1 /* 2 * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) 3 * 4 * Copyright (C) 2014 Samsung Electronics 5 * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> 6 * Lukasz Majewski <l.majewski@samsung.com> 7 * 8 * Copyright (C) 2011 Samsung Electronics 9 * Donggeun Kim <dg77.kim@samsung.com> 10 * Amit Daniel Kachhap <amit.kachhap@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 */ 27 28 #include <linux/clk.h> 29 #include <linux/io.h> 30 #include <linux/interrupt.h> 31 #include <linux/module.h> 32 #include <linux/of.h> 33 #include <linux/of_address.h> 34 #include <linux/of_irq.h> 35 #include <linux/platform_device.h> 36 #include <linux/regulator/consumer.h> 37 38 #include "exynos_tmu.h" 39 #include "../thermal_core.h" 40 41 /* Exynos generic registers */ 42 #define EXYNOS_TMU_REG_TRIMINFO 0x0 43 #define EXYNOS_TMU_REG_CONTROL 0x20 44 #define EXYNOS_TMU_REG_STATUS 0x28 45 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40 46 #define EXYNOS_TMU_REG_INTEN 0x70 47 #define EXYNOS_TMU_REG_INTSTAT 0x74 48 #define EXYNOS_TMU_REG_INTCLEAR 0x78 49 50 #define EXYNOS_TMU_TEMP_MASK 0xff 51 #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24 52 #define EXYNOS_TMU_REF_VOLTAGE_MASK 0x1f 53 #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK 0xf 54 #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT 8 55 #define EXYNOS_TMU_CORE_EN_SHIFT 0 56 57 /* Exynos3250 specific registers */ 58 #define EXYNOS_TMU_TRIMINFO_CON1 0x10 59 60 /* Exynos4210 specific registers */ 61 #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44 62 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50 63 64 /* Exynos5250, Exynos4412, Exynos3250 specific registers */ 65 #define EXYNOS_TMU_TRIMINFO_CON2 0x14 66 #define EXYNOS_THD_TEMP_RISE 0x50 67 #define EXYNOS_THD_TEMP_FALL 0x54 68 #define EXYNOS_EMUL_CON 0x80 69 70 #define EXYNOS_TRIMINFO_RELOAD_ENABLE 1 71 #define EXYNOS_TRIMINFO_25_SHIFT 0 72 #define EXYNOS_TRIMINFO_85_SHIFT 8 73 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13 74 #define EXYNOS_TMU_TRIP_MODE_MASK 0x7 75 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT 12 76 77 #define EXYNOS_TMU_INTEN_RISE0_SHIFT 0 78 #define EXYNOS_TMU_INTEN_RISE1_SHIFT 4 79 #define EXYNOS_TMU_INTEN_RISE2_SHIFT 8 80 #define EXYNOS_TMU_INTEN_RISE3_SHIFT 12 81 #define EXYNOS_TMU_INTEN_FALL0_SHIFT 16 82 83 #define EXYNOS_EMUL_TIME 0x57F0 84 #define EXYNOS_EMUL_TIME_MASK 0xffff 85 #define EXYNOS_EMUL_TIME_SHIFT 16 86 #define EXYNOS_EMUL_DATA_SHIFT 8 87 #define EXYNOS_EMUL_DATA_MASK 0xFF 88 #define EXYNOS_EMUL_ENABLE 0x1 89 90 /* Exynos5260 specific */ 91 #define EXYNOS5260_TMU_REG_INTEN 0xC0 92 #define EXYNOS5260_TMU_REG_INTSTAT 0xC4 93 #define EXYNOS5260_TMU_REG_INTCLEAR 0xC8 94 #define EXYNOS5260_EMUL_CON 0x100 95 96 /* Exynos4412 specific */ 97 #define EXYNOS4412_MUX_ADDR_VALUE 6 98 #define EXYNOS4412_MUX_ADDR_SHIFT 20 99 100 /* Exynos5433 specific registers */ 101 #define EXYNOS5433_TMU_REG_CONTROL1 0x024 102 #define EXYNOS5433_TMU_SAMPLING_INTERVAL 0x02c 103 #define EXYNOS5433_TMU_COUNTER_VALUE0 0x030 104 #define EXYNOS5433_TMU_COUNTER_VALUE1 0x034 105 #define EXYNOS5433_TMU_REG_CURRENT_TEMP1 0x044 106 #define EXYNOS5433_THD_TEMP_RISE3_0 0x050 107 #define EXYNOS5433_THD_TEMP_RISE7_4 0x054 108 #define EXYNOS5433_THD_TEMP_FALL3_0 0x060 109 #define EXYNOS5433_THD_TEMP_FALL7_4 0x064 110 #define EXYNOS5433_TMU_REG_INTEN 0x0c0 111 #define EXYNOS5433_TMU_REG_INTPEND 0x0c8 112 #define EXYNOS5433_TMU_EMUL_CON 0x110 113 #define EXYNOS5433_TMU_PD_DET_EN 0x130 114 115 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT 16 116 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT 23 117 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK \ 118 (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT) 119 #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK BIT(23) 120 121 #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING 0 122 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING 1 123 124 #define EXYNOS5433_PD_DET_EN 1 125 126 /*exynos5440 specific registers*/ 127 #define EXYNOS5440_TMU_S0_7_TRIM 0x000 128 #define EXYNOS5440_TMU_S0_7_CTRL 0x020 129 #define EXYNOS5440_TMU_S0_7_DEBUG 0x040 130 #define EXYNOS5440_TMU_S0_7_TEMP 0x0f0 131 #define EXYNOS5440_TMU_S0_7_TH0 0x110 132 #define EXYNOS5440_TMU_S0_7_TH1 0x130 133 #define EXYNOS5440_TMU_S0_7_TH2 0x150 134 #define EXYNOS5440_TMU_S0_7_IRQEN 0x210 135 #define EXYNOS5440_TMU_S0_7_IRQ 0x230 136 /* exynos5440 common registers */ 137 #define EXYNOS5440_TMU_IRQ_STATUS 0x000 138 #define EXYNOS5440_TMU_PMIN 0x004 139 140 #define EXYNOS5440_TMU_INTEN_RISE0_SHIFT 0 141 #define EXYNOS5440_TMU_INTEN_RISE1_SHIFT 1 142 #define EXYNOS5440_TMU_INTEN_RISE2_SHIFT 2 143 #define EXYNOS5440_TMU_INTEN_RISE3_SHIFT 3 144 #define EXYNOS5440_TMU_INTEN_FALL0_SHIFT 4 145 #define EXYNOS5440_TMU_TH_RISE4_SHIFT 24 146 #define EXYNOS5440_EFUSE_SWAP_OFFSET 8 147 148 /* Exynos7 specific registers */ 149 #define EXYNOS7_THD_TEMP_RISE7_6 0x50 150 #define EXYNOS7_THD_TEMP_FALL7_6 0x60 151 #define EXYNOS7_TMU_REG_INTEN 0x110 152 #define EXYNOS7_TMU_REG_INTPEND 0x118 153 #define EXYNOS7_TMU_REG_EMUL_CON 0x160 154 155 #define EXYNOS7_TMU_TEMP_MASK 0x1ff 156 #define EXYNOS7_PD_DET_EN_SHIFT 23 157 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT 0 158 #define EXYNOS7_TMU_INTEN_RISE1_SHIFT 1 159 #define EXYNOS7_TMU_INTEN_RISE2_SHIFT 2 160 #define EXYNOS7_TMU_INTEN_RISE3_SHIFT 3 161 #define EXYNOS7_TMU_INTEN_RISE4_SHIFT 4 162 #define EXYNOS7_TMU_INTEN_RISE5_SHIFT 5 163 #define EXYNOS7_TMU_INTEN_RISE6_SHIFT 6 164 #define EXYNOS7_TMU_INTEN_RISE7_SHIFT 7 165 #define EXYNOS7_EMUL_DATA_SHIFT 7 166 #define EXYNOS7_EMUL_DATA_MASK 0x1ff 167 168 #define MCELSIUS 1000 169 /** 170 * struct exynos_tmu_data : A structure to hold the private data of the TMU 171 driver 172 * @id: identifier of the one instance of the TMU controller. 173 * @pdata: pointer to the tmu platform/configuration data 174 * @base: base address of the single instance of the TMU controller. 