xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision ddb31d43cb20222f929b0d242bdb516de51b6c23)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33 
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37 
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40 	driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_second: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @clk_sec: pointer to the clock structure for accessing the base_second.
51  * @temp_error1: fused value of the first point trim.
52  * @temp_error2: fused value of the second point trim.
53  * @regulator: pointer to the TMU regulator structure.
54  * @reg_conf: pointer to structure to register with core thermal.
55  */
56 struct exynos_tmu_data {
57 	int id;
58 	struct exynos_tmu_platform_data *pdata;
59 	void __iomem *base;
60 	void __iomem *base_second;
61 	int irq;
62 	enum soc_type soc;
63 	struct work_struct irq_work;
64 	struct mutex lock;
65 	struct clk *clk, *clk_sec;
66 	u8 temp_error1, temp_error2;
67 	struct regulator *regulator;
68 	struct thermal_sensor_conf *reg_conf;
69 };
70 
71 /*
72  * TMU treats temperature as a mapped temperature code.
73  * The temperature is converted differently depending on the calibration type.
74  */
75 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
76 {
77 	struct exynos_tmu_platform_data *pdata = data->pdata;
78 	int temp_code;
79 
80 	switch (pdata->cal_type) {
81 	case TYPE_TWO_POINT_TRIMMING:
82 		temp_code = (temp - pdata->first_point_trim) *
83 			(data->temp_error2 - data->temp_error1) /
84 			(pdata->second_point_trim - pdata->first_point_trim) +
85 			data->temp_error1;
86 		break;
87 	case TYPE_ONE_POINT_TRIMMING:
88 		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
89 		break;
90 	default:
91 		temp_code = temp + pdata->default_temp_offset;
92 		break;
93 	}
94 
95 	return temp_code;
96 }
97 
98 /*
99  * Calculate a temperature value from a temperature code.
100  * The unit of the temperature is degree Celsius.
101  */
102 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
103 {
104 	struct exynos_tmu_platform_data *pdata = data->pdata;
105 	int temp;
106 
107 	switch (pdata->cal_type) {
108 	case TYPE_TWO_POINT_TRIMMING:
109 		temp = (temp_code - data->temp_error1) *
110 			(pdata->second_point_trim - pdata->first_point_trim) /
111 			(data->temp_error2 - data->temp_error1) +
112 			pdata->first_point_trim;
113 		break;
114 	case TYPE_ONE_POINT_TRIMMING:
115 		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
116 		break;
117 	default:
118 		temp = temp_code - pdata->default_temp_offset;
119 		break;
120 	}
121 
122 	return temp;
123 }
124 
125 static int exynos_tmu_initialize(struct platform_device *pdev)
126 {
127 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
128 	struct exynos_tmu_platform_data *pdata = data->pdata;
129 	const struct exynos_tmu_registers *reg = pdata->registers;
130 	unsigned int status, trim_info = 0, con;
131 	unsigned int rising_threshold = 0, falling_threshold = 0;
132 	int ret = 0, threshold_code, i, trigger_levs = 0;
133 
134 	mutex_lock(&data->lock);
135 	clk_enable(data->clk);
136 	if (!IS_ERR(data->clk_sec))
137 		clk_enable(data->clk_sec);
138 
139 	if (TMU_SUPPORTS(pdata, READY_STATUS)) {
140 		status = readb(data->base + reg->tmu_status);
141 		if (!status) {
142 			ret = -EBUSY;
143 			goto out;
144 		}
145 	}
146 
147 	if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
148 		__raw_writel(1, data->base + reg->triminfo_ctrl);
149 
150 	/* Save trimming info in order to perform calibration */
151 	if (data->soc == SOC_ARCH_EXYNOS5440) {
152 		/*
153 		 * For exynos5440 soc triminfo value is swapped between TMU0 and
154 		 * TMU2, so the below logic is needed.
