xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33 
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37 
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40 	driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_common: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @temp_error1: fused value of the first point trim.
51  * @temp_error2: fused value of the second point trim.
52  * @regulator: pointer to the TMU regulator structure.
53  * @reg_conf: pointer to structure to register with core thermal.
54  */
55 struct exynos_tmu_data {
56 	int id;
57 	struct exynos_tmu_platform_data *pdata;
58 	void __iomem *base;
59 	void __iomem *base_common;
60 	int irq;
61 	enum soc_type soc;
62 	struct work_struct irq_work;
63 	struct mutex lock;
64 	struct clk *clk;
65 	u8 temp_error1, temp_error2;
66 	struct regulator *regulator;
67 	struct thermal_sensor_conf *reg_conf;
68 };
69 
70 /*
71  * TMU treats temperature as a mapped temperature code.
72  * The temperature is converted differently depending on the calibration type.
73  */
74 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
75 {
76 	struct exynos_tmu_platform_data *pdata = data->pdata;
77 	int temp_code;
78 
79 	if (pdata->cal_mode == HW_MODE)
80 		return temp;
81 
82 	if (data->soc == SOC_ARCH_EXYNOS4210)
83 		/* temp should range between 25 and 125 */
84 		if (temp < 25 || temp > 125) {
85 			temp_code = -EINVAL;
86 			goto out;
87 		}
88 
89 	switch (pdata->cal_type) {
90 	case TYPE_TWO_POINT_TRIMMING:
91 		temp_code = (temp - pdata->first_point_trim) *
92 			(data->temp_error2 - data->temp_error1) /
93 			(pdata->second_point_trim - pdata->first_point_trim) +
94 			data->temp_error1;
95 		break;
96 	case TYPE_ONE_POINT_TRIMMING:
97 		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
98 		break;
99 	default:
100 		temp_code = temp + pdata->default_temp_offset;
101 		break;
102 	}
103 out:
104 	return temp_code;
105 }
106 
107 /*
108  * Calculate a temperature value from a temperature code.
109  * The unit of the temperature is degree Celsius.
110  */
111 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
112 {
113 	struct exynos_tmu_platform_data *pdata = data->pdata;
114 	int temp;
115 
116 	if (pdata->cal_mode == HW_MODE)
117 		return temp_code;
118 
119 	if (data->soc == SOC_ARCH_EXYNOS4210)
120 		/* temp_code should range between 75 and 175 */
121 		if (temp_code < 75 || temp_code > 175) {
122 			temp = -ENODATA;
123 			goto out;
124 		}
125 
126 	switch (pdata->cal_type) {
127 	case TYPE_TWO_POINT_TRIMMING:
128 		temp = (temp_code - data->temp_error1) *
129 			(pdata->second_point_trim - pdata->first_point_trim) /
130 			(data->temp_error2 - data->temp_error1) +
131 			pdata->first_point_trim;
132 		break;
133 	case TYPE_ONE_POINT_TRIMMING:
134 		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
135 		break;
136 	default:
137 		temp = temp_code - pdata->default_temp_offset;
138 		break;
139 	}
140 out:
141 	return temp;
142 }
143 
144 static int exynos_tmu_initialize(struct platform_device *pdev)
145 {
146 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
147 	struct exynos_tmu_platform_data *pdata = data->pdata;
148 	const struct exynos_tmu_registers *reg = pdata->registers;
149 	unsigned int status, trim_info = 0, con;
150 	unsigned int rising_threshold = 0, falling_threshold = 0;
151 	int ret = 0, threshold_code, i, trigger_levs = 0;
152 
153 	mutex_lock(&data->lock);
154 	clk_enable(data->clk);
155 
156 	if (TMU_SUPPORTS(pdata, READY_STATUS)) {
157 		status = readb(data->base + reg->tmu_status);
158 		if (!status) {
159 			ret = -EBUSY;
160 			goto out;
161 		}
162 	}
163 
164 	if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
165 		__raw_writel(1, data->base + reg->triminfo_ctrl);
166 
167 	if (pdata->cal_mode == HW_MODE)
168 		goto skip_calib_data;
169 
170 	/* Save trimming info in order to perform calibration */
171 	if (data->soc == SOC_ARCH_EXYNOS5440) {
172 		/*
173 		 * For exynos5440 soc triminfo value is swapped between TMU0 and
174 		 * TMU2, so the below logic is needed.