175 * @base_second: base address of the common registers of the TMU controller. 176 * @irq: irq number of the TMU controller. 177 * @soc: id of the SOC type. 178 * @irq_work: pointer to the irq work structure. 179 * @lock: lock to implement synchronization. 180 * @clk: pointer to the clock structure. 181 * @clk_sec: pointer to the clock structure for accessing the base_second. 182 * @sclk: pointer to the clock structure for accessing the tmu special clk. 183 * @temp_error1: fused value of the first point trim. 184 * @temp_error2: fused value of the second point trim. 185 * @regulator: pointer to the TMU regulator structure. 186 * @reg_conf: pointer to structure to register with core thermal. 187 * @tmu_initialize: SoC specific TMU initialization method 188 * @tmu_control: SoC specific TMU control method 189 * @tmu_read: SoC specific TMU temperature read method 190 * @tmu_set_emulation: SoC specific TMU emulation setting method 191 * @tmu_clear_irqs: SoC specific TMU interrupts clearing method 192 */ 193 struct exynos_tmu_data { 194 int id; 195 struct exynos_tmu_platform_data *pdata; 196 void __iomem *base; 197 void __iomem *base_second; 198 int irq; 199 enum soc_type soc; 200 struct work_struct irq_work; 201 struct mutex lock; 202 struct clk *clk, *clk_sec, *sclk; 203 u16 temp_error1, temp_error2; 204 struct regulator *regulator; 205 struct thermal_zone_device *tzd; 206 207 int (*tmu_initialize)(struct platform_device *pdev); 208 void (*tmu_control)(struct platform_device *pdev, bool on); 209 int (*tmu_read)(struct exynos_tmu_data *data); 210 void (*tmu_set_emulation)(struct exynos_tmu_data *data, 211 unsigned long temp); 212 void (*tmu_clear_irqs)(struct exynos_tmu_data *data); 213 }; 214 215 static void exynos_report_trigger(struct exynos_tmu_data *p) 216 { 217 char data[10], *envp[] = { data, NULL }; 218 struct thermal_zone_device *tz = p->tzd; 219 unsigned long temp; 220 unsigned int i; 221 222 if (!tz) { 223 pr_err("No thermal zone device defined\n"); 224 return; 225 } 226 227 thermal_zone_device_update(tz); 228 229 mutex_lock(&tz->lock); 230 /* Find the level for which trip happened */ 231 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 232 tz->ops->get_trip_temp(tz, i, &temp); 233 if (tz->last_temperature < temp) 234 break; 235 } 236 237 snprintf(data, sizeof(data), "%u", i); 238 kobject_uevent_env(&tz->device.kobj, KOBJ_CHANGE, envp); 239 mutex_unlock(&tz->lock); 240 } 241 242 /* 243 * TMU treats temperature as a mapped temperature code. 244 * The temperature is converted differently depending on the calibration type. 245 */ 246 static int temp_to_code(struct exynos_tmu_data *data, u8 temp) 247 { 248 struct exynos_tmu_platform_data *pdata = data->pdata; 249 int temp_code; 250 251 switch (pdata->cal_type) { 252 case TYPE_TWO_POINT_TRIMMING: 253 temp_code = (temp - pdata->first_point_trim) * 254 (data->temp_error2 - data->temp_error1) / 255 (pdata->second_point_trim - pdata->first_point_trim) + 256 data->temp_error1; 257 break; 258 case TYPE_ONE_POINT_TRIMMING: 259 temp_code = temp + data->temp_error1 - pdata->first_point_trim; 260 break; 261 default: 262 temp_code = temp + pdata->default_temp_offset; 263 break; 264 } 265 266 return temp_code; 267 } 268 269 /* 270 * Calculate a temperature value from a temperature code. 271 * The unit of the temperature is degree Celsius. 272 */ 273 static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code) 274 { 275 struct exynos_tmu_platform_data *pdata = data->pdata; 276 int temp; 277 278 switch (pdata->cal_type) { 279 case TYPE_TWO_POINT_TRIMMING: 280 temp = (temp_code - data->temp_error1) * 281 (pdata->second_point_trim - pdata->first_point_trim) / 282 (data->temp_error2 - data->temp_error1) + 283 pdata->first_point_trim; 284 break; 285 case TYPE_ONE_POINT_TRIMMING: 286 temp = temp_code - data->temp_error1 + pdata->first_point_trim; 287 break; 288 default: 289 temp = temp_code - pdata->default_temp_offset; 290 break; 291 } 292 293 return temp; 294 } 295 296 static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info) 297 { 298 struct exynos_tmu_platform_data *pdata = data->pdata; 299 300 data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; 301 data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) & 302 EXYNOS_TMU_TEMP_MASK); 303 304 if (!data->temp_error1 || 305 (pdata->min_efuse_value > data->temp_error1) || 306 (data->temp_error1 > pdata->max_efuse_value)) 307 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; 308 309 if (!data->temp_error2) 310 data->temp_error2 = 311 (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) & 312 EXYNOS_TMU_TEMP_MASK; 313 } 314 315 static u32 get_th_reg(struct exynos_tmu_data *data, u32 threshold, bool falling) 316 { 317 struct thermal_zone_device *tz = data->tzd; 318 const struct thermal_trip * const trips = 319 of_thermal_get_trip_points(tz); 320 unsigned long temp; 321 int i; 322 323 if (!trips) { 324 pr_err("%s: Cannot get trip points from of-thermal.c!\n", 325 __func__); 326 return 0; 327 } 328 329 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 330 if (trips[i].type == THERMAL_TRIP_CRITICAL) 331 continue; 332 333 temp = trips[i].temperature / MCELSIUS; 334 if (falling) 335 temp -= (trips[i].hysteresis / MCELSIUS); 336 else 337 threshold &= ~(0xff << 8 * i); 338 339 threshold |= temp_to_code(data, temp) << 8 * i; 340 } 341 342 return threshold; 343 } 344 345 static int exynos_tmu_initialize(struct platform_device *pdev) 346 { 347 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 348 int ret; 349 350 mutex_lock(&data->lock); 351 clk_enable(data->clk); 352 if (!IS_ERR(data->clk_sec)) 353 clk_enable(data->clk_sec); 354 ret = data->tmu_initialize(pdev); 355 clk_disable(data->clk); 356 mutex_unlock(&data->lock); 357 if (!IS_ERR(data->clk_sec)) 358 clk_disable(data->clk_sec); 359 360 return ret; 361 } 362 363 static u32 get_con_reg(struct