xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision e3ed36499bc95658c28557c0f4a6364f30e51bd0)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2014 Samsung Electronics
5  *  Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
6  *  Lukasz Majewski <l.majewski@samsung.com>
7  *
8  *  Copyright (C) 2011 Samsung Electronics
9  *  Donggeun Kim <dg77.kim@samsung.com>
10  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/io.h>
30 #include <linux/interrupt.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/regulator/consumer.h>
37 
38 #include "exynos_tmu.h"
39 #include "../thermal_core.h"
40 
41 /* Exynos generic registers */
42 #define EXYNOS_TMU_REG_TRIMINFO		0x0
43 #define EXYNOS_TMU_REG_CONTROL		0x20
44 #define EXYNOS_TMU_REG_STATUS		0x28
45 #define EXYNOS_TMU_REG_CURRENT_TEMP	0x40
46 #define EXYNOS_TMU_REG_INTEN		0x70
47 #define EXYNOS_TMU_REG_INTSTAT		0x74
48 #define EXYNOS_TMU_REG_INTCLEAR		0x78
49 
50 #define EXYNOS_TMU_TEMP_MASK		0xff
51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT	24
52 #define EXYNOS_TMU_REF_VOLTAGE_MASK	0x1f
53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK	0xf
54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT	8
55 #define EXYNOS_TMU_CORE_EN_SHIFT	0
56 
57 /* Exynos3250 specific registers */
58 #define EXYNOS_TMU_TRIMINFO_CON1	0x10
59 
60 /* Exynos4210 specific registers */
61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP	0x44
62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0	0x50
63 
64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */
65 #define EXYNOS_TMU_TRIMINFO_CON2	0x14
66 #define EXYNOS_THD_TEMP_RISE		0x50
67 #define EXYNOS_THD_TEMP_FALL		0x54
68 #define EXYNOS_EMUL_CON		0x80
69 
70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE	1
71 #define EXYNOS_TRIMINFO_25_SHIFT	0
72 #define EXYNOS_TRIMINFO_85_SHIFT	8
73 #define EXYNOS_TMU_TRIP_MODE_SHIFT	13
74 #define EXYNOS_TMU_TRIP_MODE_MASK	0x7
75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT	12
76 
77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT	0
78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT	4
79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT	8
80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT	12
81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT	16
82 
83 #define EXYNOS_EMUL_TIME	0x57F0
84 #define EXYNOS_EMUL_TIME_MASK	0xffff
85 #define EXYNOS_EMUL_TIME_SHIFT	16
86 #define EXYNOS_EMUL_DATA_SHIFT	8
87 #define EXYNOS_EMUL_DATA_MASK	0xFF
88 #define EXYNOS_EMUL_ENABLE	0x1
89 
90 /* Exynos5260 specific */
91 #define EXYNOS5260_TMU_REG_INTEN		0xC0
92 #define EXYNOS5260_TMU_REG_INTSTAT		0xC4
93 #define EXYNOS5260_TMU_REG_INTCLEAR		0xC8
94 #define EXYNOS5260_EMUL_CON			0x100
95 
96 /* Exynos4412 specific */
97 #define EXYNOS4412_MUX_ADDR_VALUE          6
98 #define EXYNOS4412_MUX_ADDR_SHIFT          20
99 
100 /* Exynos5433 specific registers */
101 #define EXYNOS5433_TMU_REG_CONTROL1		0x024
102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL	0x02c
103 #define EXYNOS5433_TMU_COUNTER_VALUE0		0x030
104 #define EXYNOS5433_TMU_COUNTER_VALUE1		0x034
105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1	0x044
106 #define EXYNOS5433_THD_TEMP_RISE3_0		0x050
107 #define EXYNOS5433_THD_TEMP_RISE7_4		0x054
108 #define EXYNOS5433_THD_TEMP_FALL3_0		0x060
109 #define EXYNOS5433_THD_TEMP_FALL7_4		0x064
110 #define EXYNOS5433_TMU_REG_INTEN		0x0c0
111 #define EXYNOS5433_TMU_REG_INTPEND		0x0c8
112 #define EXYNOS5433_TMU_EMUL_CON			0x110
113 #define EXYNOS5433_TMU_PD_DET_EN		0x130
114 
115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT	16
116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT	23
117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK	\
118 			(0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT)
119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK	BIT(23)
120 
121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING	0
122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING	1
123 
124 #define EXYNOS5433_PD_DET_EN			1
125 
126 /*exynos5440 specific registers*/
127 #define EXYNOS5440_TMU_S0_7_TRIM		0x000
128 #define EXYNOS5440_TMU_S0_7_CTRL		0x020
129 #define EXYNOS5440_TMU_S0_7_DEBUG		0x040
130 #define EXYNOS5440_TMU_S0_7_TEMP		0x0f0
131 #define EXYNOS5440_TMU_S0_7_TH0			0x110
132 #define EXYNOS5440_TMU_S0_7_TH1			0x130
133 #define EXYNOS5440_TMU_S0_7_TH2			0x150
134 #define EXYNOS5440_TMU_S0_7_IRQEN		0x210
135 #define EXYNOS5440_TMU_S0_7_IRQ			0x230
136 /* exynos5440 common registers */
137 #define EXYNOS5440_TMU_IRQ_STATUS		0x000
138 #define EXYNOS5440_TMU_PMIN			0x004
139 
140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT	0
141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT	1
142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT	2
143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT	3
144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT	4
145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT		24
146 #define EXYNOS5440_EFUSE_SWAP_OFFSET		8
147 
148 /* Exynos7 specific registers */
149 #define EXYNOS7_THD_TEMP_RISE7_6		0x50
150 #define EXYNOS7_THD_TEMP_FALL7_6		0x60
151 #define EXYNOS7_TMU_REG_INTEN			0x110
152 #define EXYNOS7_TMU_REG_INTPEND			0x118
153 #define EXYNOS7_TMU_REG_EMUL_CON		0x160
154 
155 #define EXYNOS7_TMU_TEMP_MASK			0x1ff
156 #define EXYNOS7_PD_DET_EN_SHIFT			23
157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT		0
158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT		1
159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT		2
160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT		3
161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT		4
162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT		5
163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT		6
164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT		7
165 #define EXYNOS7_EMUL_DATA_SHIFT			7
166 #define EXYNOS7_EMUL_DATA_MASK			0x1ff
167 
168 #define EXYNOS_FIRST_POINT_TRIM			25
169 #define EXYNOS_SECOND_POINT_TRIM		85
170 
171 #define EXYNOS_NOISE_CANCEL_MODE		4
172 
173 #define MCELSIUS	1000
174 /**
175  * struct exynos_tmu_data : A structure to hold the private data of the TMU
176 	driver
177  * @id: identifier of the one instance of the TMU controller.