175 		 */
176 		switch (data->id) {
177 		case 0:
178 			trim_info = readl(data->base +
179 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
180 			break;
181 		case 1:
182 			trim_info = readl(data->base + reg->triminfo_data);
183 			break;
184 		case 2:
185 			trim_info = readl(data->base -
186 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
187 		}
188 	} else {
189 		trim_info = readl(data->base + reg->triminfo_data);
190 	}
191 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
192 	data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
193 				EXYNOS_TMU_TEMP_MASK);
194 
195 	if (!data->temp_error1 ||
196 		(pdata->min_efuse_value > data->temp_error1) ||
197 		(data->temp_error1 > pdata->max_efuse_value))
198 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
199 
200 	if (!data->temp_error2)
201 		data->temp_error2 =
202 			(pdata->efuse_value >> reg->triminfo_85_shift) &
203 			EXYNOS_TMU_TEMP_MASK;
204 
205 skip_calib_data:
206 	if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) {
207 		dev_err(&pdev->dev, "Invalid max trigger level\n");
208 		ret = -EINVAL;
209 		goto out;
210 	}
211 
212 	for (i = 0; i < pdata->max_trigger_level; i++) {
213 		if (!pdata->trigger_levels[i])
214 			continue;
215 
216 		if ((pdata->trigger_type[i] == HW_TRIP) &&
217 		(!pdata->trigger_levels[pdata->max_trigger_level - 1])) {
218 			dev_err(&pdev->dev, "Invalid hw trigger level\n");
219 			ret = -EINVAL;
220 			goto out;
221 		}
222 
223 		/* Count trigger levels except the HW trip*/
224 		if (!(pdata->trigger_type[i] == HW_TRIP))
225 			trigger_levs++;
226 	}
227 
228 	if (data->soc == SOC_ARCH_EXYNOS4210) {
229 		/* Write temperature code for threshold */
230 		threshold_code = temp_to_code(data, pdata->threshold);
231 		if (threshold_code < 0) {
232 			ret = threshold_code;
233 			goto out;
234 		}
235 		writeb(threshold_code,
236 			data->base + reg->threshold_temp);
237 		for (i = 0; i < trigger_levs; i++)
238 			writeb(pdata->trigger_levels[i], data->base +
239 			reg->threshold_th0 + i * sizeof(reg->threshold_th0));
240 
241 		writel(reg->inten_rise_mask, data->base + reg->tmu_intclear);
242 	} else {
243 		/* Write temperature code for rising and falling threshold */
244 		for (i = 0;
245 		i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
246 			threshold_code = temp_to_code(data,
247 						pdata->trigger_levels[i]);
248 			if (threshold_code < 0) {
249 				ret = threshold_code;
250 				goto out;
251 			}
252 			rising_threshold |= threshold_code << 8 * i;
253 			if (pdata->threshold_falling) {
254 				threshold_code = temp_to_code(data,
255 						pdata->trigger_levels[i] -
256 						pdata->threshold_falling);
257 				if (threshold_code > 0)
258 					falling_threshold |=
259 						threshold_code << 8 * i;
260 			}
261 		}
262 
263 		writel(rising_threshold,
264 				data->base + reg->threshold_th0);
265 		writel(falling_threshold,
266 				data->base + reg->threshold_th1);
267 
268 		writel((reg->inten_rise_mask << reg->inten_rise_shift) |
269 			(reg->inten_fall_mask << reg->inten_fall_shift),
270 				data->base + reg->tmu_intclear);
271 
272 		/* if last threshold limit is also present */
273 		i = pdata->max_trigger_level - 1;
274 		if (pdata->trigger_levels[i] &&
275 				(pdata->trigger_type[i] == HW_TRIP)) {
276 			threshold_code = temp_to_code(data,
277 						pdata->trigger_levels[i]);
278 			if (threshold_code < 0) {
279 				ret = threshold_code;
280 				goto out;
281 			}
282 			if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
283 				/* 1-4 level to be assigned in th0 reg */
284 				rising_threshold |= threshold_code << 8 * i;
285 				writel(rising_threshold,
286 					data->base + reg->threshold_th0);
287 			} else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