exynos_tmu_data *data, u32 con) 364 { 365 struct exynos_tmu_platform_data *pdata = data->pdata; 366 367 if (data->soc == SOC_ARCH_EXYNOS4412 || 368 data->soc == SOC_ARCH_EXYNOS3250) 369 con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT); 370 371 con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT); 372 con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT; 373 374 con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 375 con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 376 377 if (pdata->noise_cancel_mode) { 378 con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT); 379 con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT); 380 } 381 382 return con; 383 } 384 385 static void exynos_tmu_control(struct platform_device *pdev, bool on) 386 { 387 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 388 389 mutex_lock(&data->lock); 390 clk_enable(data->clk); 391 data->tmu_control(pdev, on); 392 clk_disable(data->clk); 393 mutex_unlock(&data->lock); 394 } 395 396 static int exynos4210_tmu_initialize(struct platform_device *pdev) 397 { 398 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 399 struct thermal_zone_device *tz = data->tzd; 400 const struct thermal_trip * const trips = 401 of_thermal_get_trip_points(tz); 402 int ret = 0, threshold_code, i; 403 unsigned long reference, temp; 404 unsigned int status; 405 406 if (!trips) { 407 pr_err("%s: Cannot get trip points from of-thermal.c!\n", 408 __func__); 409 ret = -ENODEV; 410 goto out; 411 } 412 413 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 414 if (!status) { 415 ret = -EBUSY; 416 goto out; 417 } 418 419 sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO)); 420 421 /* Write temperature code for threshold */ 422 reference = trips[0].temperature / MCELSIUS; 423 threshold_code = temp_to_code(data, reference); 424 if (threshold_code < 0) { 425 ret = threshold_code; 426 goto out; 427 } 428 writeb(threshold_code, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP); 429 430 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 431 temp = trips[i].temperature / MCELSIUS; 432 writeb(temp - reference, data->base + 433 EXYNOS4210_TMU_REG_TRIG_LEVEL0 + i * 4); 434 } 435 436 data->tmu_clear_irqs(data); 437 out: 438 return ret; 439 } 440 441 static int exynos4412_tmu_initialize(struct platform_device *pdev) 442 { 443 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 444 const struct thermal_trip * const trips = 445 of_thermal_get_trip_points(data->tzd); 446 unsigned int status, trim_info, con, ctrl, rising_threshold; 447 int ret = 0, threshold_code, i; 448 unsigned long crit_temp = 0; 449 450 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 451 if (!status) { 452 ret = -EBUSY; 453 goto out; 454 } 455 456 if (data->soc == SOC_ARCH_EXYNOS3250 || 457 data->soc == SOC_ARCH_EXYNOS4412 || 458 data->soc == SOC_ARCH_EXYNOS5250) { 459 if (data->soc == SOC_ARCH_EXYNOS3250) { 460 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1); 461 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; 462 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1); 463 } 464 ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2); 465 ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; 466 writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2); 467 } 468 469 /* On exynos5420 the triminfo register is in the shared space */ 470 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) 471 trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO); 472 else 473 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 474 475 sanitize_temp_error(data, trim_info); 476 477 /* Write temperature code for rising and falling threshold */ 478 rising_threshold = readl(data->base + EXYNOS_THD_TEMP_RISE); 479 rising_threshold = get_th_reg(data, rising_threshold, false); 480 writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); 481 writel(get_th_reg(data, 0, true), data->base + EXYNOS_THD_TEMP_FALL); 482 483 data->tmu_clear_irqs(data); 484 485 /* if last threshold limit is also present */ 486 for (i = 0; i < of_thermal_get_ntrips(data->tzd); i++) { 487 if (trips[i].type == THERMAL_TRIP_CRITICAL) { 488 crit_temp = trips[i].temperature; 489 break; 490 } 491 } 492 493 if (i == of_thermal_get_ntrips(data->tzd)) { 494 pr_err("%s: No CRITICAL trip point defined at of-thermal.c!\n", 495 __func__); 496 ret = -EINVAL; 497 goto out; 498 } 499 500 threshold_code = temp_to_code(data, crit_temp / MCELSIUS); 501 /* 1-4 level to be assigned in th0 reg */ 502 rising_threshold &= ~(0xff << 8 * i); 503 rising_threshold |= threshold_code << 8 * i; 504 writel(rising_threshold, data->base + EXYNOS_THD_TEMP_RISE); 505 con = readl(data->base + EXYNOS_TMU_REG_CONTROL); 506 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT); 507 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 508 509 out: 510 return ret; 511 } 512 513 static int exynos5433_tmu_initialize(struct platform_device *pdev) 514 { 515 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 516 struct exynos_tmu_platform_data *pdata = data->pdata; 517 struct thermal_zone_device *tz = data->tzd; 518 unsigned int status, trim_info; 519 unsigned int rising_threshold = 0, falling_threshold = 0; 520 unsigned long temp, temp_hist; 521 int ret = 0, threshold_code, i, sensor_id, cal_type; 522 523 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 524 if (!status) { 525 ret = -EBUSY; 526 goto out; 527 } 528 529 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 530 sanitize_temp_error(data, trim_info); 531 532 /* Read the temperature sensor id */ 533 sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK) 534 >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT; 535 dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id); 536 537 /* Read the calibration mode */ 538 writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO); 539 cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK) 540 >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT; 541 542 switch (cal_type) { 543 case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING: 544 pdata->cal_type = TYPE_ONE_POINT_TRIMMING; 545 break; 546 case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING: 547 pdata->cal_type = TYPE_TWO_POINT_TRIMMING; 548 break; 549 default: 550 pdata->cal_type = TYPE_ONE_POINT_TRIMMING; 551 break; 552 }; 553 554 dev_info(&pdev->dev, "Calibration type is %d-point calibration\n", 555 cal_type ? 