1 /* 2 * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) 3 * 4 * Copyright (C) 2011 Samsung Electronics 5 * Donggeun Kim <dg77.kim@samsung.com> 6 * Amit Daniel Kachhap <amit.kachhap@linaro.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * 22 */ 23 24 #include <linux/clk.h> 25 #include <linux/io.h> 26 #include <linux/interrupt.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/platform_device.h> 32 #include <linux/regulator/consumer.h> 33 34 #include "exynos_thermal_common.h" 35 #include "exynos_tmu.h" 36 #include "exynos_tmu_data.h" 37 38 /** 39 * struct exynos_tmu_data : A structure to hold the private data of the TMU 40 driver 41 * @id: identifier of the one instance of the TMU controller. 42 * @pdata: pointer to the tmu platform/configuration data 43 * @base: base address of the single instance of the TMU controller. 44 * @base_second: base address of the common registers of the TMU controller. 45 * @irq: irq number of the TMU controller. 46 * @soc: id of the SOC type. 47 * @irq_work: pointer to the irq work structure. 48 * @lock: lock to implement synchronization. 49 * @clk: pointer to the clock structure. 50 * @clk_sec: pointer to the clock structure for accessing the base_second. 51 * @temp_error1: fused value of the first point trim. 52 * @temp_error2: fused value of the second point trim. 53 * @regulator: pointer to the TMU regulator structure. 54 * @reg_conf: pointer to structure to register with core thermal. 55 */ 56 struct exynos_tmu_data { 57 int id; 58 struct exynos_tmu_platform_data *pdata; 59 void __iomem *base; 60 void __iomem *base_second; 61 int irq; 62 enum soc_type soc; 63 struct work_struct irq_work; 64 struct mutex lock; 65 struct clk *clk, *clk_sec; 66 u8 temp_error1, temp_error2; 67 struct regulator *regulator; 68 struct thermal_sensor_conf *reg_conf; 69 }; 70 71 /* 72 * TMU treats temperature as a mapped temperature code. 73 * The temperature is converted differently depending on the calibration type. 74 */ 75 static int temp_to_code(struct exynos_tmu_data *data, u8 temp) 76 { 77 struct exynos_tmu_platform_data *pdata = data->pdata; 78 int temp_code; 79 80 switch (pdata->cal_type) { 81 case TYPE_TWO_POINT_TRIMMING: 82 temp_code = (temp - pdata->first_point_trim) * 83 (data->temp_error2 - data->temp_error1) / 84 (pdata->second_point_trim - pdata->first_point_trim) + 85 data->temp_error1; 86 break; 87 case TYPE_ONE_POINT_TRIMMING: 88 temp_code = temp + data->temp_error1 - pdata->first_point_trim; 89 break; 90 default: 91 temp_code = temp + pdata->default_temp_offset; 92 break; 93 } 94 95 return temp_code; 96 } 97 98 /* 99 * Calculate a temperature value from a temperature code. 100 * The unit of the temperature is degree Celsius. 101 */ 102 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code) 103 { 104 struct exynos_tmu_platform_data *pdata = data->pdata; 105 int temp; 106 107 switch (pdata->cal_type) { 108 case TYPE_TWO_POINT_TRIMMING: 109 temp = (temp_code - data->temp_error1) * 110 (pdata->second_point_trim - pdata->first_point_trim) / 111 (data->temp_error2 - data->temp_error1) + 112 pdata->first_point_trim; 113 break; 114 case TYPE_ONE_POINT_TRIMMING: 115 temp = temp_code - data->temp_error1 + pdata->first_point_trim; 116 break; 117 default: 118 temp = temp_code - pdata->default_temp_offset; 119 break; 120 } 121 122 return temp; 123 } 124 125 static void exynos_tmu_clear_irqs(struct exynos_tmu_data *data) 126 { 127 const struct exynos_tmu_registers *reg = data->pdata->registers; 128 unsigned int val_irq; 129 130 val_irq = readl(data->base + reg->tmu_intstat); 131 /* 132 * Clear the interrupts. Please note that the documentation for 133 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly 134 * states that INTCLEAR register has a different placing of bits 135 * responsible for FALL IRQs than INTSTAT register. Exynos5420 136 * and Exynos5440 documentation is correct (Exynos4210 doesn't 137 * support FALL IRQs at all). 