155 		 */
156 		switch (data->id) {
157 		case 0:
158 			trim_info = readl(data->base +
159 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
160 			break;
161 		case 1:
162 			trim_info = readl(data->base + reg->triminfo_data);
163 			break;
164 		case 2:
165 			trim_info = readl(data->base -
166 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
167 		}
168 	} else {
169 		/* On exynos5420 the triminfo register is in the shared space */
170 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
171 			trim_info = readl(data->base_second +
172 							reg->triminfo_data);
173 		else
174 			trim_info = readl(data->base + reg->triminfo_data);
175 	}
176 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
177 	data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
178 				EXYNOS_TMU_TEMP_MASK);
179 
180 	if (!data->temp_error1 ||
181 		(pdata->min_efuse_value > data->temp_error1) ||
182 		(data->temp_error1 > pdata->max_efuse_value))
183 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
184 
185 	if (!data->temp_error2)
186 		data->temp_error2 =
187 			(pdata->efuse_value >> reg->triminfo_85_shift) &
188 			EXYNOS_TMU_TEMP_MASK;
189 
190 	for (i = 0; i < pdata->max_trigger_level; i++) {
191 		if (!pdata->trigger_levels[i])
192 			continue;
193 
194 		/* Count trigger levels except the HW trip*/
195 		if (!(pdata->trigger_type[i] == HW_TRIP))
196 			trigger_levs++;
197 	}
198 
199 	rising_threshold = readl(data->base + reg->threshold_th0);
200 
201 	if (data->soc == SOC_ARCH_EXYNOS4210) {
202 		/* Write temperature code for threshold */
203 		threshold_code = temp_to_code(data, pdata->threshold);
204 		writeb(threshold_code,
205 			data->base + reg->threshold_temp);
206 		for (i = 0; i < trigger_levs; i++)
207 			writeb(pdata->trigger_levels[i], data->base +
208 			reg->threshold_th0 + i * sizeof(reg->threshold_th0));
209 
210 		writel(reg->intclr_rise_mask, data->base + reg->tmu_intclear);
211 	} else {
212 		/* Write temperature code for rising and falling threshold */
213 		for (i = 0;
214 		i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
215 			threshold_code = temp_to_code(data,
216 						pdata->trigger_levels[i]);
217 			rising_threshold &= ~(0xff << 8 * i);
218 			rising_threshold |= threshold_code << 8 * i;
219 			if (pdata->threshold_falling) {
220 				threshold_code = temp_to_code(data,
221 						pdata->trigger_levels[i] -
222 						pdata->threshold_falling);
223 				falling_threshold |= threshold_code << 8 * i;
224 			}
225 		}
226 
227 		writel(rising_threshold,
228 				data->base + reg->threshold_th0);
229 		writel(falling_threshold,
230 				data->base + reg->threshold_th1);
231 
232 		writel((reg->intclr_rise_mask << reg->intclr_rise_shift) |
233 			(reg->intclr_fall_mask << reg->intclr_fall_shift),
234 				data->base + reg->tmu_intclear);
235 
236 		/* if last threshold limit is also present */
237 		i = pdata->max_trigger_level - 1;
238 		if (pdata->trigger_levels[i] &&
239 				(pdata->trigger_type[i] == HW_TRIP)) {
240 			threshold_code = temp_to_code(data,
241 						pdata->trigger_levels[i]);
242 			if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
243 				/* 1-4 level to be assigned in th0 reg */
244 				rising_threshold &= ~(0xff << 8 * i);
245 				rising_threshold |= threshold_code << 8 * i;
246 				writel(rising_threshold,
247 					data->base + reg->threshold_th0);
248 			} else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
249 				/* 5th level to be assigned in th2 reg */
250 				rising_threshold =
251 				threshold_code << reg->threshold_th3_l0_shift;
252 				writel(rising_threshold,
253 					data->base + reg->threshold_th2);
254 			}
255 			con = readl(data->base + reg->tmu_ctrl);
256 			con |= (1 << reg->therm_trip_en_shift);