2 : 1); 556 557 /* Write temperature code for rising and falling threshold */ 558 for (i = 0; i < of_thermal_get_ntrips(tz); i++) { 559 int rising_reg_offset, falling_reg_offset; 560 int j = 0; 561 562 switch (i) { 563 case 0: 564 case 1: 565 case 2: 566 case 3: 567 rising_reg_offset = EXYNOS5433_THD_TEMP_RISE3_0; 568 falling_reg_offset = EXYNOS5433_THD_TEMP_FALL3_0; 569 j = i; 570 break; 571 case 4: 572 case 5: 573 case 6: 574 case 7: 575 rising_reg_offset = EXYNOS5433_THD_TEMP_RISE7_4; 576 falling_reg_offset = EXYNOS5433_THD_TEMP_FALL7_4; 577 j = i - 4; 578 break; 579 default: 580 continue; 581 } 582 583 /* Write temperature code for rising threshold */ 584 tz->ops->get_trip_temp(tz, i, &temp); 585 temp /= MCELSIUS; 586 threshold_code = temp_to_code(data, temp); 587 588 rising_threshold = readl(data->base + rising_reg_offset); 589 rising_threshold |= (threshold_code << j * 8); 590 writel(rising_threshold, data->base + rising_reg_offset); 591 592 /* Write temperature code for falling threshold */ 593 tz->ops->get_trip_hyst(tz, i, &temp_hist); 594 temp_hist = temp - (temp_hist / MCELSIUS); 595 threshold_code = temp_to_code(data, temp_hist); 596 597 falling_threshold = readl(data->base + falling_reg_offset); 598 falling_threshold &= ~(0xff << j * 8); 599 falling_threshold |= (threshold_code << j * 8); 600 writel(falling_threshold, data->base + falling_reg_offset); 601 } 602 603 data->tmu_clear_irqs(data); 604 out: 605 return ret; 606 } 607 608 static int exynos5440_tmu_initialize(struct platform_device *pdev) 609 { 610 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 611 unsigned int trim_info = 0, con, rising_threshold; 612 int ret = 0, threshold_code; 613 unsigned long crit_temp = 0; 614 615 /* 616 * For exynos5440 soc triminfo value is swapped between TMU0 and 617 * TMU2, so the below logic is needed. 618 */ 619 switch (data->id) { 620 case 0: 621 trim_info = readl(data->base + EXYNOS5440_EFUSE_SWAP_OFFSET + 622 EXYNOS5440_TMU_S0_7_TRIM); 623 break; 624 case 1: 625 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM); 626 break; 627 case 2: 628 trim_info = readl(data->base - EXYNOS5440_EFUSE_SWAP_OFFSET + 629 EXYNOS5440_TMU_S0_7_TRIM); 630 } 631 sanitize_temp_error(data, trim_info); 632 633 /* Write temperature code for rising and falling threshold */ 634 rising_threshold = readl(data->base + EXYNOS5440_TMU_S0_7_TH0); 635 rising_threshold = get_th_reg(data, rising_threshold, false); 636 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH0); 637 writel(0, data->base + EXYNOS5440_TMU_S0_7_TH1); 638 639 data->tmu_clear_irqs(data); 640 641 /* if last threshold limit is also present */ 642 if (!data->tzd->ops->get_crit_temp(data->tzd, &crit_temp)) { 643 threshold_code = temp_to_code(data, crit_temp / MCELSIUS); 644 /* 5th level to be assigned in th2 reg */ 645 rising_threshold = 646 threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT; 647 writel(rising_threshold, data->base + EXYNOS5440_TMU_S0_7_TH2); 648 con = readl(data->base + EXYNOS5440_TMU_S0_7_CTRL); 649 con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT); 650 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL); 651 } 652 /* Clear the PMIN in the common TMU register */ 653 if (!data->id) 654 writel(0, data->base_second + EXYNOS5440_TMU_PMIN); 655 return ret; 656 } 657 658 static int exynos7_tmu_initialize(struct platform_device *pdev) 659 { 660 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 661 struct thermal_zone_device *tz = data->tzd; 662 struct exynos_tmu_platform_data *pdata = data->pdata; 663 unsigned int status, trim_info; 664 unsigned int rising_threshold = 0, falling_threshold = 0; 665 int ret = 0, threshold_code, i; 666 unsigned long temp, temp_hist; 667 unsigned int reg_off, bit_off; 668 669 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 670 if (!status) { 671 ret = -EBUSY; 672 goto out; 673 } 674 675 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 676 677 data->temp_error1 = trim_info & EXYNOS7_TMU_TEMP_MASK; 678 if (!data->temp_error1 || 679 (pdata->min_efuse_value > data->temp_error1) || 680 (data->temp_error1 > pdata->max_efuse_value)) 681 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; 682 683 /* Write temperature code for rising and falling threshold */ 684 for (i = (of_thermal_get_ntrips(tz) - 1); i >= 0; i--) { 685 /* 686 * On exynos7 there are 4 rising and 4 falling threshold 687 * registers (0x50-0x5c and 0x60-0x6c respectively). Each 688 * register holds the value of two threshold levels (at bit 689 * offsets 0 and 16). Based on the fact that there are atmost 690 * eight possible trigger levels, calculate the register and 691 * bit offsets where the threshold levels are to be written. 692 * 693 * e.g. EXYNOS7_THD_TEMP_RISE7_6 (0x50) 694 * [24:16] - Threshold level 7 695 * [8:0] - Threshold level 6 696 * e.g. EXYNOS7_THD_TEMP_RISE5_4 (0x54) 697 * [24:16] - Threshold level 5 698 * [8:0] - Threshold level 4 699 * 700 * and similarly for falling thresholds. 