288 				/* 5th level to be assigned in th2 reg */
289 				rising_threshold =
290 				threshold_code << reg->threshold_th3_l0_shift;
291 				writel(rising_threshold,
292 					data->base + reg->threshold_th2);
293 			}
294 			con = readl(data->base + reg->tmu_ctrl);
295 			con |= (1 << reg->therm_trip_en_shift);
296 			writel(con, data->base + reg->tmu_ctrl);
297 		}
298 	}
299 	/*Clear the PMIN in the common TMU register*/
300 	if (reg->tmu_pmin && !data->id)
301 		writel(0, data->base_common + reg->tmu_pmin);
302 out:
303 	clk_disable(data->clk);
304 	mutex_unlock(&data->lock);
305 
306 	return ret;
307 }
308 
309 static void exynos_tmu_control(struct platform_device *pdev, bool on)
310 {
311 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
312 	struct exynos_tmu_platform_data *pdata = data->pdata;
313 	const struct exynos_tmu_registers *reg = pdata->registers;
314 	unsigned int con, interrupt_en, cal_val;
315 
316 	mutex_lock(&data->lock);
317 	clk_enable(data->clk);
318 
319 	con = readl(data->base + reg->tmu_ctrl);
320 
321 	if (pdata->test_mux)
322 		con |= (pdata->test_mux << reg->test_mux_addr_shift);
323 
324 	if (pdata->reference_voltage) {
325 		con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
326 		con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
327 	}
328 
329 	if (pdata->gain) {
330 		con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
331 		con |= (pdata->gain << reg->buf_slope_sel_shift);
332 	}
333 
334 	if (pdata->noise_cancel_mode) {
335 		con &= ~(reg->therm_trip_mode_mask <<
336 					reg->therm_trip_mode_shift);
337 		con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
338 	}
339 
340 	if (pdata->cal_mode == HW_MODE) {
341 		con &= ~(reg->calib_mode_mask << reg->calib_mode_shift);
342 		cal_val = 0;
343 		switch (pdata->cal_type) {
344 		case TYPE_TWO_POINT_TRIMMING:
345 			cal_val = 3;
346 			break;
347 		case TYPE_ONE_POINT_TRIMMING_85:
348 			cal_val = 2;
349 			break;
350 		case TYPE_ONE_POINT_TRIMMING_25:
351 			cal_val = 1;
352 			break;
353 		case TYPE_NONE:
354 			break;
355 		default:
356 			dev_err(&pdev->dev, "Invalid calibration type, using none\n");
357 		}
358 		con |= cal_val << reg->calib_mode_shift;
359 	}
360 
361 	if (on) {
362 		con |= (1 << reg->core_en_shift);
363 		interrupt_en =
364 			pdata->trigger_enable[3] << reg->inten_rise3_shift |
365 			pdata->trigger_enable[2] << reg->inten_rise2_shift |
366 			pdata->trigger_enable[1] << reg->inten_rise1_shift |
367 			pdata->trigger_enable[0] << reg->inten_rise0_shift;
368 		if (TMU_SUPPORTS(pdata, FALLING_TRIP))
369 			interrupt_en |=
370 				interrupt_en << reg->inten_fall0_shift;
371 	} else {
372 		con &= ~(1 << reg->core_en_shift);
373 		interrupt_en = 0; /* Disable all interrupts */
374 	}
375 	writel(interrupt_en, data->base + reg->tmu_inten);
376 	writel(con, data->base + reg->tmu_ctrl);
377 
378 	clk_disable(data->clk);
379 	mutex_unlock(&data->lock);
380 }
381 
382 static int exynos_tmu_read(struct exynos_tmu_data *data)
383 {
384 	struct exynos_tmu_platform_data *pdata = data->pdata;
385 	const struct exynos_tmu_registers *reg = pdata->registers;
386 	u8 temp_code;
387 	int temp;
388 
389 	mutex_lock(&data->lock);
390 	clk_enable(data->clk);
391 
392 	temp_code = readb(data->base + reg->tmu_cur_temp);
393 	temp = code_to_temp(data, temp_code);
394 
395 	clk_disable(data->clk);
396 	mutex_unlock(&data->lock);
397 
398 	return temp;
399 }
400 
401 #ifdef CONFIG_THERMAL_EMULATION
402 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
403 {
404 	struct exynos_tmu_data *data = drv_data;
405 	struct exynos_tmu_platform_data *pdata = data->pdata;
406 	const struct exynos_tmu_registers *reg = pdata->registers;
407 	unsigned int val;
408 	int ret = -EINVAL;
409 