257 			writel(con, data->base + reg->tmu_ctrl);
258 		}
259 	}
260 	/*Clear the PMIN in the common TMU register*/
261 	if (reg->tmu_pmin && !data->id)
262 		writel(0, data->base_second + reg->tmu_pmin);
263 out:
264 	clk_disable(data->clk);
265 	mutex_unlock(&data->lock);
266 	if (!IS_ERR(data->clk_sec))
267 		clk_disable(data->clk_sec);
268 
269 	return ret;
270 }
271 
272 static void exynos_tmu_control(struct platform_device *pdev, bool on)
273 {
274 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
275 	struct exynos_tmu_platform_data *pdata = data->pdata;
276 	const struct exynos_tmu_registers *reg = pdata->registers;
277 	unsigned int con, interrupt_en;
278 
279 	mutex_lock(&data->lock);
280 	clk_enable(data->clk);
281 
282 	con = readl(data->base + reg->tmu_ctrl);
283 
284 	if (pdata->test_mux)
285 		con |= (pdata->test_mux << reg->test_mux_addr_shift);
286 
287 	if (pdata->reference_voltage) {
288 		con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
289 		con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
290 	}
291 
292 	if (pdata->gain) {
293 		con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
294 		con |= (pdata->gain << reg->buf_slope_sel_shift);
295 	}
296 
297 	if (pdata->noise_cancel_mode) {
298 		con &= ~(reg->therm_trip_mode_mask <<
299 					reg->therm_trip_mode_shift);
300 		con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
301 	}
302 
303 	if (on) {
304 		con |= (1 << reg->core_en_shift);
305 		interrupt_en =
306 			pdata->trigger_enable[3] << reg->inten_rise3_shift |
307 			pdata->trigger_enable[2] << reg->inten_rise2_shift |
308 			pdata->trigger_enable[1] << reg->inten_rise1_shift |
309 			pdata->trigger_enable[0] << reg->inten_rise0_shift;
310 		if (TMU_SUPPORTS(pdata, FALLING_TRIP))
311 			interrupt_en |=
312 				interrupt_en << reg->inten_fall0_shift;
313 	} else {
314 		con &= ~(1 << reg->core_en_shift);
315 		interrupt_en = 0; /* Disable all interrupts */
316 	}
317 	writel(interrupt_en, data->base + reg->tmu_inten);
318 	writel(con, data->base + reg->tmu_ctrl);
319 
320 	clk_disable(data->clk);
321 	mutex_unlock(&data->lock);
322 }
323 
324 static int exynos_tmu_read(struct exynos_tmu_data *data)
325 {
326 	struct exynos_tmu_platform_data *pdata = data->pdata;
327 	const struct exynos_tmu_registers *reg = pdata->registers;
328 	u8 temp_code;
329 	int temp;
330 
331 	mutex_lock(&data->lock);
332 	clk_enable(data->clk);
333 
334 	temp_code = readb(data->base + reg->tmu_cur_temp);
335 
336 	if (data->soc == SOC_ARCH_EXYNOS4210)
337 		/* temp_code should range between 75 and 175 */
338 		if (temp_code < 75 || temp_code > 175) {
339 			temp = -ENODATA;
340 			goto out;
341 		}
342 
343 	temp = code_to_temp(data, temp_code);
344 out:
345 	clk_disable(data->clk);
346 	mutex_unlock(&data->lock);
347 
348 	return temp;
349 }
350 
351 #ifdef CONFIG_THERMAL_EMULATION
352 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
353 {
354 	struct exynos_tmu_data *data = drv_data;
355 	struct exynos_tmu_platform_data *pdata = data->pdata;
356 	const struct exynos_tmu_registers *reg = pdata->registers;
357 	unsigned int val;
358 	int ret = -EINVAL;
359 
360 	if (!TMU_SUPPORTS(pdata, EMULATION))
361 		goto out;
362 
363 	if (temp && temp < MCELSIUS)
364 		goto out;
365 
366 	mutex_lock(&data->lock);
367 	clk_enable(data->clk);
368 
369 	val = readl(data->base + reg->emul_con);
370 
371 	if (temp) {
372 		temp /= MCELSIUS;
373 
374 		if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
375 			val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
376 			val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
377 		}
378 		val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
379 		val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
380 			EXYNOS_EMUL_ENABLE;