138 */ 139 writel(val_irq, data->base + reg->tmu_intclear); 140 } 141 142 static int exynos_tmu_initialize(struct platform_device *pdev) 143 { 144 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 145 struct exynos_tmu_platform_data *pdata = data->pdata; 146 const struct exynos_tmu_registers *reg = pdata->registers; 147 unsigned int status, trim_info = 0, con, ctrl; 148 unsigned int rising_threshold = 0, falling_threshold = 0; 149 int ret = 0, threshold_code, i; 150 151 mutex_lock(&data->lock); 152 clk_enable(data->clk); 153 if (!IS_ERR(data->clk_sec)) 154 clk_enable(data->clk_sec); 155 156 if (TMU_SUPPORTS(pdata, READY_STATUS)) { 157 status = readb(data->base + EXYNOS_TMU_REG_STATUS); 158 if (!status) { 159 ret = -EBUSY; 160 goto out; 161 } 162 } 163 164 if (TMU_SUPPORTS(pdata, TRIM_RELOAD)) { 165 for (i = 0; i < reg->triminfo_ctrl_count; i++) { 166 if (pdata->triminfo_reload[i]) { 167 ctrl = readl(data->base + 168 reg->triminfo_ctrl[i]); 169 ctrl |= pdata->triminfo_reload[i]; 170 writel(ctrl, data->base + 171 reg->triminfo_ctrl[i]); 172 } 173 } 174 } 175 176 /* Save trimming info in order to perform calibration */ 177 if (data->soc == SOC_ARCH_EXYNOS5440) { 178 /* 179 * For exynos5440 soc triminfo value is swapped between TMU0 and 180 * TMU2, so the below logic is needed. 181 */ 182 switch (data->id) { 183 case 0: 184 trim_info = readl(data->base + 185 EXYNOS5440_EFUSE_SWAP_OFFSET + EXYNOS5440_TMU_S0_7_TRIM); 186 break; 187 case 1: 188 trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM); 189 break; 190 case 2: 191 trim_info = readl(data->base - 192 EXYNOS5440_EFUSE_SWAP_OFFSET + EXYNOS5440_TMU_S0_7_TRIM); 193 } 194 } else { 195 /* On exynos5420 the triminfo register is in the shared space */ 196 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) 197 trim_info = readl(data->base_second + 198 EXYNOS_TMU_REG_TRIMINFO); 199 else 200 trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); 201 } 202 data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; 203 data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) & 204 EXYNOS_TMU_TEMP_MASK); 205 206 if (!data->temp_error1 || 207 (pdata->min_efuse_value > data->temp_error1) || 208 (data->temp_error1 > pdata->max_efuse_value)) 209 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK; 210 211 if (!data->temp_error2) 212 data->temp_error2 = 213 (pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) & 214 EXYNOS_TMU_TEMP_MASK; 215 216 rising_threshold = readl(data->base + reg->threshold_th0); 217 218 if (data->soc == SOC_ARCH_EXYNOS4210) { 219 /* Write temperature code for threshold */ 220 threshold_code = temp_to_code(data, pdata->threshold); 221 writeb(threshold_code, 222 data->base + reg->threshold_temp); 223 for (i = 0; i < pdata->non_hw_trigger_levels; i++) 224 writeb(pdata->trigger_levels[i], data->base + 225 reg->threshold_th0 + i * sizeof(reg->threshold_th0)); 226 227 exynos_tmu_clear_irqs(data); 228 } else { 229 /* Write temperature code for rising and falling threshold */ 230 for (i = 0; i < pdata->non_hw_trigger_levels; i++) { 231 threshold_code = temp_to_code(data, 232 pdata->trigger_levels[i]); 233 rising_threshold &= ~(0xff << 8 * i); 234 rising_threshold |= threshold_code << 8 * i; 235 if (pdata->threshold_falling) { 236 threshold_code = temp_to_code(data, 237 pdata->trigger_levels[i] - 238 pdata->threshold_falling); 239 falling_threshold |= threshold_code << 8 * i; 240 } 241 } 242 243 writel(rising_threshold, 244 data->base + reg->threshold_th0); 245 writel(falling_threshold, 246 data->base + reg->threshold_th1); 247 248 exynos_tmu_clear_irqs(data); 249 250 /* if last threshold limit is also present */ 251 i = pdata->max_trigger_level - 1; 252 if (pdata->trigger_levels[i] && 253 (pdata->trigger_type[i] == HW_TRIP)) { 254 threshold_code = temp_to_code(data, 255 pdata->trigger_levels[i]); 256 if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) { 257 /* 1-4 level to be assigned in th0 reg */ 258 rising_threshold &= ~(0xff << 8 * i); 259 rising_threshold |= threshold_code << 8 * i; 260 writel(rising_threshold, 261 data->base + reg->threshold_th0); 262 } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) { 263 /* 5th level to be assigned in th2 reg */ 264 rising_threshold = 265 threshold_code << reg->threshold_th3_l0_shift; 266 writel(rising_threshold, 267 data->base + reg->threshold_th2); 268 } 269 con = readl(data->base + reg->tmu_ctrl); 270 con |= (1 << reg->therm_trip_en_shift); 271 writel(con, data->base + reg->tmu_ctrl); 272 } 273 } 274 /*Clear the PMIN in the common TMU register*/ 275 if (reg->tmu_pmin && !data->id) 276 writel(0, data->base_second + reg->tmu_pmin); 277 out: 278 clk_disable(data->clk); 279 mutex_unlock(&data->lock); 280 if (!IS_ERR(data->clk_sec)) 281 clk_disable(data->clk_sec); 282 283 return ret; 284 } 285 286 static void exynos_tmu_control(struct platform_device *pdev, bool on) 287 { 288 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 289 struct exynos_tmu_platform_data *pdata = data->pdata; 290 const struct exynos_tmu_registers *reg = pdata->registers; 291 unsigned int con, interrupt_en; 292 293 mutex_lock(&data->lock); 294 clk_enable(data->clk); 295 296 con = readl(data->base + reg->tmu_ctrl); 297 298 if (pdata->test_mux) 299 con |= (pdata->test_mux << reg->test_mux_addr_shift); 300 301 con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT); 302 con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT; 303 304 con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 305 con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); 306 307 if (pdata->noise_cancel_mode) { 308 con &= ~(reg->therm_trip_mode_mask << 309 reg->therm_trip_mode_shift); 310 con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift); 311 } 312 313 if (on) { 314 con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT); 315 interrupt_en = 316 pdata->trigger_enable[3] << reg->inten_rise3_shift | 317 pdata->trigger_enable[2] << reg->inten_rise2_shift | 318 pdata->trigger_enable[1] << reg->inten_rise1_shift | 319 pdata->trigger_enable[0] << reg->inten_rise0_shift; 320 if (TMU_SUPPORTS(pdata, FALLING_TRIP)) 321 interrupt_en |= 322 interrupt_en << reg->inten_fall0_shift; 323 } else { 324 con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT); 325 interrupt_en = 0; /* Disable all interrupts */ 326 } 327 writel(interrupt_en, data->base + reg->tmu_inten); 328 writel(con, data->base + reg->tmu_ctrl); 329 330 clk_disable(data->clk); 331 mutex_unlock(&data->lock); 332 } 333 334 static int exynos_tmu_read(struct exynos_tmu_data *data) 335 { 336 struct exynos_tmu_platform_data *pdata = data->pdata; 337 const struct exynos_tmu_registers *reg = pdata->registers; 338 u8 temp_code; 