410 	if (!TMU_SUPPORTS(pdata, EMULATION))
411 		goto out;
412 
413 	if (temp && temp < MCELSIUS)
414 		goto out;
415 
416 	mutex_lock(&data->lock);
417 	clk_enable(data->clk);
418 
419 	val = readl(data->base + reg->emul_con);
420 
421 	if (temp) {
422 		temp /= MCELSIUS;
423 
424 		if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
425 			val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
426 			val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
427 		}
428 		val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
429 		val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
430 			EXYNOS_EMUL_ENABLE;
431 	} else {
432 		val &= ~EXYNOS_EMUL_ENABLE;
433 	}
434 
435 	writel(val, data->base + reg->emul_con);
436 
437 	clk_disable(data->clk);
438 	mutex_unlock(&data->lock);
439 	return 0;
440 out:
441 	return ret;
442 }
443 #else
444 static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
445 	{ return -EINVAL; }
446 #endif/*CONFIG_THERMAL_EMULATION*/
447 
448 static void exynos_tmu_work(struct work_struct *work)
449 {
450 	struct exynos_tmu_data *data = container_of(work,
451 			struct exynos_tmu_data, irq_work);
452 	struct exynos_tmu_platform_data *pdata = data->pdata;
453 	const struct exynos_tmu_registers *reg = pdata->registers;
454 	unsigned int val_irq, val_type;
455 
456 	/* Find which sensor generated this interrupt */
457 	if (reg->tmu_irqstatus) {
458 		val_type = readl(data->base_common + reg->tmu_irqstatus);
459 		if (!((val_type >> data->id) & 0x1))
460 			goto out;
461 	}
462 
463 	exynos_report_trigger(data->reg_conf);
464 	mutex_lock(&data->lock);
465 	clk_enable(data->clk);
466 
467 	/* TODO: take action based on particular interrupt */
468 	val_irq = readl(data->base + reg->tmu_intstat);
469 	/* clear the interrupts */
470 	writel(val_irq, data->base + reg->tmu_intclear);
471 
472 	clk_disable(data->clk);
473 	mutex_unlock(&data->lock);
474 out:
475 	enable_irq(data->irq);
476 }
477 
478 static irqreturn_t exynos_tmu_irq(int irq, void *id)
479 {
480 	struct exynos_tmu_data *data = id;
481 
482 	disable_irq_nosync(irq);
483 	schedule_work(&data->irq_work);
484 
485 	return IRQ_HANDLED;
486 }
487 
488 static const struct of_device_id exynos_tmu_match[] = {
489 	{
490 		.compatible = "samsung,exynos4210-tmu",
491 		.data = (void *)EXYNOS4210_TMU_DRV_DATA,
492 	},
493 	{
494 		.compatible = "samsung,exynos4412-tmu",
495 		.data = (void *)EXYNOS4412_TMU_DRV_DATA,
496 	},
497 	{
498 		.compatible = "samsung,exynos5250-tmu",
499 		.data = (void *)EXYNOS5250_TMU_DRV_DATA,
500 	},
501 	{
502 		.compatible = "samsung,exynos5440-tmu",
503 		.data = (void *)EXYNOS5440_TMU_DRV_DATA,
504 	},
505 	{},
506 };
507 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
508 
509 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
510 			struct platform_device *pdev, int id)
511 {
512 	struct  exynos_tmu_init_data *data_table;
513 	struct exynos_tmu_platform_data *tmu_data;
514 	const struct of_device_id *match;
515 
516 	match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
517 	if (!match)
518 		return NULL;
519 	data_table = (struct exynos_tmu_init_data *) match->data;
520 	if (!data_table || id >= data_table->tmu_count)
521 		return NULL;
522 	tmu_data = data_table->tmu_data;
523 	return (struct exynos_tmu_platform_data *) (tmu_data + id);
524 }
525 
526 static int exynos_map_dt_data(struct platform_device *pdev)
527 {
528 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
529 	struct exynos_tmu_platform_data *pdata;
530 	struct resource res;
531 	int ret;
532 
533 	if (!data || !pdev->dev.of_node)
534 		return -ENODEV;
535 
536 	/*
537 	 * Try enabling the regulator if found
538 	 * TODO: Add regulator as an SOC feature, so that regulator enable
539 	 * is a compulsory call.