178  * @pdata: pointer to the tmu platform/configuration data
179  * @base: base address of the single instance of the TMU controller.
180  * @base_second: base address of the common registers of the TMU controller.
181  * @irq: irq number of the TMU controller.
182  * @soc: id of the SOC type.
183  * @irq_work: pointer to the irq work structure.
184  * @lock: lock to implement synchronization.
185  * @clk: pointer to the clock structure.
186  * @clk_sec: pointer to the clock structure for accessing the base_second.
187  * @sclk: pointer to the clock structure for accessing the tmu special clk.
188  * @efuse_value: SoC defined fuse value
189  * @min_efuse_value: minimum valid trimming data
190  * @max_efuse_value: maximum valid trimming data
191  * @temp_error1: fused value of the first point trim.
192  * @temp_error2: fused value of the second point trim.
193  * @regulator: pointer to the TMU regulator structure.
194  * @reg_conf: pointer to structure to register with core thermal.
195  * @ntrip: number of supported trip points.
196  * @enabled: current status of TMU device
197  * @tmu_initialize: SoC specific TMU initialization method
198  * @tmu_control: SoC specific TMU control method
199  * @tmu_read: SoC specific TMU temperature read method
200  * @tmu_set_emulation: SoC specific TMU emulation setting method
201  * @tmu_clear_irqs: SoC specific TMU interrupts clearing method
202  */
203 struct exynos_tmu_data {
204 	int id;
205 	struct exynos_tmu_platform_data *pdata;
206 	void __iomem *base;
207 	void __iomem *base_second;
208 	int irq;
209 	enum soc_type soc;
210 	struct work_struct irq_work;
211 	struct mutex lock;
212 	struct clk *clk, *clk_sec, *sclk;
213 	u32 efuse_value;
214 	u32 min_efuse_value;
215 	u32 max_efuse_value;
216 	u16 temp_error1, temp_error2;
217 	struct regulator *regulator;
218 	struct thermal_zone_device *tzd;
219 	unsigned int ntrip;
220 	bool enabled;
221 
222 	int (*tmu_initialize)(struct platform_device *pdev);
223 	void (*tmu_control)(struct platform_device *pdev, bool on);
224 	int (*tmu_read)(struct exynos_tmu_data *data);
225 	void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp);
226 	void (*tmu_clear_irqs)(struct exynos_tmu_data *data);
227 };
228 
229 static void exynos_report_trigger(struct exynos_tmu_data *p)
230 {
231 	char data[10], *envp[] = { data, NULL };
232 	struct thermal_zone_device *tz = p->tzd;
233 	int temp;
234 	unsigned int i;
235 
236 	if (!tz) {
237 		pr_err("No thermal zone device defined\n");
238 		return;
239 	}
240 
241 	thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
242 
243 	mutex_lock(&tz->lock);
244 	/* Find the level for which trip happened */
245 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
246 		tz->ops->get_trip_temp(tz, i, &temp);
247 		if (tz->last_temperature < temp)
248 			break;
249 	}
250 
251 	snprintf(data, sizeof(data), "%u", i);
252 	kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp);
253 	mutex_unlock(&tz->lock);
254 }
255 
256 /*
257  * TMU treats temperature as a mapped temperature code.
258  * The temperature is converted differently depending on the calibration type.
259  */
260 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
261 {
262 	struct exynos_tmu_platform_data *pdata = data->pdata;
263 
264 	if (pdata->cal_type == TYPE_ONE_POINT_TRIMMING)
265 		return temp + data->temp_error1 - EXYNOS_FIRST_POINT_TRIM;
266 
267 	return (temp - EXYNOS_FIRST_POINT_TRIM) *
268 		(data->temp_error2 - data->temp_error1) /
269 		(EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) +
270 		data->temp_error1;
271 }
272 
273 /*
274  * Calculate a temperature value from a temperature code.
275  * The unit of the temperature is degree Celsius.
276  */
277 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code)
278 {
279 	struct exynos_tmu_platform_data *pdata = data->pdata;
280 
281 	if (pdata->cal_type == TYPE_ONE_POINT_TRIMMING)
282 		return temp_code - data->temp_error1 + EXYNOS_FIRST_POINT_TRIM;
283 
284 	return (temp_code - data->temp_error1) *
285 		(EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) /
286 		(data->temp_error2 - data->temp_error1) +
287 		EXYNOS_FIRST_POINT_TRIM;
288 }
289 
290 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info)
291 {
292 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
293 	data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
294 				EXYNOS_TMU_TEMP_MASK);
295 
296 	if (!data->temp_error1 ||
297 	    (data->min_efuse_value > data->temp_error1) ||
298 	    (data->temp_error1 > data->max_efuse_value))
299 		data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK;
300 
301 	if (!data->temp_error2)
302 		data->temp_error2 =
303 			(data->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
304 			EXYNOS_TMU_TEMP_MASK;
305 }
306 
307 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling)
308 {
309 	struct thermal_zone_device *tz = data->tzd;
310 	const struct thermal_trip * const trips =
311 		of_thermal_get_trip_points(tz);
312 	unsigned long temp;
313 	int i;
314 
315 	if (!trips) {
316 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
317 		       __func__);
318 		return 0;
319 	}
320 
321 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
322 		if (trips[i].type == THERMAL_TRIP_CRITICAL)
323 			continue;
324 
325 		temp = trips[i].temperature / MCELSIUS;
326 		if (falling)
327 			temp -= (trips[i].hysteresis / MCELSIUS);
328 		else
329 			threshold &= ~(0xff << 8 * i);
330 
331 		threshold |= temp_to_code(data, temp) << 8 * i;
332 	}
333 
334 	return threshold;
335 }
336 
337 static int exynos_tmu_initialize(struct platform_device *pdev)
338 {
339 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
340 	int ret;
341 
342 	if (of_thermal_get_ntrips(data->tzd) > data->ntrip) {
343 		dev_info(&pdev->dev,
344 			 "More trip points than supported by this TMU.\n");
345 		dev_info(&pdev->dev,
346 			 "%d trip points should be configured in polling mode.\n",
347 			 (of_thermal_get_ntrips(data->tzd) - data->ntrip));
348 	}
349 
350 	mutex_lock(&data->lock);
351 	clk_enable(data->clk);
352 	if (!IS_ERR(data->clk_sec))
353 		clk_enable(data->clk_sec);
354 	ret = data->tmu_initialize(pdev);
355 	clk_disable(data->clk);
356 	mutex_unlock(&data->lock);
357 	if (!IS_ERR(data->clk_sec))
358 		clk_disable(data->clk_sec);
359 
360 	return ret;
361 }
362 
363 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con)
364 {
365 	struct exynos_tmu_platform_data *pdata = data->pdata;
366 
367 	if (data->soc == SOC_ARCH_EXYNOS4412 ||
368 	    data->soc == SOC_ARCH_EXYNOS3250)
369 		con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT);
370 
371 	con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
372 	con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
373 
374 	con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
375 	con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
376 
377 	con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
378 	con |= (EXYNOS_NOISE_CANCEL_MODE << EXYNOS_TMU_TRIP_MODE_SHIFT);
379 
380 	return con;
381 }
382 
383 static void exynos_tmu_control(struct platform_device *pdev, bool on)
384 {
385 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
386 
387 	mutex_lock(&data->lock);
388 	clk_enable(data->clk);
389 	data->tmu_control(pdev, on);
390 	data->enabled = on;
391 	clk_disable(data->clk);
392 	mutex_unlock(&data->lock);
393 }
394 
395 static int exynos4210_tmu_initialize(struct platform_device *pdev)
396 {