381 	} else {
382 		val &= ~EXYNOS_EMUL_ENABLE;
383 	}
384 
385 	writel(val, data->base + reg->emul_con);
386 
387 	clk_disable(data->clk);
388 	mutex_unlock(&data->lock);
389 	return 0;
390 out:
391 	return ret;
392 }
393 #else
394 static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
395 	{ return -EINVAL; }
396 #endif/*CONFIG_THERMAL_EMULATION*/
397 
398 static void exynos_tmu_work(struct work_struct *work)
399 {
400 	struct exynos_tmu_data *data = container_of(work,
401 			struct exynos_tmu_data, irq_work);
402 	struct exynos_tmu_platform_data *pdata = data->pdata;
403 	const struct exynos_tmu_registers *reg = pdata->registers;
404 	unsigned int val_irq, val_type;
405 
406 	if (!IS_ERR(data->clk_sec))
407 		clk_enable(data->clk_sec);
408 	/* Find which sensor generated this interrupt */
409 	if (reg->tmu_irqstatus) {
410 		val_type = readl(data->base_second + reg->tmu_irqstatus);
411 		if (!((val_type >> data->id) & 0x1))
412 			goto out;
413 	}
414 	if (!IS_ERR(data->clk_sec))
415 		clk_disable(data->clk_sec);
416 
417 	exynos_report_trigger(data->reg_conf);
418 	mutex_lock(&data->lock);
419 	clk_enable(data->clk);
420 
421 	/* TODO: take action based on particular interrupt */
422 	val_irq = readl(data->base + reg->tmu_intstat);
423 	/* clear the interrupts */
424 	writel(val_irq, data->base + reg->tmu_intclear);
425 
426 	clk_disable(data->clk);
427 	mutex_unlock(&data->lock);
428 out:
429 	enable_irq(data->irq);
430 }
431 
432 static irqreturn_t exynos_tmu_irq(int irq, void *id)
433 {
434 	struct exynos_tmu_data *data = id;
435 
436 	disable_irq_nosync(irq);
437 	schedule_work(&data->irq_work);
438 
439 	return IRQ_HANDLED;
440 }
441 
442 static const struct of_device_id exynos_tmu_match[] = {
443 	{
444 		.compatible = "samsung,exynos3250-tmu",
445 		.data = (void *)EXYNOS3250_TMU_DRV_DATA,
446 	},
447 	{
448 		.compatible = "samsung,exynos4210-tmu",
449 		.data = (void *)EXYNOS4210_TMU_DRV_DATA,
450 	},
451 	{
452 		.compatible = "samsung,exynos4412-tmu",
453 		.data = (void *)EXYNOS4412_TMU_DRV_DATA,
454 	},
455 	{
456 		.compatible = "samsung,exynos5250-tmu",
457 		.data = (void *)EXYNOS5250_TMU_DRV_DATA,
458 	},
459 	{
460 		.compatible = "samsung,exynos5260-tmu",
461 		.data = (void *)EXYNOS5260_TMU_DRV_DATA,
462 	},
463 	{
464 		.compatible = "samsung,exynos5420-tmu",
465 		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
466 	},
467 	{
468 		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
469 		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
470 	},
471 	{
472 		.compatible = "samsung,exynos5440-tmu",
473 		.data = (void *)EXYNOS5440_TMU_DRV_DATA,
474 	},
475 	{},
476 };
477 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
478 
479 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
480 			struct platform_device *pdev, int id)
481 {
482 	struct  exynos_tmu_init_data *data_table;
483 	struct exynos_tmu_platform_data *tmu_data;
484 	const struct of_device_id *match;
485 
486 	match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
487 	if (!match)
488 		return NULL;
489 	data_table = (struct exynos_tmu_init_data *) match->data;
490 	if (!data_table || id >= data_table->tmu_count)
491 		return NULL;
492 	tmu_data = data_table->tmu_data;
493 	return (struct exynos_tmu_platform_data *) (tmu_data + id);
494 }
495 
496 static int exynos_map_dt_data(struct platform_device *pdev)
497 {
498 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
499 	struct exynos_tmu_platform_data *pdata;
500 	struct resource res;
501 	int ret;
502 
503 	if (!data || !pdev->dev.of_node)
504 		return -ENODEV;
505 
506 	/*
507 	 * Try enabling the regulator if found
508 	 * TODO: Add regulator as an SOC feature, so that regulator enable
509 	 * is a compulsory call.
