq);
1095 	schedule_work(&data->irq_work);
1096 
1097 	return IRQ_HANDLED;
1098 }
1099 
1100 static const struct of_device_id exynos_tmu_match[] = {
1101 	{
1102 		.compatible = "samsung,exynos3250-tmu",
1103 		.data = (const void *)SOC_ARCH_EXYNOS3250,
1104 	}, {
1105 		.compatible = "samsung,exynos4210-tmu",
1106 		.data = (const void *)SOC_ARCH_EXYNOS4210,
1107 	}, {
1108 		.compatible = "samsung,exynos4412-tmu",
1109 		.data = (const void *)SOC_ARCH_EXYNOS4412,
1110 	}, {
1111 		.compatible = "samsung,exynos5250-tmu",
1112 		.data = (const void *)SOC_ARCH_EXYNOS5250,
1113 	}, {
1114 		.compatible = "samsung,exynos5260-tmu",
1115 		.data = (const void *)SOC_ARCH_EXYNOS5260,
1116 	}, {
1117 		.compatible = "samsung,exynos5420-tmu",
1118 		.data = (const void *)SOC_ARCH_EXYNOS5420,
1119 	}, {
1120 		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
1121 		.data = (const void *)SOC_ARCH_EXYNOS5420_TRIMINFO,
1122 	}, {
1123 		.compatible = "samsung,exynos5433-tmu",
1124 		.data = (const void *)SOC_ARCH_EXYNOS5433,
1125 	}, {
1126 		.compatible = "samsung,exynos5440-tmu",
1127 		.data = (const void *)SOC_ARCH_EXYNOS5440,
1128 	}, {
1129 		.compatible = "samsung,exynos7-tmu",
1130 		.data = (const void *)SOC_ARCH_EXYNOS7,
1131 	},
1132 	{ },
1133 };
1134 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
1135 
1136 static int exynos_of_sensor_conf(struct device_node *np,
1137 				 struct exynos_tmu_platform_data *pdata)
1138 {
1139 	of_node_get(np);
1140 
1141 	of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1142 
1143 	of_node_put(np);
1144 	return 0;
1145 }
1146 
1147 static int exynos_map_dt_data(struct platform_device *pdev)
1148 {
1149 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1150 	struct exynos_tmu_platform_data *pdata;
1151 	struct resource res;
1152 
1153 	if (!data || !pdev->dev.of_node)
1154 		return -ENODEV;
1155 
1156 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1157 	if (data->id < 0)
1158 		data->id = 0;
1159 
1160 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1161 	if (data->irq <= 0) {
1162 		dev_err(&pdev->dev, "failed to get IRQ\n");
1163 		return -ENODEV;
1164 	}
1165 
1166 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1167 		dev_err(&pdev->dev, "failed to get Resource 0\n");
1168 		return -ENODEV;
1169 	}
1170 
1171 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1172 	if (!data->base) {
1173 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1174 		return -EADDRNOTAVAIL;
1175 	}
1176 
1177 	pdata = devm_kzalloc(&pdev->dev,
1178 			     sizeof(struct exynos_tmu_platform_data),
1179 			     GFP_KERNEL);
1180 	if (!pdata)
1181 		return -ENOMEM;
1182 
1183 	exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1184 	data->pdata = pdata;
1185 	data->soc = (enum soc_type)of_device_get_match_data(&pdev->dev);
1186 
1187 	switch (data->soc) {
1188 	case SOC_ARCH_EXYNOS4210:
1189 		data->tmu_initialize = exynos4210_tmu_initialize;
1190 		data->tmu_control = exynos4210_tmu_control;
1191 		data->tmu_read = exynos4210_tmu_read;
1192 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1193 		data->ntrip = 4;
1194 		data->gain = 15;
1195 		data->reference_voltage = 7;
1196 		data->efuse_value = 55;
1197 		data->min_efuse_value = 40;
1198 		data->max_efuse_value = 100;
1199 		break;
1200 	case SOC_ARCH_EXYNOS3250:
1201 	case SOC_ARCH_EXYNOS4412:
1202 	case SOC_ARCH_EXYNOS5250:
1203 	case SOC_ARCH_EXYNOS5260:
1204 	case SOC_ARCH_EXYNOS5420:
1205 	case SOC_ARCH_EXYNOS5420_TRIMINFO:
1206 		data->tmu_initialize = exynos4412_tmu_initialize;
1207 		data->tmu_control = exynos4210_tmu_control;