397 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
398 	struct thermal_zone_device *tz = data->tzd;
399 	const struct thermal_trip * const trips =
400 		of_thermal_get_trip_points(tz);
401 	int ret = 0, threshold_code, i;
402 	unsigned long reference, temp;
403 	unsigned int status;
404 
405 	if (!trips) {
406 		pr_err("%s: Cannot get trip points from of-thermal.c!\n",
407 		       __func__);
408 		ret = -ENODEV;
409 		goto out;
410 	}
411 
412 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
413 	if (!status) {
414 		ret = -EBUSY;
415 		goto out;
416 	}
417 
418 	sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO));
419 
420 	/* Write temperature code for threshold */
421 	reference = trips[0].temperature / MCELSIUS;
422 	threshold_code = temp_to_code(data, reference);
423 	if (threshold_code < 0) {
424 		ret = threshold_code;
425 		goto out;
426 	}
427 	writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
428 
429 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
430 		temp = trips[i].temperature / MCELSIUS;
431 		writeb(temp - reference, data->base +
432 		       EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4);
433 	}
434 
435 	data->tmu_clear_irqs(data);
436 out:
437 	return ret;
438 }
439 
440 static int exynos4412_tmu_initialize(struct platform_device *pdev)
441 {
442 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
443 	const struct thermal_trip * const trips =
444 		of_thermal_get_trip_points(data->tzd);
445 	unsigned int status, trim_info, con, ctrl, rising_threshold;
446 	int ret = 0, threshold_code, i;
447 	unsigned long crit_temp = 0;
448 
449 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
450 	if (!status) {
451 		ret = -EBUSY;
452 		goto out;
453 	}
454 
455 	if (data->soc == SOC_ARCH_EXYNOS3250 ||
456 	    data->soc == SOC_ARCH_EXYNOS4412 ||
457 	    data->soc == SOC_ARCH_EXYNOS5250) {
458 		if (data->soc == SOC_ARCH_EXYNOS3250) {
459 			ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
460 			ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
461 			writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
462 		}
463 		ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
464 		ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
465 		writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
466 	}
467 
468 	/* On exynos5420 the triminfo register is in the shared space */
469 	if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
470 		trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO);
471 	else
472 		trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
473 
474 	sanitize_temp_error(data, trim_info);
475 
476 	/* Write temperature code for rising and falling threshold */
477 	rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE);
478 	rising_threshold = get_th_reg(data, rising_threshold, false);
479 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
480 	writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL);
481 
482 	data->tmu_clear_irqs(data);
483 
484 	/* if last threshold limit is also present */
485 	for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) {
486 		if (trips[i].type == THERMAL_TRIP_CRITICAL) {
487 			crit_temp = trips[i].temperature;
488 			break;
489 		}
490 	}
491 
492 	if (i == of_thermal_get_ntrips(data->tzd)) {
493 		pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n",
494 		       __func__);
495 		ret = -EINVAL;
496 		goto out;
497 	}
498 
499 	threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
500 	/* 1-4 level to be assigned in th0 reg */
501 	rising_threshold &= ~(0xff << 8 * i);
502 	rising_threshold |= threshold_code << 8 * i;
503 	writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE);
504 	con = readl(data->base + EXYNOS_TMU_REG_CONTROL);
505 	con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
506 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
507 
508 out:
509 	return ret;
510 }
511 
512 static int exynos5433_tmu_initialize(struct platform_device *pdev)
513 {
514 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
515 	struct exynos_tmu_platform_data *pdata = data->pdata;
516 	struct thermal_zone_device *tz = data->tzd;
517 	unsigned int status, trim_info;
518 	unsigned int rising_threshold = 0, falling_threshold = 0;
519 	int temp, temp_hist;
520 	int ret = 0, threshold_code, i, sensor_id, cal_type;
521 
522 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
523 	if (!status) {
524 		ret = -EBUSY;
525 		goto out;
526 	}
527 
528 	trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
529 	sanitize_temp_error(data, trim_info);
530 
531 	/* Read the temperature sensor id */
532 	sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK)
533 				>> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT;
534 	dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id);
535 
536 	/* Read the calibration mode */
537 	writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO);
538 	cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK)
539 				>> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT;
540 
541 	switch (cal_type) {
542 	case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING:
543 		pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
544 		break;
545 	case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING:
546 		pdata->cal_type = TYPE_TWO_POINT_TRIMMING;
547 		break;
548 	default:
549 		pdata->cal_type = TYPE_ONE_POINT_TRIMMING;
550 		break;
551 	}
552 
553 	dev_info(&pdev->dev, "Calibration type is %d-point calibration\n",
554 			cal_type ?  2 : 1);
555 
556 	/* Write temperature code for rising and falling threshold */
557 	for (i = 0; i < of_thermal_get_ntrips(tz); i++) {
558 		int rising_reg_offset, falling_reg_offset;
559 		int j = 0;
560 
561 		switch (i) {
562 		case 0:
563 		case 1:
564 		case 2:
565 		case 3:
566 			rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0;
567 			falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0;
568 			j = i;
569 			break;
570 		case 4:
571 		case 5:
572 		case 6:
573 		case 7:
574 			rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4;
575 			falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4;
576 			j = i - 4;
577 			break;
578 		default:
579 			continue;
580 		}
581 
582 		/* Write temperature code for rising threshold */
583 		tz->ops->get_trip_temp(tz, i, &temp);
584 		temp /= MCELSIUS;
585 		threshold_code = temp_to_code(data, temp);
586 
587 		rising_threshold = readl(data->base + rising_reg_offset);
588 		rising_threshold |= (threshold_code << j * 8);
589 		writel(rising_threshold, data->base + rising_reg_offset);
590 
591 		/* Write temperature code for falling threshold */
592 		tz->ops->get_trip_hyst(tz, i, &temp_hist);
593 		temp_hist = temp - (temp_hist / MCELSIUS);
594 		threshold_code = temp_to_code(data, temp_hist);
595 
596 		falling_threshold = readl(data->base + falling_reg_offset);
597 		falling_threshold &= ~(0xff << j * 8);
598 		falling_threshold |= (threshold_code << j * 8);
599 		writel(falling_threshold, data->base + falling_reg_offset);
600 	}
601 
602 	data->tmu_clear_irqs(data);
603 out:
604 	return ret;
605 }
606 
607 static int exynos5440_tmu_initialize(struct platform_device *pdev)
608 {
609 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
610 	unsigned int trim_info = 0, con, rising_threshold;
611 	int threshold_code;
612 	int crit_temp = 0;
613 
614 	/*
615 	 * For exynos5440 soc triminfo value is swapped between TMU0 and
616 	 * TMU2, so the below logic is needed.