701 * 702 * Based on the above, calculate the register and bit offsets 703 * for rising/falling threshold levels and populate them. 704 */ 705 reg_off = ((7 - i) / 2) * 4; 706 bit_off = ((8 - i) % 2); 707 708 tz->ops->get_trip_temp(tz, i, &temp); 709 temp /= MCELSIUS; 710 711 tz->ops->get_trip_hyst(tz, i, &temp_hist); 712 temp_hist = temp - (temp_hist / MCELSIUS); 713 714 /* Set 9-bit temperature code for rising threshold levels */ 715 threshold_code = temp_to_code(data, temp); 716 rising_threshold = readl(data->base + 717 EXYNOS7_THD_TEMP_RISE7_6 + reg_off); 718 rising_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); 719 rising_threshold |= threshold_code << (16 * bit_off); 720 writel(rising_threshold, 721 data->base + EXYNOS7_THD_TEMP_RISE7_6 + reg_off); 722 723 /* Set 9-bit temperature code for falling threshold levels */ 724 threshold_code = temp_to_code(data, temp_hist); 725 falling_threshold &= ~(EXYNOS7_TMU_TEMP_MASK << (16 * bit_off)); 726 falling_threshold |= threshold_code << (16 * bit_off); 727 writel(falling_threshold, 728 data->base + EXYNOS7_THD_TEMP_FALL7_6 + reg_off); 729 } 730 731 data->tmu_clear_irqs(data); 732 out: 733 return ret; 734 } 735 736 static void exynos4210_tmu_control(struct platform_device *pdev, bool on) 737 { 738 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 739 struct thermal_zone_device *tz = data->tzd; 740 unsigned int con, interrupt_en; 741 742 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 743 744 if (on) { 745 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 746 interrupt_en = 747 (of_thermal_is_trip_valid(tz, 3) 748 << EXYNOS_TMU_INTEN_RISE3_SHIFT) | 749 (of_thermal_is_trip_valid(tz, 2) 750 << EXYNOS_TMU_INTEN_RISE2_SHIFT) | 751 (of_thermal_is_trip_valid(tz, 1) 752 << EXYNOS_TMU_INTEN_RISE1_SHIFT) | 753 (of_thermal_is_trip_valid(tz, 0) 754 << EXYNOS_TMU_INTEN_RISE0_SHIFT); 755 756 if (data->soc != SOC_ARCH_EXYNOS4210) 757 interrupt_en |= 758 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 759 } else { 760 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 761 interrupt_en = 0; /* Disable all interrupts */ 762 } 763 writel(interrupt_en, data->base + EXYNOS_TMU_REG_INTEN); 764 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 765 } 766 767 static void exynos5433_tmu_control(struct platform_device *pdev, bool on) 768 { 769 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 770 struct thermal_zone_device *tz = data->tzd; 771 unsigned int con, interrupt_en, pd_det_en; 772 773 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 774 775 if (on) { 776 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 777 interrupt_en = 778 (of_thermal_is_trip_valid(tz, 7) 779 << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | 780 (of_thermal_is_trip_valid(tz, 6) 781 << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | 782 (of_thermal_is_trip_valid(tz, 5) 783 << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | 784 (of_thermal_is_trip_valid(tz, 4) 785 << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | 786 (of_thermal_is_trip_valid(tz, 3) 787 << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | 788 (of_thermal_is_trip_valid(tz, 2) 789 << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | 790 (of_thermal_is_trip_valid(tz, 1) 791 << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | 792 (of_thermal_is_trip_valid(tz, 0) 793 << EXYNOS7_TMU_INTEN_RISE0_SHIFT); 794 795 interrupt_en |= 796 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 797 } else { 798 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 799 interrupt_en = 0; /* Disable all interrupts */ 800 } 801 802 pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0; 803 804 writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN); 805 writel(interrupt_en, data->base + EXYNOS5433_TMU_REG_INTEN); 806 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 807 } 808 809 static void exynos5440_tmu_control(struct platform_device *pdev, bool on) 810 { 811 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 812 struct thermal_zone_device *tz = data->tzd; 813 unsigned int con, interrupt_en; 814 815 con = get_con_reg(data, readl(data->base + EXYNOS5440_TMU_S0_7_CTRL)); 816 817 if (on) { 818 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 819 interrupt_en = 820 (of_thermal_is_trip_valid(tz, 3) 821 << EXYNOS5440_TMU_INTEN_RISE3_SHIFT) | 822 (of_thermal_is_trip_valid(tz, 2) 823 << EXYNOS5440_TMU_INTEN_RISE2_SHIFT) | 824 (of_thermal_is_trip_valid(tz, 1) 825 << EXYNOS5440_TMU_INTEN_RISE1_SHIFT) | 826 (of_thermal_is_trip_valid(tz, 0) 827 << EXYNOS5440_TMU_INTEN_RISE0_SHIFT); 828 interrupt_en |= 829 interrupt_en << EXYNOS5440_TMU_INTEN_FALL0_SHIFT; 830 } else { 831 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 832 interrupt_en = 0; /* Disable all interrupts */ 833 } 834 writel(interrupt_en, data->base + EXYNOS5440_TMU_S0_7_IRQEN); 835 writel(con, data->base + EXYNOS5440_TMU_S0_7_CTRL); 836 } 837 838 static void exynos7_tmu_control(struct platform_device *pdev, bool on) 839 { 840 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 841 struct thermal_zone_device *tz = data->tzd; 842 unsigned int con, interrupt_en; 843 844 con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); 845 846 if (on) { 847 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 848 con |= (1 << EXYNOS7_PD_DET_EN_SHIFT); 849 interrupt_en = 850 (of_thermal_is_trip_valid(tz, 7) 851 << EXYNOS7_TMU_INTEN_RISE7_SHIFT) | 852 (of_thermal_is_trip_valid(tz, 6) 853 << EXYNOS7_TMU_INTEN_RISE6_SHIFT) | 854 (of_thermal_is_trip_valid(tz, 5) 855 << EXYNOS7_TMU_INTEN_RISE5_SHIFT) | 856 (of_thermal_is_trip_valid(tz, 4) 857 << EXYNOS7_TMU_INTEN_RISE4_SHIFT) | 858 (of_thermal_is_trip_valid(tz, 3) 859 << EXYNOS7_TMU_INTEN_RISE3_SHIFT) | 860 (of_thermal_is_trip_valid(tz, 2) 861 << EXYNOS7_TMU_INTEN_RISE2_SHIFT) | 862 (of_thermal_is_trip_valid(tz, 1) 863 << EXYNOS7_TMU_INTEN_RISE1_SHIFT) | 864 (of_thermal_is_trip_valid(tz, 0) 865 << EXYNOS7_TMU_INTEN_RISE0_SHIFT); 866 867 interrupt_en |= 868 interrupt_en << EXYNOS_TMU_INTEN_FALL0_SHIFT; 869 } else { 870 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 871 con &= ~(1 << EXYNOS7_PD_DET_EN_SHIFT); 872 interrupt_en = 0; /* Disable all interrupts */ 873 } 874 875 writel(interrupt_en, data->base + EXYNOS7_TMU_REG_INTEN); 876 writel(con, data->base + EXYNOS_TMU_REG_CONTROL); 877 } 878 879 static int