339 int temp; 340 341 mutex_lock(&data->lock); 342 clk_enable(data->clk); 343 344 temp_code = readb(data->base + reg->tmu_cur_temp); 345 346 if (data->soc == SOC_ARCH_EXYNOS4210) 347 /* temp_code should range between 75 and 175 */ 348 if (temp_code < 75 || temp_code > 175) { 349 temp = -ENODATA; 350 goto out; 351 } 352 353 temp = code_to_temp(data, temp_code); 354 out: 355 clk_disable(data->clk); 356 mutex_unlock(&data->lock); 357 358 return temp; 359 } 360 361 #ifdef CONFIG_THERMAL_EMULATION 362 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) 363 { 364 struct exynos_tmu_data *data = drv_data; 365 struct exynos_tmu_platform_data *pdata = data->pdata; 366 const struct exynos_tmu_registers *reg = pdata->registers; 367 unsigned int val; 368 int ret = -EINVAL; 369 370 if (!TMU_SUPPORTS(pdata, EMULATION)) 371 goto out; 372 373 if (temp && temp < MCELSIUS) 374 goto out; 375 376 mutex_lock(&data->lock); 377 clk_enable(data->clk); 378 379 val = readl(data->base + reg->emul_con); 380 381 if (temp) { 382 temp /= MCELSIUS; 383 384 if (TMU_SUPPORTS(pdata, EMUL_TIME)) { 385 val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift); 386 val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift); 387 } 388 val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift); 389 val |= (temp_to_code(data, temp) << reg->emul_temp_shift) | 390 EXYNOS_EMUL_ENABLE; 391 } else { 392 val &= ~EXYNOS_EMUL_ENABLE; 393 } 394 395 writel(val, data->base + reg->emul_con); 396 397 clk_disable(data->clk); 398 mutex_unlock(&data->lock); 399 return 0; 400 out: 401 return ret; 402 } 403 #else 404 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) 405 { return -EINVAL; } 406 #endif/*CONFIG_THERMAL_EMULATION*/ 407 408 static void exynos_tmu_work(struct work_struct *work) 409 { 410 struct exynos_tmu_data *data = container_of(work, 411 struct exynos_tmu_data, irq_work); 412 struct exynos_tmu_platform_data *pdata = data->pdata; 413 const struct exynos_tmu_registers *reg = pdata->registers; 414 unsigned int val_type; 415 416 if (!IS_ERR(data->clk_sec)) 417 clk_enable(data->clk_sec); 418 /* Find which sensor generated this interrupt */ 419 if (reg->tmu_irqstatus) { 420 val_type = readl(data->base_second + reg->tmu_irqstatus); 421 if (!((val_type >> data->id) & 0x1)) 422 goto out; 423 } 424 if (!IS_ERR(data->clk_sec)) 425 clk_disable(data->clk_sec); 426 427 exynos_report_trigger(data->reg_conf); 428 mutex_lock(&data->lock); 429 clk_enable(data->clk); 430 431 /* TODO: take action based on particular interrupt */ 432 exynos_tmu_clear_irqs(data); 433 434 clk_disable(data->clk); 435 mutex_unlock(&data->lock); 436 out: 437 enable_irq(data->irq); 438 } 439 440 static irqreturn_t exynos_tmu_irq(int irq, void *id) 441 { 442 struct exynos_tmu_data *data = id; 443 444 disable_irq_nosync(irq); 445 schedule_work(&data->irq_work); 446 447 return IRQ_HANDLED; 448 } 449 450 static const struct of_device_id exynos_tmu_match[] = { 451 { 452 .compatible = "samsung,exynos3250-tmu", 453 .data = (void *)EXYNOS3250_TMU_DRV_DATA, 454 }, 455 { 456 .compatible = "samsung,exynos4210-tmu", 457 .data = (void *)EXYNOS4210_TMU_DRV_DATA, 458 }, 459 { 460 .compatible = "samsung,exynos4412-tmu", 461 .data = (void *)EXYNOS4412_TMU_DRV_DATA, 462 }, 463 { 464 .compatible = "samsung,exynos5250-tmu", 465 .data = (void *)EXYNOS5250_TMU_DRV_DATA, 466 }, 467 { 468 .compatible = "samsung,exynos5260-tmu", 469 .data = (void *)EXYNOS5260_TMU_DRV_DATA, 470 }, 471 { 472 .compatible = "samsung,exynos5420-tmu", 473 .data = (void *)EXYNOS5420_TMU_DRV_DATA, 