617 	 */
618 	switch (data->id) {
619 	case 0:
620 		trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET +
621 				 EXYNOS5440_TMU_S0_7_TRIM);
622 		break;
623 	case 1:
624 		trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
625 		break;
626 	case 2:
627 		trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET +
628 				  EXYNOS5440_TMU_S0_7_TRIM);
629 	}
630 	sanitize_temp_error(data, trim_info);
631 
632 	/* Write temperature code for rising and falling threshold */
633 	rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0);
634 	rising_threshold = get_th_reg(data, rising_threshold, false);
635 	writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0);
636 	writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1);
637 
638 	data->tmu_clear_irqs(data);
639 
640 	/* if last threshold limit is also present */
641 	if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) {
642 		threshold_code = temp_to_code(data, crit_temp / MCELSIUS);
643 		/* 5th level to be assigned in th2 reg */
644 		rising_threshold =
645 			threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
646 		writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2);
647 		con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL);
648 		con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
649 		writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
650 	}
651 	/* Clear the PMIN in the common TMU register */
652 	if (!data->id)
653 		writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
654 
655 	return 0;
656 }
657 
658 static int exynos7_tmu_initialize(struct platform_device *pdev)
659 {
660 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
661 	struct thermal_zone_device *tz = data->tzd;
662 	unsigned int status, trim_info;
663 	unsigned int rising_threshold = 0, falling_threshold = 0;
664 	int ret = 0, threshold_code, i;
665 	int temp, temp_hist;
666 	unsigned int reg_off, bit_off;
667 
668 	status = readb(data->base + EXYNOS_TMU_REG_STATUS);
669 	if (!status) {
670 		ret = -EBUSY;
671 		goto out;
672 	}
673 
674 	trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
675 
676 	data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK;
677 	if (!data->temp_error1 ||
678 	    (data->min_efuse_value > data->temp_error1) ||
679 	    (data->temp_error1 > data->max_efuse_value))
680 		data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK;
681 
682 	/* Write temperature code for rising and falling threshold */
683 	for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) {
684 		/*
685 		 * On exynos7 there are 4 rising and 4 falling threshold
686 		 * registers (0x50-0x5c and 0x60-0x6c respectively). Each
687 		 * register holds the value of two threshold levels (at bit
688 		 * offsets 0 and 16). Based on the fact that there are atmost
689 		 * eight possible trigger levels, calculate the register and
690 		 * bit offsets where the threshold levels are to be written.
691 		 *
692 		 * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50)
693 		 * [24:16] - Threshold level 7
694 		 * [8:0] - Threshold level 6
695 		 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54)
696 		 * [24:16] - Threshold level 5
697 		 * [8:0] - Threshold level 4
698 		 *
699 		 * and similarly for falling thresholds.
700 		 *
701 		 * Based on the above, calculate the register and bit offsets
702 		 * for rising/falling threshold levels and populate them.
703 		 */
704 		reg_off = ((7 - i) / 2) * 4;
705 		bit_off = ((8 - i) % 2);
706 
707 		tz->ops->get_trip_temp(tz, i, &temp);
708 		temp /= MCELSIUS;
709 
710 		tz->ops->get_trip_hyst(tz, i, &temp_hist);
711 		temp_hist = temp - (temp_hist / MCELSIUS);
712 
713 		/* Set 9-bit temperature code for rising threshold levels */
714 		threshold_code = temp_to_code(data, temp);
715 		rising_threshold = readl(data->base +
716 			EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
717 		rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
718 		rising_threshold |= threshold_code << (16 * bit_off);
719 		writel(rising_threshold,
720 		       data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off);
721 
722 		/* Set 9-bit temperature code for falling threshold levels */
723 		threshold_code = temp_to_code(data, temp_hist);
724 		falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off));
725 		falling_threshold |= threshold_code << (16 * bit_off);
726 		writel(falling_threshold,
727 		       data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off);
728 	}
729 
730 	data->tmu_clear_irqs(data);
731 out:
732 	return ret;
733 }
734 
735 static void exynos4210_tmu_control(struct platform_device *pdev, bool on)
736 {
737 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
738 	struct thermal_zone_device *tz = data->tzd;
739 	unsigned int con, interrupt_en;
740 
741 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
742 
743 	if (on) {
744 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
745 		interrupt_en =
746 			(of_thermal_is_trip_valid(tz, 3)
747 			 << EXYNOS_TMU_INTEN_RISE3_SHIFT) |
748 			(of_thermal_is_trip_valid(tz, 2)
749 			 << EXYNOS_TMU_INTEN_RISE2_SHIFT) |
750 			(of_thermal_is_trip_valid(tz, 1)
751 			 << EXYNOS_TMU_INTEN_RISE1_SHIFT) |
752 			(of_thermal_is_trip_valid(tz, 0)
753 			 << EXYNOS_TMU_INTEN_RISE0_SHIFT);
754 