1208 		data->tmu_read = exynos4412_tmu_read;
1209 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1210 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1211 		data->ntrip = 4;
1212 		data->gain = 8;
1213 		data->reference_voltage = 16;
1214 		data->efuse_value = 55;
1215 		if (data->soc != SOC_ARCH_EXYNOS5420 &&
1216 		    data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO)
1217 			data->min_efuse_value = 40;
1218 		else
1219 			data->min_efuse_value = 0;
1220 		data->max_efuse_value = 100;
1221 		break;
1222 	case SOC_ARCH_EXYNOS5433:
1223 		data->tmu_initialize = exynos5433_tmu_initialize;
1224 		data->tmu_control = exynos5433_tmu_control;
1225 		data->tmu_read = exynos4412_tmu_read;
1226 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1227 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1228 		data->ntrip = 8;
1229 		data->gain = 8;
1230 		if (res.start == EXYNOS5433_G3D_BASE)
1231 			data->reference_voltage = 23;
1232 		else
1233 			data->reference_voltage = 16;
1234 		data->efuse_value = 75;
1235 		data->min_efuse_value = 40;
1236 		data->max_efuse_value = 150;
1237 		break;
1238 	case SOC_ARCH_EXYNOS5440:
1239 		data->tmu_initialize = exynos5440_tmu_initialize;
1240 		data->tmu_control = exynos5440_tmu_control;
1241 		data->tmu_read = exynos5440_tmu_read;
1242 		data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1243 		data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1244 		data->ntrip = 4;
1245 		data->gain = 5;
1246 		data->reference_voltage = 16;
1247 		data->efuse_value = 0x5d2d;
1248 		data->min_efuse_value = 16;
1249 		data->max_efuse_value = 76;
1250 		break;
1251 	case SOC_ARCH_EXYNOS7:
1252 		data->tmu_initialize = exynos7_tmu_initialize;
1253 		data->tmu_control = exynos7_tmu_control;
1254 		data->tmu_read = exynos7_tmu_read;
1255 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1256 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1257 		data->ntrip = 8;
1258 		data->gain = 9;
1259 		data->reference_voltage = 17;
1260 		data->efuse_value = 75;
1261 		data->min_efuse_value = 15;
1262 		data->max_efuse_value = 100;
1263 		break;
1264 	default:
1265 		dev_err(&pdev->dev, "Platform not supported\n");
1266 		return -EINVAL;
1267 	}
1268 
1269 	/*
1270 	 * Check if the TMU shares some registers and then try to map the
1271 	 * memory of common registers.
1272 	 */
1273 	if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1274 	    data->soc != SOC_ARCH_EXYNOS5440)
1275 		return 0;
1276 
1277 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1278 		dev_err(&pdev->dev, "failed to get Resource 1\n");
1279 		return -ENODEV;
1280 	}
1281 
1282 	data->base_second = devm_ioremap(&pdev->dev, res.start,
1283 					resource_size(&res));
1284 	if (!data->base_second) {
1285 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1286 		return -ENOMEM;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 static const struct thermal_zone_of_device_ops exynos_sensor_ops = {
1293 	.get_temp = exynos_get_temp,
1294 	.set_emul_temp = exynos_tmu_set_emulation,
1295 };
1296 
1297 static int exynos_tmu_probe(struct platform_device *pdev)
1298 {
1299 	struct exynos_tmu_data *data;
1300 	int ret;
1301 
1302 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1303 					GFP_KERNEL);
1304 	if (!data)
1305 		return -ENOMEM;
1306 
1307 	platform_set_drvdata(pdev, data);
1308 	mutex_init(&data->lock);
1309 
1310 	/*
1311 	 * Try enabling the regulator if found
1312 	 * TODO: Add regulator as an SOC feature, so that regulator enable
1313 	 * is a compulsory call.