exynos_get_temp(void *p, long *temp) 880 { 881 struct exynos_tmu_data *data = p; 882 883 if (!data || !data->tmu_read) 884 return -EINVAL; 885 886 mutex_lock(&data->lock); 887 clk_enable(data->clk); 888 889 *temp = code_to_temp(data, data->tmu_read(data)) * MCELSIUS; 890 891 clk_disable(data->clk); 892 mutex_unlock(&data->lock); 893 894 return 0; 895 } 896 897 #ifdef CONFIG_THERMAL_EMULATION 898 static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val, 899 unsigned long temp) 900 { 901 if (temp) { 902 temp /= MCELSIUS; 903 904 if (data->soc != SOC_ARCH_EXYNOS5440) { 905 val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT); 906 val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT); 907 } 908 if (data->soc == SOC_ARCH_EXYNOS7) { 909 val &= ~(EXYNOS7_EMUL_DATA_MASK << 910 EXYNOS7_EMUL_DATA_SHIFT); 911 val |= (temp_to_code(data, temp) << 912 EXYNOS7_EMUL_DATA_SHIFT) | 913 EXYNOS_EMUL_ENABLE; 914 } else { 915 val &= ~(EXYNOS_EMUL_DATA_MASK << 916 EXYNOS_EMUL_DATA_SHIFT); 917 val |= (temp_to_code(data, temp) << 918 EXYNOS_EMUL_DATA_SHIFT) | 919 EXYNOS_EMUL_ENABLE; 920 } 921 } else { 922 val &= ~EXYNOS_EMUL_ENABLE; 923 } 924 925 return val; 926 } 927 928 static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data, 929 unsigned long temp) 930 { 931 unsigned int val; 932 u32 emul_con; 933 934 if (data->soc == SOC_ARCH_EXYNOS5260) 935 emul_con = EXYNOS5260_EMUL_CON; 936 if (data->soc == SOC_ARCH_EXYNOS5433) 937 emul_con = EXYNOS5433_TMU_EMUL_CON; 938 else if (data->soc == SOC_ARCH_EXYNOS7) 939 emul_con = EXYNOS7_TMU_REG_EMUL_CON; 940 else 941 emul_con = EXYNOS_EMUL_CON; 942 943 val = readl(data->base + emul_con); 944 val = get_emul_con_reg(data, val, temp); 945 writel(val, data->base + emul_con); 946 } 947 948 static void exynos5440_tmu_set_emulation(struct exynos_tmu_data *data, 949 unsigned long temp) 950 { 951 unsigned int val; 952 953 val = readl(data->base + EXYNOS5440_TMU_S0_7_DEBUG); 954 val = get_emul_con_reg(data, val, temp); 955 writel(val, data->base + EXYNOS5440_TMU_S0_7_DEBUG); 956 } 957 958 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) 959 { 960 struct exynos_tmu_data *data = drv_data; 961 int ret = -EINVAL; 962 963 if (data->soc == SOC_ARCH_EXYNOS4210) 964 goto out; 965 966 if (temp && temp < MCELSIUS) 967 goto out; 968 969 mutex_lock(&data->lock); 970 clk_enable(data->clk); 971 data->tmu_set_emulation(data, temp); 972 clk_disable(data->clk); 973 mutex_unlock(&data->lock); 974 return 0; 975 out: 976 return ret; 977 } 978 #else 979 #define exynos4412_tmu_set_emulation NULL 980 #define exynos5440_tmu_set_emulation NULL 981 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) 982 { return -EINVAL; } 983 #endif /* CONFIG_THERMAL_EMULATION */ 984 985 static int exynos4210_tmu_read(struct exynos_tmu_data *data) 986 { 987 int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); 988 989 /* "temp_code" should range between 75 and 175 */ 990 return (ret < 75 || ret > 175) ? -ENODATA : ret; 991 } 992 993 static int exynos4412_tmu_read(struct exynos_tmu_data *data) 994 { 995 return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); 996 } 997 998 static int exynos5440_tmu_read(struct exynos_tmu_data *data) 999 { 1000 return readb(data->base + EXYNOS5440_TMU_S0_7_TEMP); 1001 } 1002 1003 static int exynos7_tmu_read(struct exynos_tmu_data *data) 1004 { 1005 return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) & 1006 EXYNOS7_TMU_TEMP_MASK; 1007 } 1008 1009 static void exynos_tmu_work(struct work_struct *work) 1010 { 1011 struct exynos_tmu_data *data = container_of(work, 1012 struct exynos_tmu_data, irq_work); 1013 unsigned int val_type; 1014 1015 if (!IS_ERR(data->clk_sec)) 1016 clk_enable(data->clk_sec); 1017 /* Find which sensor generated this interrupt */ 1018 if (data->soc == SOC_ARCH_EXYNOS5440) { 1019 val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS); 1020 if (!((val_type >> data->id) & 0x1)) 1021 goto out; 1022 } 1023 if (!IS_ERR(data->clk_sec)) 1024 clk_disable(data->clk_sec); 1025 1026 exynos_report_trigger(data); 1027 mutex_lock(&data->lock); 1028 clk_enable(data->clk); 1029 1030 /* TODO: take action based on particular interrupt */ 1031 data->tmu_clear_irqs(data); 1032 1033 clk_disable(data->clk); 1034 mutex_unlock(&data->lock); 1035 out: 1036 enable_irq(data->irq); 1037 } 1038 1039 static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data) 1040 { 1041 unsigned int val_irq; 1042 u32 tmu_intstat, tmu_intclear; 1043 1044 if (data->soc == SOC_ARCH_EXYNOS5260) { 1045 tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT; 1046 tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR; 1047 } else if (data->soc == SOC_ARCH_EXYNOS7) { 1048 tmu_intstat = EXYNOS7_TMU_REG_INTPEND; 1049 tmu_intclear = EXYNOS7_TMU_REG_INTPEND; 1050 } else if (data->soc == SOC_ARCH_EXYNOS5433) { 1051 tmu_intstat = EXYNOS5433_TMU_REG_INTPEND; 1052 tmu_intclear = EXYNOS5433_TMU_REG_INTPEND; 1053 } else { 1054 tmu_intstat = EXYNOS_TMU_REG_INTSTAT; 1055 tmu_intclear = EXYNOS_TMU_REG_INTCLEAR; 1056 } 1057 1058 val_irq = readl(data->base + tmu_intstat); 1059 /* 1060 * Clear the interrupts. Please note that the documentation for 1061 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly 1062 * states that INTCLEAR register has a different placing of bits 1063 * responsible for FALL IRQs than INTSTAT register. Exynos5420 1064 * and Exynos5440 documentation is correct (Exynos4210 doesn't 1065 * support FALL IRQs at all). 