755 		if (data->soc != SOC_ARCH_EXYNOS4210)
756 			interrupt_en |=
757 				interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
758 	} else {
759 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
760 		interrupt_en = 0; /* Disable all interrupts */
761 	}
762 	writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN);
763 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
764 }
765 
766 static void exynos5433_tmu_control(struct platform_device *pdev, bool on)
767 {
768 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
769 	struct thermal_zone_device *tz = data->tzd;
770 	unsigned int con, interrupt_en, pd_det_en;
771 
772 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
773 
774 	if (on) {
775 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
776 		interrupt_en =
777 			(of_thermal_is_trip_valid(tz, 7)
778 			<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
779 			(of_thermal_is_trip_valid(tz, 6)
780 			<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
781 			(of_thermal_is_trip_valid(tz, 5)
782 			<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
783 			(of_thermal_is_trip_valid(tz, 4)
784 			<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
785 			(of_thermal_is_trip_valid(tz, 3)
786 			<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
787 			(of_thermal_is_trip_valid(tz, 2)
788 			<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
789 			(of_thermal_is_trip_valid(tz, 1)
790 			<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
791 			(of_thermal_is_trip_valid(tz, 0)
792 			<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
793 
794 		interrupt_en |=
795 			interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
796 	} else {
797 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
798 		interrupt_en = 0; /* Disable all interrupts */
799 	}
800 
801 	pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0;
802 
803 	writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN);
804 	writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN);
805 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
806 }
807 
808 static void exynos5440_tmu_control(struct platform_device *pdev, bool on)
809 {
810 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
811 	struct thermal_zone_device *tz = data->tzd;
812 	unsigned int con, interrupt_en;
813 
814 	con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL));
815 
816 	if (on) {
817 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
818 		interrupt_en =
819 			(of_thermal_is_trip_valid(tz, 3)
820 			 << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) |
821 			(of_thermal_is_trip_valid(tz, 2)
822 			 << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) |
823 			(of_thermal_is_trip_valid(tz, 1)
824 			 << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) |
825 			(of_thermal_is_trip_valid(tz, 0)
826 			 << EXYNOS5440_TMU_INTEN_RISE0_SHIFT);
827 		interrupt_en |=
828 			interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT;
829 	} else {
830 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
831 		interrupt_en = 0; /* Disable all interrupts */
832 	}
833 	writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN);
834 	writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL);
835 }
836 
837 static void exynos7_tmu_control(struct platform_device *pdev, bool on)
838 {
839 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
840 	struct thermal_zone_device *tz = data->tzd;
841 	unsigned int con, interrupt_en;
842 
843 	con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL));
844 
845 	if (on) {
846 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
847 		con |= (1 << EXYNOS7_PD_DET_EN_SHIFT);
848 		interrupt_en =
849 			(of_thermal_is_trip_valid(tz, 7)
850 			<< EXYNOS7_TMU_INTEN_RISE7_SHIFT) |
851 			(of_thermal_is_trip_valid(tz, 6)
852 			<< EXYNOS7_TMU_INTEN_RISE6_SHIFT) |
853 			(of_thermal_is_trip_valid(tz, 5)
854 			<< EXYNOS7_TMU_INTEN_RISE5_SHIFT) |
855 			(of_thermal_is_trip_valid(tz, 4)
856 			<< EXYNOS7_TMU_INTEN_RISE4_SHIFT) |
857 			(of_thermal_is_trip_valid(tz, 3)
858 			<< EXYNOS7_TMU_INTEN_RISE3_SHIFT) |
859 			(of_thermal_is_trip_valid(tz, 2)
860 			<< EXYNOS7_TMU_INTEN_RISE2_SHIFT) |
861 			(of_thermal_is_trip_valid(tz, 1)
862 			<< EXYNOS7_TMU_INTEN_RISE1_SHIFT) |
863 			(of_thermal_is_trip_valid(tz, 0)
864 			<< EXYNOS7_TMU_INTEN_RISE0_SHIFT);
865 
866 		interrupt_en |=
867 			interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT;
868 	} else {
869 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
870 		con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT);
871 		interrupt_en = 0; /* Disable all interrupts */
872 	}
873 
874 	writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN);
875 	writel(con, data->base + EXYNOS_TMU_REG_CONTROL);
876 }
877 
878 static int exynos_get_temp(void *p, int *temp)
879 {
880 	struct exynos_tmu_data *data = p;
881 	int value, ret = 0;
882 
883 	if (!data || !data->tmu_read || !data->enabled)
884 		return -EINVAL;
885 
886 	mutex_lock(&data->lock);
887 	clk_enable(data->clk);
888 
889 	value = data->tmu_read(data);
890 	if (value < 0)
891 		ret = value;
892 	else
893 		*temp = code_to_temp(data, value) * MCELSIUS;
894 
895 	clk_disable(data->clk);
896 	mutex_unlock(&data->lock);
897 