510 	 */
511 	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
512 	if (!IS_ERR(data->regulator)) {
513 		ret = regulator_enable(data->regulator);
514 		if (ret) {
515 			dev_err(&pdev->dev, "failed to enable vtmu\n");
516 			return ret;
517 		}
518 	} else {
519 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
520 	}
521 
522 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
523 	if (data->id < 0)
524 		data->id = 0;
525 
526 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
527 	if (data->irq <= 0) {
528 		dev_err(&pdev->dev, "failed to get IRQ\n");
529 		return -ENODEV;
530 	}
531 
532 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
533 		dev_err(&pdev->dev, "failed to get Resource 0\n");
534 		return -ENODEV;
535 	}
536 
537 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
538 	if (!data->base) {
539 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
540 		return -EADDRNOTAVAIL;
541 	}
542 
543 	pdata = exynos_get_driver_data(pdev, data->id);
544 	if (!pdata) {
545 		dev_err(&pdev->dev, "No platform init data supplied.\n");
546 		return -ENODEV;
547 	}
548 	data->pdata = pdata;
549 	/*
550 	 * Check if the TMU shares some registers and then try to map the
551 	 * memory of common registers.
552 	 */
553 	if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE))
554 		return 0;
555 
556 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
557 		dev_err(&pdev->dev, "failed to get Resource 1\n");
558 		return -ENODEV;
559 	}
560 
561 	data->base_second = devm_ioremap(&pdev->dev, res.start,
562 					resource_size(&res));
563 	if (!data->base_second) {
564 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
565 		return -ENOMEM;
566 	}
567 
568 	return 0;
569 }
570 
571 static int exynos_tmu_probe(struct platform_device *pdev)
572 {
573 	struct exynos_tmu_data *data;
574 	struct exynos_tmu_platform_data *pdata;
575 	struct thermal_sensor_conf *sensor_conf;
576 	int ret, i;
577 
578 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
579 					GFP_KERNEL);
580 	if (!data)
581 		return -ENOMEM;
582 
583 	platform_set_drvdata(pdev, data);
584 	mutex_init(&data->lock);
585 
586 	ret = exynos_map_dt_data(pdev);
587 	if (ret)
588 		return ret;
589 
590 	pdata = data->pdata;
591 
592 	INIT_WORK(&data->irq_work, exynos_tmu_work);
593 
594 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
595 	if (IS_ERR(data->clk)) {
596 		dev_err(&pdev->dev, "Failed to get clock\n");
597 		return  PTR_ERR(data->clk);
598 	}
599 
600 	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
601 	if (IS_ERR(data->clk_sec)) {
602 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
603 			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
604 			return PTR_ERR(data->clk_sec);
605 		}
606 	} else {
607 		ret = clk_prepare(data->clk_sec);
608 		if (ret) {
609 			dev_err(&pdev->dev, "Failed to get clock\n");
610 			return ret;
611 		}
612 	}
613 
614 	ret = clk_prepare(data->clk);
615 	if (ret) {
616 		dev_err(&pdev->dev, "Failed to get clock\n");
617 		goto err_clk_sec;
618 	}
619 
620 	if (pdata->type == SOC_ARCH_EXYNOS3250 ||
621 	    pdata->type == SOC_ARCH_EXYNOS4210 ||
622 	    pdata->type == SOC_ARCH_EXYNOS4412 ||
623 	    pdata->type == SOC_ARCH_EXYNOS5250 ||
624 	    pdata->type == SOC_ARCH_EXYNOS5260 ||
625 	    pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO ||
626 	    pdata->type == SOC_ARCH_EXYNOS5440)
627 		data->soc = pdata->type;
628 	else {
629 		ret = -EINVAL;
630 		dev_err(&pdev->dev, "Platform not supported\n");
631 		goto err_clk;
632 	}
633 
634 	ret = exynos_tmu_initialize(pdev);
635 	if (ret) {
636 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