540 	 */
541 	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
542 	if (!IS_ERR(data->regulator)) {
543 		ret = regulator_enable(data->regulator);
544 		if (ret) {
545 			dev_err(&pdev->dev, "failed to enable vtmu\n");
546 			return ret;
547 		}
548 	} else {
549 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
550 	}
551 
552 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
553 	if (data->id < 0)
554 		data->id = 0;
555 
556 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
557 	if (data->irq <= 0) {
558 		dev_err(&pdev->dev, "failed to get IRQ\n");
559 		return -ENODEV;
560 	}
561 
562 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
563 		dev_err(&pdev->dev, "failed to get Resource 0\n");
564 		return -ENODEV;
565 	}
566 
567 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
568 	if (!data->base) {
569 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
570 		return -EADDRNOTAVAIL;
571 	}
572 
573 	pdata = exynos_get_driver_data(pdev, data->id);
574 	if (!pdata) {
575 		dev_err(&pdev->dev, "No platform init data supplied.\n");
576 		return -ENODEV;
577 	}
578 	data->pdata = pdata;
579 	/*
580 	 * Check if the TMU shares some registers and then try to map the
581 	 * memory of common registers.
582 	 */
583 	if (!TMU_SUPPORTS(pdata, SHARED_MEMORY))
584 		return 0;
585 
586 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
587 		dev_err(&pdev->dev, "failed to get Resource 1\n");
588 		return -ENODEV;
589 	}
590 
591 	data->base_common = devm_ioremap(&pdev->dev, res.start,
592 					resource_size(&res));
593 	if (!data->base_common) {
594 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
595 		return -ENOMEM;
596 	}
597 
598 	return 0;
599 }
600 
601 static int exynos_tmu_probe(struct platform_device *pdev)
602 {
603 	struct exynos_tmu_data *data;
604 	struct exynos_tmu_platform_data *pdata;
605 	struct thermal_sensor_conf *sensor_conf;
606 	int ret, i;
607 
608 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
609 					GFP_KERNEL);
610 	if (!data) {
611 		dev_err(&pdev->dev, "Failed to allocate driver structure\n");
612 		return -ENOMEM;
613 	}
614 
615 	platform_set_drvdata(pdev, data);
616 	mutex_init(&data->lock);
617 
618 	ret = exynos_map_dt_data(pdev);
619 	if (ret)
620 		return ret;
621 
622 	pdata = data->pdata;
623 
624 	INIT_WORK(&data->irq_work, exynos_tmu_work);
625 
626 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
627 	if (IS_ERR(data->clk)) {
628 		dev_err(&pdev->dev, "Failed to get clock\n");
629 		return  PTR_ERR(data->clk);
630 	}
631 
632 	ret = clk_prepare(data->clk);
633 	if (ret)
634 		return ret;
635 
636 	if (pdata->type == SOC_ARCH_EXYNOS4210 ||
637 	    pdata->type == SOC_ARCH_EXYNOS4412 ||
638 	    pdata->type == SOC_ARCH_EXYNOS5250 ||
639 	    pdata->type == SOC_ARCH_EXYNOS5440)
640 		data->soc = pdata->type;
641 	else {
642 		ret = -EINVAL;
643 		dev_err(&pdev->dev, "Platform not supported\n");
644 		goto err_clk;
645 	}
646 
647 	ret = exynos_tmu_initialize(pdev);
648 	if (ret) {
649 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
650 		goto err_clk;
651 	}
652 
653 	exynos_tmu_control(pdev, true);
654 
655 	/* Allocate a structure to register with the exynos core thermal */
656 	sensor_conf = devm_kzalloc(&pdev->dev,
657 				sizeof(struct thermal_sensor_conf), GFP_KERNEL);