898 	return ret;
899 }
900 
901 #ifdef CONFIG_THERMAL_EMULATION
902 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val,
903 			    int temp)
904 {
905 	if (temp) {
906 		temp /= MCELSIUS;
907 
908 		if (data->soc != SOC_ARCH_EXYNOS5440) {
909 			val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
910 			val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
911 		}
912 		if (data->soc == SOC_ARCH_EXYNOS7) {
913 			val &= ~(EXYNOS7_EMUL_DATA_MASK <<
914 				EXYNOS7_EMUL_DATA_SHIFT);
915 			val |= (temp_to_code(data, temp) <<
916 				EXYNOS7_EMUL_DATA_SHIFT) |
917 				EXYNOS_EMUL_ENABLE;
918 		} else {
919 			val &= ~(EXYNOS_EMUL_DATA_MASK <<
920 				EXYNOS_EMUL_DATA_SHIFT);
921 			val |= (temp_to_code(data, temp) <<
922 				EXYNOS_EMUL_DATA_SHIFT) |
923 				EXYNOS_EMUL_ENABLE;
924 		}
925 	} else {
926 		val &= ~EXYNOS_EMUL_ENABLE;
927 	}
928 
929 	return val;
930 }
931 
932 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data,
933 					 int temp)
934 {
935 	unsigned int val;
936 	u32 emul_con;
937 
938 	if (data->soc == SOC_ARCH_EXYNOS5260)
939 		emul_con = EXYNOS5260_EMUL_CON;
940 	else if (data->soc == SOC_ARCH_EXYNOS5433)
941 		emul_con = EXYNOS5433_TMU_EMUL_CON;
942 	else if (data->soc == SOC_ARCH_EXYNOS7)
943 		emul_con = EXYNOS7_TMU_REG_EMUL_CON;
944 	else
945 		emul_con = EXYNOS_EMUL_CON;
946 
947 	val = readl(data->base + emul_con);
948 	val = get_emul_con_reg(data, val, temp);
949 	writel(val, data->base + emul_con);
950 }
951 
952 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data,
953 					 int temp)
954 {
955 	unsigned int val;
956 
957 	val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG);
958 	val = get_emul_con_reg(data, val, temp);
959 	writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG);
960 }
961 
962 static int exynos_tmu_set_emulation(void *drv_data, int temp)
963 {
964 	struct exynos_tmu_data *data = drv_data;
965 	int ret = -EINVAL;
966 
967 	if (data->soc == SOC_ARCH_EXYNOS4210)
968 		goto out;
969 
970 	if (temp && temp < MCELSIUS)
971 		goto out;
972 
973 	mutex_lock(&data->lock);
974 	clk_enable(data->clk);
975 	data->tmu_set_emulation(data, temp);
976 	clk_disable(data->clk);
977 	mutex_unlock(&data->lock);
978 	return 0;
979 out:
980 	return ret;
981 }
982 #else
983 #define exynos4412_tmu_set_emulation NULL
984 #define exynos5440_tmu_set_emulation NULL
985 static int exynos_tmu_set_emulation(void *drv_data, int temp)
986 	{ return -EINVAL; }
987 #endif /* CONFIG_THERMAL_EMULATION */
988 
989 static int exynos4210_tmu_read(struct exynos_tmu_data *data)
990 {
991 	int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
992 
993 	/* "temp_code" should range between 75 and 175 */
994 	return (ret < 75 || ret > 175) ? -ENODATA : ret;
995 }
996 
997 static int exynos4412_tmu_read(struct exynos_tmu_data *data)
998 {
999 	return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP);
1000 }
1001 
1002 static int exynos5440_tmu_read(struct exynos_tmu_data *data)
1003 {
1004 	return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP);
1005 }
1006 
1007 static int exynos7_tmu_read(struct exynos_tmu_data *data)
1008 {
1009 	return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) &
1010 		EXYNOS7_TMU_TEMP_MASK;
1011 }
1012 
1013 static void exynos_tmu_work(struct work_struct *work)
1014 {
1015 	struct exynos_tmu_data *data = container_of(work,
1016 			struct exynos_tmu_data, irq_work);
1017 	unsigned int val_type;
1018 
1019 	if (!IS_ERR(data->clk_sec))
1020 		clk_enable(data->clk_sec);
1021 	/* Find which sensor generated this interrupt */
1022 	if (data->soc == SOC_ARCH_EXYNOS5440) {
1023 		val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
1024 		if (!((val_type >> data->id) & 0x1))
1025 			goto out;
1026 	}
1027 	if (!IS_ERR(data->clk_sec))
1028 		clk_disable(data->clk_sec);
1029 
1030 	exynos_report_trigger(data);
1031 	mutex_lock(&data->lock);
1032 	clk_enable(data->clk);
1033 
1034 	/* TODO: take action based on particular interrupt */
1035 	data->tmu_clear_irqs(data);
1036 
1037 	clk_disable(data->clk);
1038 	mutex_unlock(&data->lock);
1039 out:
1040 	enable_irq(data->irq);
1041 }
1042 
1043 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data)
1044 {
1045 	unsigned int val_irq;
1046 	u32 tmu_intstat, tmu_intclear;
1047 
1048 	if (data->soc == SOC_ARCH_EXYNOS5260) {
1049 		tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT;
1050 		tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR;
1051 	} else if (data->soc == SOC_ARCH_EXYNOS7) {
1052 		tmu_intstat = EXYNOS7_TMU_REG_INTPEND;
1053 		tmu_intclear = EXYNOS7_TMU_REG_INTPEND;
1054 	} else if (data->soc == SOC_ARCH_EXYNOS5433) {
1055 		tmu_intstat = EXYNOS5433_TMU_REG_INTPEND;
1056 		tmu_intclear = EXYNOS5433_TMU_REG_INTPEND;
1057 	} else {
1058 		tmu_intstat = EXYNOS_TMU_REG_INTSTAT;
1059 		tmu_intclear = EXYNOS_TMU_REG_INTCLEAR;
1060 	}
1061 
1062 	val_irq = readl(data->base + tmu_intstat);
1063 	/*
1064 	 * Clear the interrupts.  Please note that the documentation for
1065 	 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
1066 	 * states that INTCLEAR register has a different placing of bits
1067 	 * responsible for FALL IRQs than INTSTAT register.  Exynos5420
1068 	 * and Exynos5440 documentation is correct (Exynos4210 doesn't
1069 	 * support FALL IRQs at all).