1066 */ 1067 writel(val_irq, data->base + tmu_intclear); 1068 } 1069 1070 static void exynos5440_tmu_clear_irqs(struct exynos_tmu_data *data) 1071 { 1072 unsigned int val_irq; 1073 1074 val_irq = readl(data->base + EXYNOS5440_TMU_S0_7_IRQ); 1075 /* clear the interrupts */ 1076 writel(val_irq, data->base + EXYNOS5440_TMU_S0_7_IRQ); 1077 } 1078 1079 static irqreturn_t exynos_tmu_irq(int irq, void *id) 1080 { 1081 struct exynos_tmu_data *data = id; 1082 1083 disable_irq_nosync(irq); 1084 schedule_work(&data->irq_work); 1085 1086 return IRQ_HANDLED; 1087 } 1088 1089 static const struct of_device_id exynos_tmu_match[] = { 1090 { .compatible = "samsung,exynos3250-tmu", }, 1091 { .compatible = "samsung,exynos4210-tmu", }, 1092 { .compatible = "samsung,exynos4412-tmu", }, 1093 { .compatible = "samsung,exynos5250-tmu", }, 1094 { .compatible = "samsung,exynos5260-tmu", }, 1095 { .compatible = "samsung,exynos5420-tmu", }, 1096 { .compatible = "samsung,exynos5420-tmu-ext-triminfo", }, 1097 { .compatible = "samsung,exynos5433-tmu", }, 1098 { .compatible = "samsung,exynos5440-tmu", }, 1099 { .compatible = "samsung,exynos7-tmu", }, 1100 { /* sentinel */ }, 1101 }; 1102 MODULE_DEVICE_TABLE(of, exynos_tmu_match); 1103 1104 static int exynos_of_get_soc_type(struct device_node *np) 1105 { 1106 if (of_device_is_compatible(np, "samsung,exynos3250-tmu")) 1107 return SOC_ARCH_EXYNOS3250; 1108 else if (of_device_is_compatible(np, "samsung,exynos4210-tmu")) 1109 return SOC_ARCH_EXYNOS4210; 1110 else if (of_device_is_compatible(np, "samsung,exynos4412-tmu")) 1111 return SOC_ARCH_EXYNOS4412; 1112 else if (of_device_is_compatible(np, "samsung,exynos5250-tmu")) 1113 return SOC_ARCH_EXYNOS5250; 1114 else if (of_device_is_compatible(np, "samsung,exynos5260-tmu")) 1115 return SOC_ARCH_EXYNOS5260; 1116 else if (of_device_is_compatible(np, "samsung,exynos5420-tmu")) 1117 return SOC_ARCH_EXYNOS5420; 1118 else if (of_device_is_compatible(np, 1119 "samsung,exynos5420-tmu-ext-triminfo")) 1120 return SOC_ARCH_EXYNOS5420_TRIMINFO; 1121 else if (of_device_is_compatible(np, "samsung,exynos5433-tmu")) 1122 return SOC_ARCH_EXYNOS5433; 1123 else if (of_device_is_compatible(np, "samsung,exynos5440-tmu")) 1124 return SOC_ARCH_EXYNOS5440; 1125 else if (of_device_is_compatible(np, "samsung,exynos7-tmu")) 1126 return SOC_ARCH_EXYNOS7; 1127 1128 return -EINVAL; 1129 } 1130 1131 static int exynos_of_sensor_conf(struct device_node *np, 1132 struct exynos_tmu_platform_data *pdata) 1133 { 1134 u32 value; 1135 int ret; 1136 1137 of_node_get(np); 1138 1139 ret = of_property_read_u32(np, "samsung,tmu_gain", &value); 1140 pdata->gain = (u8)value; 1141 of_property_read_u32(np, "samsung,tmu_reference_voltage", &value); 1142 pdata->reference_voltage = (u8)value; 1143 of_property_read_u32(np, "samsung,tmu_noise_cancel_mode", &value); 1144 pdata->noise_cancel_mode = (u8)value; 1145 1146 of_property_read_u32(np, "samsung,tmu_efuse_value", 1147 &pdata->efuse_value); 1148 of_property_read_u32(np, "samsung,tmu_min_efuse_value", 1149 &pdata->min_efuse_value); 1150 of_property_read_u32(np, "samsung,tmu_max_efuse_value", 1151 &pdata->max_efuse_value); 1152 1153 of_property_read_u32(np, "samsung,tmu_first_point_trim", &value); 1154 pdata->first_point_trim = (u8)value; 1155 of_property_read_u32(np, "samsung,tmu_second_point_trim", &value); 1156 pdata->second_point_trim = (u8)value; 1157 of_property_read_u32(np, "samsung,tmu_default_temp_offset", &value); 1158 pdata->default_temp_offset = (u8)value; 1159 1160 of_property_read_u32(np, "samsung,tmu_cal_type", &pdata->cal_type); 1161 of_property_read_u32(np, "samsung,tmu_cal_mode", &pdata->cal_mode); 1162 1163 of_node_put(np); 1164 return 0; 1165 } 1166 1167 static int exynos_map_dt_data(struct platform_device *pdev) 1168 { 1169 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 1170 struct exynos_tmu_platform_data *pdata; 1171 struct resource res; 1172 int ret; 1173 1174 if (!data || !pdev->dev.of_node) 1175 return -ENODEV; 1176 1177 /* 1178 * Try enabling the regulator if found 1179 * TODO: Add regulator as an SOC feature, so that regulator enable 1180 * is a compulsory call. 1181 */ 1182 data->regulator = devm_regulator_get(&pdev->dev, "vtmu"); 1183 if (!IS_ERR(data->regulator)) { 1184 ret = regulator_enable(data->regulator); 1185 if (ret) { 1186 dev_err(&pdev->dev, "failed to enable vtmu\n"); 1187 return ret; 1188 } 1189 } else { 1190 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n"); 1191 } 1192 1193 data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl"); 1194 if (data->id < 0) 1195 data->id = 0; 1196 1197 data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 1198 if (data->irq <= 0) { 1199 dev_err(&pdev->dev, "failed to get IRQ\n"); 1200 return -ENODEV; 1201 } 1202 1203 if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { 1204 dev_err(&pdev->dev, "failed to get Resource 0\n"); 1205 return -ENODEV; 1206 } 1207 1208 data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); 1209 if (!data->base) { 1210 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 1211 return -EADDRNOTAVAIL; 1212 } 1213 1214 pdata = devm_kzalloc(&pdev->dev, 1215 sizeof(struct exynos_tmu_platform_data), 1216 GFP_KERNEL); 1217 if (!pdata) 1218 return -ENOMEM; 1219 1220 exynos_of_sensor_conf(pdev->dev.of_node, pdata); 1221 data->pdata = pdata; 1222 data->soc = exynos_of_get_soc_type(pdev->dev.of_node); 1223 1224 switch (data->soc) { 1225 case SOC_ARCH_EXYNOS4210: 1226 data->tmu_initialize = exynos4210_tmu_initialize; 1227 data->tmu_control = exynos4210_tmu_control; 1228 data->tmu_read = exynos4210_tmu_read; 1229 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1230 break; 1231 case SOC_ARCH_EXYNOS3250: 1232 case SOC_ARCH_EXYNOS4412: 1233 case SOC_ARCH_EXYNOS5250: 1234 case SOC_ARCH_EXYNOS5260: 1235 case SOC_ARCH_EXYNOS5420: 1236 case SOC_ARCH_EXYNOS5420_TRIMINFO: 1237 data->tmu_initialize = exynos4412_tmu_initialize; 1238 data->tmu_control = exynos4210_tmu_control; 1239 data->tmu_read = exynos4412_tmu_read; 1240 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1241 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1242 break; 1243 case SOC_ARCH_EXYNOS5433: 1244 data->tmu_initialize = exynos5433_tmu_initialize; 1245 data->tmu_control = exynos5433_tmu_control; 1246 data->tmu_read = exynos4412_tmu_read; 1247 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1248 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1249 break; 1250 case SOC_ARCH_EXYNOS5440: 1251 data->tmu_initialize = exynos5440_tmu_initialize; 1252 data->tmu_control = exynos5440_tmu_control; 1253 data->tmu_read = exynos5440_tmu_read; 1254 data->tmu_set_emulation = exynos5440_tmu_set_emulation; 1255 data->tmu_clear_irqs = exynos5440_tmu_clear_irqs; 1256 break; 1257 case SOC_ARCH_EXYNOS7: 1258 data->tmu_initialize = exynos7_tmu_initialize; 1259 data->tmu_control = exynos7_tmu_control; 1260 data->tmu_read = exynos7_tmu_read; 1261 data->tmu_set_emulation = exynos4412_tmu_set_emulation; 1262 data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; 1263 break; 1264 default: 1265 dev_err(&pdev->dev, "Platform not supported\n"); 1266 return -EINVAL; 1267 } 1268 1269 /* 1270 * Check if the TMU shares some registers and then try to map the 1271 * memory of common registers. 