637 		goto err_clk;
638 	}
639 
640 	exynos_tmu_control(pdev, true);
641 
642 	/* Allocate a structure to register with the exynos core thermal */
643 	sensor_conf = devm_kzalloc(&pdev->dev,
644 				sizeof(struct thermal_sensor_conf), GFP_KERNEL);
645 	if (!sensor_conf) {
646 		ret = -ENOMEM;
647 		goto err_clk;
648 	}
649 	sprintf(sensor_conf->name, "therm_zone%d", data->id);
650 	sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
651 	sensor_conf->write_emul_temp =
652 		(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
653 	sensor_conf->driver_data = data;
654 	sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
655 			pdata->trigger_enable[1] + pdata->trigger_enable[2]+
656 			pdata->trigger_enable[3];
657 
658 	for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
659 		sensor_conf->trip_data.trip_val[i] =
660 			pdata->threshold + pdata->trigger_levels[i];
661 		sensor_conf->trip_data.trip_type[i] =
662 					pdata->trigger_type[i];
663 	}
664 
665 	sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
666 
667 	sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
668 	for (i = 0; i < pdata->freq_tab_count; i++) {
669 		sensor_conf->cooling_data.freq_data[i].freq_clip_max =
670 					pdata->freq_tab[i].freq_clip_max;
671 		sensor_conf->cooling_data.freq_data[i].temp_level =
672 					pdata->freq_tab[i].temp_level;
673 	}
674 	sensor_conf->dev = &pdev->dev;
675 	/* Register the sensor with thermal management interface */
676 	ret = exynos_register_thermal(sensor_conf);
677 	if (ret) {
678 		dev_err(&pdev->dev, "Failed to register thermal interface\n");
679 		goto err_clk;
680 	}
681 	data->reg_conf = sensor_conf;
682 
683 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
684 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
685 	if (ret) {
686 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
687 		goto err_clk;
688 	}
689 
690 	return 0;
691 err_clk:
692 	clk_unprepare(data->clk);
693 err_clk_sec:
694 	if (!IS_ERR(data->clk_sec))
695 		clk_unprepare(data->clk_sec);
696 	return ret;
697 }
698 
699 static int exynos_tmu_remove(struct platform_device *pdev)
700 {
701 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
702 
703 	exynos_unregister_thermal(data->reg_conf);
704 
705 	exynos_tmu_control(pdev, false);
706 
707 	clk_unprepare(data->clk);
708 	if (!IS_ERR(data->clk_sec))
709 		clk_unprepare(data->clk_sec);
710 
711 	if (!IS_ERR(data->regulator))
712 		regulator_disable(data->regulator);
713 
714 	return 0;
715 }
716 
717 #ifdef CONFIG_PM_SLEEP
718 static int exynos_tmu_suspend(struct device *dev)
719 {
720 	exynos_tmu_control(to_platform_device(dev), false);
721 
722 	return 0;
723 }
724 
725 static int exynos_tmu_resume(struct device *dev)
726 {
727 	struct platform_device *pdev = to_platform_device(dev);
728 
729 	exynos_tmu_initialize(pdev);
730 	exynos_tmu_control(pdev, true);
731 
732 	return 0;
733 }
734 
735 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
736 			 exynos_tmu_suspend, exynos_tmu_resume);
737 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
738 #else
739 #define EXYNOS_TMU_PM	NULL
740 #endif
741 
742 static struct platform_driver exynos_tmu_driver = {
743 	.driver = {
744 		.name   = "exynos-tmu",
745 		.owner  = THIS_MODULE,
746 		.pm     = EXYNOS_TMU_PM,
747 		.of_match_table = exynos_tmu_match,
748 	},
749 	.probe = exynos_tmu_probe,
750 	.remove	= exynos_tmu_remove,
751 };
752 
753 module_platform_driver(exynos_tmu_driver);
754 
755 MODULE_DESCRIPTION("EXYNOS TMU Driver");
756 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
757 MODULE_LICENSE("GPL");
758 MODULE_ALIAS("platform:exynos-tmu");
759