1070 	 */
1071 	writel(val_irq, data->base + tmu_intclear);
1072 }
1073 
1074 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data)
1075 {
1076 	unsigned int val_irq;
1077 
1078 	val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ);
1079 	/* clear the interrupts */
1080 	writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ);
1081 }
1082 
1083 static irqreturn_t exynos_tmu_irq(int irq, void *id)
1084 {
1085 	struct exynos_tmu_data *data = id;
1086 
1087 	disable_irq_nosync(irq);
1088 	schedule_work(&data->irq_work);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 static const struct of_device_id exynos_tmu_match[] = {
1094 	{
1095 		.compatible = "samsung,exynos3250-tmu",
1096 		.data = (const void *)SOC_ARCH_EXYNOS3250,
1097 	}, {
1098 		.compatible = "samsung,exynos4210-tmu",
1099 		.data = (const void *)SOC_ARCH_EXYNOS4210,
1100 	}, {
1101 		.compatible = "samsung,exynos4412-tmu",
1102 		.data = (const void *)SOC_ARCH_EXYNOS4412,
1103 	}, {
1104 		.compatible = "samsung,exynos5250-tmu",
1105 		.data = (const void *)SOC_ARCH_EXYNOS5250,
1106 	}, {
1107 		.compatible = "samsung,exynos5260-tmu",
1108 		.data = (const void *)SOC_ARCH_EXYNOS5260,
1109 	}, {
1110 		.compatible = "samsung,exynos5420-tmu",
1111 		.data = (const void *)SOC_ARCH_EXYNOS5420,
1112 	}, {
1113 		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
1114 		.data = (const void *)SOC_ARCH_EXYNOS5420_TRIMINFO,
1115 	}, {
1116 		.compatible = "samsung,exynos5433-tmu",
1117 		.data = (const void *)SOC_ARCH_EXYNOS5433,
1118 	}, {
1119 		.compatible = "samsung,exynos5440-tmu",
1120 		.data = (const void *)SOC_ARCH_EXYNOS5440,
1121 	}, {
1122 		.compatible = "samsung,exynos7-tmu",
1123 		.data = (const void *)SOC_ARCH_EXYNOS7,
1124 	},
1125 	{ },
1126 };
1127 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
1128 
1129 static int exynos_of_sensor_conf(struct device_node *np,
1130 				 struct exynos_tmu_platform_data *pdata)
1131 {
1132 	u32 value;
1133 	int ret;
1134 
1135 	of_node_get(np);
1136 
1137 	ret = of_property_read_u32(np, "samsung,tmu_gain", &value);
1138 	pdata->gain = (u8)value;
1139 	of_property_read_u32(np, "samsung,tmu_reference_voltage", &value);
1140 	pdata->reference_voltage = (u8)value;
1141 
1142 	of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type);
1143 
1144 	of_node_put(np);
1145 	return 0;
1146 }
1147 
1148 static int exynos_map_dt_data(struct platform_device *pdev)
1149 {
1150 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1151 	struct exynos_tmu_platform_data *pdata;
1152 	struct resource res;
1153 
1154 	if (!data || !pdev->dev.of_node)
1155 		return -ENODEV;
1156 
1157 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
1158 	if (data->id < 0)
1159 		data->id = 0;
1160 
1161 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1162 	if (data->irq <= 0) {
1163 		dev_err(&pdev->dev, "failed to get IRQ\n");
1164 		return -ENODEV;
1165 	}
1166 
1167 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
1168 		dev_err(&pdev->dev, "failed to get Resource 0\n");
1169 		return -ENODEV;
1170 	}
1171 
1172 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1173 	if (!data->base) {
1174 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1175 		return -EADDRNOTAVAIL;
1176 	}
1177 
1178 	pdata = devm_kzalloc(&pdev->dev,
1179 			     sizeof(struct exynos_tmu_platform_data),
1180 			     GFP_KERNEL);
1181 	if (!pdata)
1182 		return -ENOMEM;
1183 
1184 	exynos_of_sensor_conf(pdev->dev.of_node, pdata);
1185 	data->pdata = pdata;
1186 	data->soc = (enum soc_type)of_device_get_match_data(&pdev->dev);
1187 
1188 	switch (data->soc) {
1189 	case SOC_ARCH_EXYNOS4210:
1190 		data->tmu_initialize = exynos4210_tmu_initialize;
1191 		data->tmu_control = exynos4210_tmu_control;
1192 		data->tmu_read = exynos4210_tmu_read;
1193 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1194 		data->ntrip = 4;
1195 		data->efuse_value = 55;
1196 		data->min_efuse_value = 40;
1197 		data->max_efuse_value = 100;
1198 		break;
1199 	case SOC_ARCH_EXYNOS3250:
1200 	case SOC_ARCH_EXYNOS4412:
1201 	case SOC_ARCH_EXYNOS5250:
1202 	case SOC_ARCH_EXYNOS5260:
1203 	case SOC_ARCH_EXYNOS5420:
1204 	case SOC_ARCH_EXYNOS5420_TRIMINFO:
1205 		data->tmu_initialize = exynos4412_tmu_initialize;
1206 		data->tmu_control = exynos4210_tmu_control;
1207 		data->tmu_read = exynos4412_tmu_read;
1208 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1209 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1210 		data->ntrip = 4;
1211 		data->efuse_value = 55;
1212 		if (data->soc != SOC_ARCH_EXYNOS5420 &&
1213 		    data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO)
1214 			data->min_efuse_value = 40;
1215 		else
1216 			data->min_efuse_value = 0;
1217 		data->max_efuse_value = 100;
1218 		break;
1219 	case SOC_ARCH_EXYNOS5433:
1220 		data->tmu_initialize = exynos5433_tmu_initialize;
1221 		data->tmu_control = exynos5433_tmu_control;
1222 		data->tmu_read = exynos4412_tmu_read;
1223 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1224 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1225 		data->ntrip = 8;
1226 		data->efuse_value = 75;
1227 		data->min_efuse_value = 40;
1228 		data->max_efuse_value = 150;
1229 		break;
1230 	case SOC_ARCH_EXYNOS5440:
1231 		data->tmu_initialize = exynos5440_tmu_initialize;
1232 		data->tmu_control = exynos5440_tmu_control;
1233 		data->tmu_read = exynos5440_tmu_read;
1234 		data->tmu_set_emulation = exynos5440_tmu_set_emulation;
1235 		data->tmu_clear_irqs = exynos5440_tmu_clear_irqs;
1236 		data->ntrip = 4;
1237 		data->efuse_value = 0x5d2d;
1238 		data->min_efuse_value = 16;
1239 		data->max_efuse_value = 76;
1240 		break;
1241 	case SOC_ARCH_EXYNOS7:
1242 		data->tmu_initialize = exynos7_tmu_initialize;
1243 		data->tmu_control = exynos7_tmu_control;
1244 		data->tmu_read = exynos7_tmu_read;
1245 		data->tmu_set_emulation = exynos4412_tmu_set_emulation;
1246 		data->tmu_clear_irqs = exynos4210_tmu_clear_irqs;
1247 		data->ntrip = 8;
1248 		data->efuse_value = 75;
1249 		data->min_efuse_value = 15;
1250 		data->max_efuse_value = 100;
1251 		break;
1252 	default:
1253 		dev_err(&pdev->dev, "Platform not supported\n");
1254 		return -EINVAL;
1255 	}
1256 
1257 	/*
1258 	 * Check if the TMU shares some registers and then try to map the
1259 	 * memory of common registers.