1272 */ 1273 if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO && 1274 data->soc != SOC_ARCH_EXYNOS5440) 1275 return 0; 1276 1277 if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { 1278 dev_err(&pdev->dev, "failed to get Resource 1\n"); 1279 return -ENODEV; 1280 } 1281 1282 data->base_second = devm_ioremap(&pdev->dev, res.start, 1283 resource_size(&res)); 1284 if (!data->base_second) { 1285 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 1286 return -ENOMEM; 1287 } 1288 1289 return 0; 1290 } 1291 1292 static struct thermal_zone_of_device_ops exynos_sensor_ops = { 1293 .get_temp = exynos_get_temp, 1294 .set_emul_temp = exynos_tmu_set_emulation, 1295 }; 1296 1297 static int exynos_tmu_probe(struct platform_device *pdev) 1298 { 1299 struct exynos_tmu_data *data; 1300 int ret; 1301 1302 data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), 1303 GFP_KERNEL); 1304 if (!data) 1305 return -ENOMEM; 1306 1307 platform_set_drvdata(pdev, data); 1308 mutex_init(&data->lock); 1309 1310 data->tzd = thermal_zone_of_sensor_register(&pdev->dev, 0, data, 1311 &exynos_sensor_ops); 1312 if (IS_ERR(data->tzd)) { 1313 pr_err("thermal: tz: %p ERROR\n", data->tzd); 1314 return PTR_ERR(data->tzd); 1315 } 1316 ret = exynos_map_dt_data(pdev); 1317 if (ret) 1318 goto err_sensor; 1319 1320 INIT_WORK(&data->irq_work, exynos_tmu_work); 1321 1322 data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); 1323 if (IS_ERR(data->clk)) { 1324 dev_err(&pdev->dev, "Failed to get clock\n"); 1325 ret = PTR_ERR(data->clk); 1326 goto err_sensor; 1327 } 1328 1329 data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif"); 1330 if (IS_ERR(data->clk_sec)) { 1331 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) { 1332 dev_err(&pdev->dev, "Failed to get triminfo clock\n"); 1333 ret = PTR_ERR(data->clk_sec); 1334 goto err_sensor; 1335 } 1336 } else { 1337 ret = clk_prepare(data->clk_sec); 1338 if (ret) { 1339 dev_err(&pdev->dev, "Failed to get clock\n"); 1340 goto err_sensor; 1341 } 1342 } 1343 1344 ret = clk_prepare(data->clk); 1345 if (ret) { 1346 dev_err(&pdev->dev, "Failed to get clock\n"); 1347 goto err_clk_sec; 1348 } 1349 1350 switch (data->soc) { 1351 case SOC_ARCH_EXYNOS5433: 1352 case SOC_ARCH_EXYNOS7: 1353 data->sclk = devm_clk_get(&pdev->dev, "tmu_sclk"); 1354 if (IS_ERR(data->sclk)) { 1355 dev_err(&pdev->dev, "Failed to get sclk\n"); 1356 goto err_clk; 1357 } else { 1358 ret = clk_prepare_enable(data->sclk); 1359 if (ret) { 1360 dev_err(&pdev->dev, "Failed to enable sclk\n"); 1361 goto err_clk; 1362 } 1363 } 1364 break; 1365 default: 1366 break; 1367 }; 1368 1369 ret = exynos_tmu_initialize(pdev); 1370 if (ret) { 1371 dev_err(&pdev->dev, "Failed to initialize TMU\n"); 1372 goto err_sclk; 1373 } 1374 1375 ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, 1376 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data); 1377 if (ret) { 1378 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); 1379 goto err_sclk; 1380 } 1381 1382 exynos_tmu_control(pdev, true); 1383 return 0; 1384 err_sclk: 1385 clk_disable_unprepare(data->sclk); 1386 err_clk: 1387 clk_unprepare(data->clk); 1388 err_clk_sec: 1389 if (!IS_ERR(data->clk_sec)) 1390 clk_unprepare(data->clk_sec); 1391 err_sensor: 1392 if (!IS_ERR_OR_NULL(data->regulator)) 1393 regulator_disable(data->regulator); 1394 thermal_zone_of_sensor_unregister(&pdev->dev, data->tzd); 1395 1396 return ret; 1397 } 1398 1399 static int exynos_tmu_remove(struct platform_device *pdev) 1400 { 1401 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 1402 struct thermal_zone_device *tzd = data->tzd; 1403 1404 thermal_zone_of_sensor_unregister(&pdev->dev, tzd); 1405 exynos_tmu_control(pdev, false); 1406 1407 clk_disable_unprepare(data->sclk); 1408 clk_unprepare(data->clk); 1409 if (!IS_ERR(data->clk_sec)) 1410 clk_unprepare(data->clk_sec); 1411 1412 if (!IS_ERR(data->regulator)) 1413 regulator_disable(data->regulator); 1414 1415 return 0; 1416 } 1417 1418 #ifdef CONFIG_PM_SLEEP 1419 static int exynos_tmu_suspend(struct device *dev) 1420 { 1421 exynos_tmu_control(to_platform_device(dev), false); 1422 1423 return 0; 1424 } 1425 1426 static int exynos_tmu_resume(struct device *dev) 1427 { 1428 struct platform_device *pdev = to_platform_device(dev); 1429 1430 exynos_tmu_initialize(pdev); 1431 exynos_tmu_control(pdev, true); 1432 1433 return 0; 1434 } 1435 1436 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, 1437 exynos_tmu_suspend, exynos_tmu_resume); 1438 #define EXYNOS_TMU_PM (&exynos_tmu_pm) 1439 #else 1440 #define EXYNOS_TMU_PM NULL 1441 #endif 1442 1443 static struct platform_driver exynos_tmu_driver = { 1444 .driver = { 1445 .name = "exynos-tmu", 1446 .pm = EXYNOS_TMU_PM, 1447 .of_match_table = exynos_tmu_match, 1448 }, 1449 .probe = exynos_tmu_probe, 1450 .remove = exynos_tmu_remove, 1451 }; 1452 1453 module_platform_driver(exynos_tmu_driver); 1454 1455 MODULE_DESCRIPTION("EXYNOS TMU Driver"); 1456 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>"); 1457 MODULE_LICENSE("GPL"); 1458 MODULE_ALIAS("platform:exynos-tmu"); 1459