658 	if (!sensor_conf) {
659 		dev_err(&pdev->dev, "Failed to allocate registration struct\n");
660 		ret = -ENOMEM;
661 		goto err_clk;
662 	}
663 	sprintf(sensor_conf->name, "therm_zone%d", data->id);
664 	sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
665 	sensor_conf->write_emul_temp =
666 		(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
667 	sensor_conf->driver_data = data;
668 	sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
669 			pdata->trigger_enable[1] + pdata->trigger_enable[2]+
670 			pdata->trigger_enable[3];
671 
672 	for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
673 		sensor_conf->trip_data.trip_val[i] =
674 			pdata->threshold + pdata->trigger_levels[i];
675 		sensor_conf->trip_data.trip_type[i] =
676 					pdata->trigger_type[i];
677 	}
678 
679 	sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
680 
681 	sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
682 	for (i = 0; i < pdata->freq_tab_count; i++) {
683 		sensor_conf->cooling_data.freq_data[i].freq_clip_max =
684 					pdata->freq_tab[i].freq_clip_max;
685 		sensor_conf->cooling_data.freq_data[i].temp_level =
686 					pdata->freq_tab[i].temp_level;
687 	}
688 	sensor_conf->dev = &pdev->dev;
689 	/* Register the sensor with thermal management interface */
690 	ret = exynos_register_thermal(sensor_conf);
691 	if (ret) {
692 		dev_err(&pdev->dev, "Failed to register thermal interface\n");
693 		goto err_clk;
694 	}
695 	data->reg_conf = sensor_conf;
696 
697 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
698 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
699 	if (ret) {
700 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
701 		goto err_clk;
702 	}
703 
704 	return 0;
705 err_clk:
706 	clk_unprepare(data->clk);
707 	return ret;
708 }
709 
710 static int exynos_tmu_remove(struct platform_device *pdev)
711 {
712 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
713 
714 	exynos_tmu_control(pdev, false);
715 
716 	exynos_unregister_thermal(data->reg_conf);
717 
718 	clk_unprepare(data->clk);
719 
720 	if (!IS_ERR(data->regulator))
721 		regulator_disable(data->regulator);
722 
723 	return 0;
724 }
725 
726 #ifdef CONFIG_PM_SLEEP
727 static int exynos_tmu_suspend(struct device *dev)
728 {
729 	exynos_tmu_control(to_platform_device(dev), false);
730 
731 	return 0;
732 }
733 
734 static int exynos_tmu_resume(struct device *dev)
735 {
736 	struct platform_device *pdev = to_platform_device(dev);
737 
738 	exynos_tmu_initialize(pdev);
739 	exynos_tmu_control(pdev, true);
740 
741 	return 0;
742 }
743 
744 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
745 			 exynos_tmu_suspend, exynos_tmu_resume);
746 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
747 #else
748 #define EXYNOS_TMU_PM	NULL
749 #endif
750 
751 static struct platform_driver exynos_tmu_driver = {
752 	.driver = {
753 		.name   = "exynos-tmu",
754 		.owner  = THIS_MODULE,
755 		.pm     = EXYNOS_TMU_PM,
756 		.of_match_table = exynos_tmu_match,
757 	},
758 	.probe = exynos_tmu_probe,
759 	.remove	= exynos_tmu_remove,
760 };
761 
762 module_platform_driver(exynos_tmu_driver);
763 
764 MODULE_DESCRIPTION("EXYNOS TMU Driver");
765 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
766 MODULE_LICENSE("GPL");
767 MODULE_ALIAS("platform:exynos-tmu");
768