1260 	 */
1261 	if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO &&
1262 	    data->soc != SOC_ARCH_EXYNOS5440)
1263 		return 0;
1264 
1265 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
1266 		dev_err(&pdev->dev, "failed to get Resource 1\n");
1267 		return -ENODEV;
1268 	}
1269 
1270 	data->base_second = devm_ioremap(&pdev->dev, res.start,
1271 					resource_size(&res));
1272 	if (!data->base_second) {
1273 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
1274 		return -ENOMEM;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static const struct thermal_zone_of_device_ops exynos_sensor_ops = {
1281 	.get_temp = exynos_get_temp,
1282 	.set_emul_temp = exynos_tmu_set_emulation,
1283 };
1284 
1285 static int exynos_tmu_probe(struct platform_device *pdev)
1286 {
1287 	struct exynos_tmu_data *data;
1288 	int ret;
1289 
1290 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
1291 					GFP_KERNEL);
1292 	if (!data)
1293 		return -ENOMEM;
1294 
1295 	platform_set_drvdata(pdev, data);
1296 	mutex_init(&data->lock);
1297 
1298 	/*
1299 	 * Try enabling the regulator if found
1300 	 * TODO: Add regulator as an SOC feature, so that regulator enable
1301 	 * is a compulsory call.
1302 	 */
1303 	data->regulator = devm_regulator_get_optional(&pdev->dev, "vtmu");
1304 	if (!IS_ERR(data->regulator)) {
1305 		ret = regulator_enable(data->regulator);
1306 		if (ret) {
1307 			dev_err(&pdev->dev, "failed to enable vtmu\n");
1308 			return ret;
1309 		}
1310 	} else {
1311 		if (PTR_ERR(data->regulator) == -EPROBE_DEFER)
1312 			return -EPROBE_DEFER;
1313 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
1314 	}
1315 
1316 	ret = exynos_map_dt_data(pdev);
1317 	if (ret)
1318 		goto err_sensor;
1319 
1320 	INIT_WORK(&data->irq_work, exynos_tmu_work);
1321 
1322 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
1323 	if (IS_ERR(data->clk)) {
1324 		dev_err(&pdev->dev, "Failed to get clock\n");
1325 		ret = PTR_ERR(data->clk);
1326 		goto err_sensor;
1327 	}
1328 
1329 	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
1330 	if (IS_ERR(data->clk_sec)) {
1331 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
1332 			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
1333 			ret = PTR_ERR(data->clk_sec);
1334 			goto err_sensor;
1335 		}
1336 	} else {
1337 		ret = clk_prepare(data->clk_sec);
1338 		if (ret) {
1339 			dev_err(&pdev->dev, "Failed to get clock\n");
1340 			goto err_sensor;
1341 		}
1342 	}
1343 
1344 	ret = clk_prepare(data->clk);
1345 	if (ret) {
1346 		dev_err(&pdev->dev, "Failed to get clock\n");
1347 		goto err_clk_sec;
1348 	}
1349 
1350 	switch (data->soc) {
1351 	case SOC_ARCH_EXYNOS5433:
1352 	case SOC_ARCH_EXYNOS7:
1353 		data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk");
1354 		if (IS_ERR(data->sclk)) {
1355 			dev_err(&pdev->dev, "Failed to get sclk\n");
1356 			goto err_clk;
1357 		} else {
1358 			ret = clk_prepare_enable(data->sclk);
1359 			if (ret) {
1360 				dev_err(&pdev->dev, "Failed to enable sclk\n");
1361 				goto err_clk;
1362 			}
1363 		}
1364 		break;
1365 	default:
1366 		break;
1367 	}
1368 
1369 	/*
1370 	 * data->tzd must be registered before calling exynos_tmu_initialize(),
1371 	 * requesting irq and calling exynos_tmu_control().
1372 	 */
1373 	data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data,
1374 						    &exynos_sensor_ops);
1375 	if (IS_ERR(data->tzd)) {
1376 		ret = PTR_ERR(data->tzd);
1377 		dev_err(&pdev->dev, "Failed to register sensor: %d\n", ret);
1378 		goto err_sclk;
1379 	}
1380 
1381 	ret = exynos_tmu_initialize(pdev);
1382 	if (ret) {
1383 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
1384 		goto err_thermal;
1385 	}
1386 
1387 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
1388 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
1389 	if (ret) {
1390 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
1391 		goto err_thermal;
1392 	}
1393 
1394 	exynos_tmu_control(pdev, true);
1395 	return 0;
1396 
1397 err_thermal:
1398 	thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd);
1399 err_sclk:
1400 	clk_disable_unprepare(data->sclk);
1401 err_clk:
1402 	clk_unprepare(data->clk);
1403 err_clk_sec:
1404 	if (!IS_ERR(data->clk_sec))
1405 		clk_unprepare(data->clk_sec);
1406 err_sensor:
1407 	if (!IS_ERR(data->regulator))
1408 		regulator_disable(data->regulator);
1409 
1410 	return ret;
1411 }
1412 
1413 static int exynos_tmu_remove(struct platform_device *pdev)
1414 {
1415 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
1416 	struct thermal_zone_device *tzd = data->tzd;
1417 
1418 	thermal_zone_of_sensor_unregister(&pdev->dev, tzd);
1419 	exynos_tmu_control(pdev, false);
1420 
1421 	clk_disable_unprepare(data->sclk);
1422 	clk_unprepare(data->clk);
1423 	if (!IS_ERR(data->clk_sec))
1424 		clk_unprepare(data->clk_sec);
1425 
1426 	if (!IS_ERR(data->regulator))
1427 		regulator_disable(data->regulator);
1428 
1429 	return 0;
1430 }
1431 
1432 #ifdef CONFIG_PM_SLEEP
1433 static int exynos_tmu_suspend(struct device *dev)
1434 {
1435 	exynos_tmu_control(to_platform_device(dev), false);
1436 
1437 	return 0;
1438 }
1439 
1440 static int exynos_tmu_resume(struct device *dev)
1441 {
1442 	struct platform_device *pdev = to_platform_device(dev);
1443 
1444 	exynos_tmu_initialize(pdev);
1445 	exynos_tmu_control(pdev, true);
1446 
1447 	return 0;
1448 }
1449 
1450 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
1451 			 exynos_tmu_suspend, exynos_tmu_resume);
1452 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
1453 #else
1454 #define EXYNOS_TMU_PM	NULL
1455 #endif
1456 
1457 static struct platform_driver exynos_tmu_driver = {
1458 	.driver = {
1459 		.name   = "exynos-tmu",
1460 		.pm     = EXYNOS_TMU_PM,
1461 		.of_match_table = exynos_tmu_match,
1462 	},
1463 	.probe = exynos_tmu_probe,
1464 	.remove	= exynos_tmu_remove,
1465 };
1466 
1467 module_platform_driver(exynos_tmu_driver);
1468 
1469 MODULE_DESCRIPTION("EXYNOS TMU Driver");
1470 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
1471 MODULE_LICENSE("GPL");
1472 MODULE_ALIAS("platform:exynos-tmu");
1473