1314 	 */
1315 	data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu");
1316 	if (!IS_ERR(data->regulator)) {
1317 		ret = regulator_enable(data->regulator);
1318 		if (ret) {
1319 			dev_err(&pdev->dev, "failed to enable vtmu\n");
1320 			return ret;
1321 		}
1322 	} else {
1323 		if (PTR_ERR(data->regulator) == -EPROBE_DEFER)
1324 			return -EPROBE_DEFER;
1325 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1326 	}
1327 
1328 	ret = exynos_map_dt_data(pdev);
1329 	if (ret)
1330 		goto err_sensor;
1331 
1332 	INIT_WORK(&data->irq_work, exynos_tmu_work);
1333 
1334 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1335 	if (IS_ERR(data->clk)) {
1336 		dev_err(&pdev->dev, "Failed to get clock\n");
1337 		ret = PTR_ERR(data->clk);
1338 		goto err_sensor;
1339 	}
1340 
1341 	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1342 	if (IS_ERR(data->clk_sec)) {
1343 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1344 			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1345 			ret = PTR_ERR(data->clk_sec);
1346 			goto err_sensor;
1347 		}
1348 	} else {
1349 		ret = clk_prepare(data->clk_sec);
1350 		if (ret) {
1351 			dev_err(&pdev->dev, "Failed to get clock\n");
1352 			goto err_sensor;
1353 		}
1354 	}
1355 
1356 	ret = clk_prepare(data->clk);
1357 	if (ret) {
1358 		dev_err(&pdev->dev, "Failed to get clock\n");
1359 		goto err_clk_sec;
1360 	}
1361 
1362 	switch (data->soc) {
1363 	case SOC_ARCH_EXYNOS5433:
1364 	case SOC_ARCH_EXYNOS7:
1365 		data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1366 		if (IS_ERR(data->sclk)) {
1367 			dev_err(&pdev->dev, "Failed to get sclk\n");
1368 			goto err_clk;
1369 		} else {
1370 			ret = clk_prepare_enable(data->sclk);
1371 			if (ret) {
1372 				dev_err(&pdev->dev, "Failed to enable sclk\n");
1373 				goto err_clk;
1374 			}
1375 		}
1376 		break;
1377 	default:
1378 		break;
1379 	}
1380 
1381 	/*
1382 	 * data->tzd must be registered before calling exynos_tmu_initialize(),
1383 	 * requesting irq and calling exynos_tmu_control().
1384 	 */
1385 	data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1386 						    &exynos_sensor_ops);
1387 	if (IS_ERR(data->tzd)) {
1388 		ret = PTR_ERR(data->tzd);
1389 		dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret);
1390 		goto err_sclk;
1391 	}
1392 
1393 	ret = exynos_tmu_initialize(pdev);
1394 	if (ret) {
1395 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
1396 		goto err_thermal;
1397 	}
1398 
1399 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1400 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1401 	if (ret) {
1402 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1403 		goto err_thermal;
1404 	}
1405 
1406 	exynos_tmu_control(pdev, true);
1407 	return 0;
1408 
1409 err_thermal:
1410 	thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1411 err_sclk:
1412 	clk_disable_unprepare(data->sclk);
1413 err_clk:
1414 	clk_unprepare(data->clk);
1415 err_clk_sec:
1416 	if (!IS_ERR(data->clk_sec))
1417 		clk_unprepare(data->clk_sec);
1418 err_sensor:
1419 	if (!IS_ERR(data->regulator))
1420 		regulator_disable(data->regulator);
1421 
1422 	return ret;
1423 }
1424 
1425 static int exynos_tmu_remove(struct platform_device *pdev)
1426 {
1427 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1428 	struct thermal_zone_device *tzd = data->tzd;
1429 
1430 	thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1431 	exynos_tmu_control(pdev, false);
1432 
1433 	clk_disable_unprepare(data->sclk);
1434 	clk_unprepare(data->clk);
1435 	if (!IS_ERR(data->clk_sec))
1436 		clk_unprepare(data->clk_sec);
1437 
1438 	if (!IS_ERR(data->regulator))
1439 		regulator_disable(data->regulator);
1440 
1441 	return 0;
1442 }
1443 
1444 #ifdef CONFIG_PM_SLEEP
1445 static int exynos_tmu_suspend(struct device *dev)
1446 {
1447 	exynos_tmu_control(to_platform_device(dev), false);
1448 
1449 	return 0;
1450 }
1451 
1452 static int exynos_tmu_resume(struct device *dev)
1453 {
1454 	struct platform_device *pdev = to_platform_device(dev);
1455 
1456 	exynos_tmu_initialize(pdev);
1457 	exynos_tmu_control(pdev, true);
1458 
1459 	return 0;
1460 }
1461 
1462 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1463 			 exynos_tmu_suspend, exynos_tmu_resume);
1464 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
1465 #else
1466 #define EXYNOS_TMU_PM	NULL
1467 #endif
1468 
1469 static struct platform_driver exynos_tmu_driver = {
1470 	.driver = {
1471 		.name   = "exynos-tmu",
1472 		.pm     = EXYNOS_TMU_PM,
1473 		.of_match_table = exynos_tmu_match,
1474 	},
1475 	.probe = exynos_tmu_probe,
1476 	.remove	= exynos_tmu_remove,
1477 };
1478 
1479 module_platform_driver(exynos_tmu_driver);
1480 
1481 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1482 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1483 MODULE_LICENSE("GPL");
1484 MODULE_ALIAS("platform:exynos-tmu");
1485