474 }, 475 { 476 .compatible = "samsung,exynos5420-tmu-ext-triminfo", 477 .data = (void *)EXYNOS5420_TMU_DRV_DATA, 478 }, 479 { 480 .compatible = "samsung,exynos5440-tmu", 481 .data = (void *)EXYNOS5440_TMU_DRV_DATA, 482 }, 483 {}, 484 }; 485 MODULE_DEVICE_TABLE(of, exynos_tmu_match); 486 487 static inline struct exynos_tmu_platform_data *exynos_get_driver_data( 488 struct platform_device *pdev, int id) 489 { 490 struct exynos_tmu_init_data *data_table; 491 struct exynos_tmu_platform_data *tmu_data; 492 const struct of_device_id *match; 493 494 match = of_match_node(exynos_tmu_match, pdev->dev.of_node); 495 if (!match) 496 return NULL; 497 data_table = (struct exynos_tmu_init_data *) match->data; 498 if (!data_table || id >= data_table->tmu_count) 499 return NULL; 500 tmu_data = data_table->tmu_data; 501 return (struct exynos_tmu_platform_data *) (tmu_data + id); 502 } 503 504 static int exynos_map_dt_data(struct platform_device *pdev) 505 { 506 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 507 struct exynos_tmu_platform_data *pdata; 508 struct resource res; 509 int ret; 510 511 if (!data || !pdev->dev.of_node) 512 return -ENODEV; 513 514 /* 515 * Try enabling the regulator if found 516 * TODO: Add regulator as an SOC feature, so that regulator enable 517 * is a compulsory call. 518 */ 519 data->regulator = devm_regulator_get(&pdev->dev, "vtmu"); 520 if (!IS_ERR(data->regulator)) { 521 ret = regulator_enable(data->regulator); 522 if (ret) { 523 dev_err(&pdev->dev, "failed to enable vtmu\n"); 524 return ret; 525 } 526 } else { 527 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n"); 528 } 529 530 data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl"); 531 if (data->id < 0) 532 data->id = 0; 533 534 data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); 535 if (data->irq <= 0) { 536 dev_err(&pdev->dev, "failed to get IRQ\n"); 537 return -ENODEV; 538 } 539 540 if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { 541 dev_err(&pdev->dev, "failed to get Resource 0\n"); 542 return -ENODEV; 543 } 544 545 data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); 546 if (!data->base) { 547 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 548 return -EADDRNOTAVAIL; 549 } 550 551 pdata = exynos_get_driver_data(pdev, data->id); 552 if (!pdata) { 553 dev_err(&pdev->dev, "No platform init data supplied.\n"); 554 return -ENODEV; 555 } 556 data->pdata = pdata; 557 /* 558 * Check if the TMU shares some registers and then try to map the 559 * memory of common registers. 560 */ 561 if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE)) 562 return 0; 563 564 if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { 565 dev_err(&pdev->dev, "failed to get Resource 1\n"); 566 return -ENODEV; 567 } 568 569 data->base_second = devm_ioremap(&pdev->dev, res.start, 570 resource_size(&res)); 571 if (!data->base_second) { 572 dev_err(&pdev->dev, "Failed to ioremap memory\n"); 573 return -ENOMEM; 574 } 575 576 return 0; 577 } 578 579 static int exynos_tmu_probe(struct platform_device *pdev) 580 { 581 struct exynos_tmu_data *data; 582 struct exynos_tmu_platform_data *pdata; 583 struct thermal_sensor_conf *sensor_conf; 584 int ret, i; 585 586 data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), 587 GFP_KERNEL); 588 if (!data) 589 return -ENOMEM; 590 591 platform_set_drvdata(pdev, data); 592 mutex_init(&data->lock); 593 594 ret = exynos_map_dt_data(pdev); 595 if (ret) 596 return ret; 597 598 pdata = data->pdata; 599 600 INIT_WORK(&data->irq_work, exynos_tmu_work); 601 602 data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); 603 if (IS_ERR(data->clk)) { 604 dev_err(&pdev->dev, "Failed to get clock\n"); 605 return PTR_ERR(data->clk); 606 } 607 608 data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif"); 609 if (IS_ERR(data->clk_sec)) { 610 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) { 611 dev_err(&pdev->dev, "Failed to get triminfo clock\n"); 612 return PTR_ERR(data->clk_sec); 613 } 614 } else { 615 ret = clk_prepare(data->clk_sec); 616 if (ret) { 617 dev_err(&pdev->dev, "Failed to get clock\n"); 618 return ret; 619 } 620 } 621 622 ret = clk_prepare(data->clk); 623 if (ret) { 624 dev_err(&pdev->dev, "Failed to get clock\n"); 625 goto err_clk_sec; 626 } 627 628 if (pdata->type == SOC_ARCH_EXYNOS3250 || 629 pdata->type == SOC_ARCH_EXYNOS4210 || 630 pdata->type == SOC_ARCH_EXYNOS4412 || 631 pdata->type == SOC_ARCH_EXYNOS5250 || 632 pdata->type == SOC_ARCH_EXYNOS5260 || 633 pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO || 634 pdata->type == SOC_ARCH_EXYNOS5440) 635 data->soc = pdata->type; 636 else { 637 ret = -EINVAL; 638 dev_err(&pdev->dev, "Platform not supported\n"); 639 goto err_clk; 640 } 641 642 ret = exynos_tmu_initialize(pdev); 643 if (ret) { 644 dev_err(&pdev->dev, "Failed to initialize TMU\n"); 645 goto err_clk; 646 } 647 648 exynos_tmu_control(pdev, true); 649 650 /* Allocate a structure to register with the exynos core thermal */ 651 sensor_conf = devm_kzalloc(&pdev->dev, 652 sizeof(struct thermal_sensor_conf), GFP_KERNEL); 653 if (!sensor_conf) { 654 ret = -ENOMEM; 655 goto err_clk; 656 } 657 sprintf(sensor_conf->name, "therm_zone%d", data->id); 658 sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read; 659 sensor_conf->write_emul_temp = 660 (int (*)(void *, unsigned long))exynos_tmu_set_emulation; 661 sensor_conf->driver_data = data; 662 sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] + 663 pdata->trigger_enable[1] + pdata->trigger_enable[2]+ 664 pdata->trigger_enable[3]; 665 666 for (i = 0; i < sensor_conf->trip_data.trip_count; i++) { 667 sensor_conf->trip_data.trip_val[i] = 668 pdata->threshold + pdata->trigger_levels[i]; 669 sensor_conf->trip_data.trip_type[i] = 670 pdata->trigger_type[i]; 671 } 672 673 sensor_conf->trip_data.trigger_falling = pdata->threshold_falling; 674 675 sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count; 676 for (i = 0; i < pdata->freq_tab_count; i++) { 677 sensor_conf->cooling_data.freq_data[i].freq_clip_max = 678 pdata->freq_tab[i].freq_clip_max; 679 sensor_conf->cooling_data.freq_data[i].temp_level = 680 pdata->freq_tab[i].temp_level; 681 } 682 sensor_conf->dev = &pdev->dev; 683 /* Register the sensor with thermal management interface */ 684 ret = exynos_register_thermal(sensor_conf); 685 if (ret) { 686 dev_err(&pdev->dev, "Failed to register thermal interface\n"); 687 goto err_clk; 688 } 689 data->reg_conf = sensor_conf; 690 691 ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, 692 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data); 693 if (ret) { 694 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); 695 goto err_clk; 696 } 697 698 return 0; 699 err_clk: 700 clk_unprepare(data->clk); 701 err_clk_sec: 702 if (!IS_ERR(data->clk_sec)) 703 clk_unprepare(data->clk_sec); 704 return ret; 705 } 706 707 static int exynos_tmu_remove(struct platform_device *pdev) 708 { 709 struct exynos_tmu_data *data = platform_get_drvdata(pdev); 710 711 exynos_unregister_thermal(data->reg_conf); 712 713 exynos_tmu_control(pdev, false); 714 715 clk_unprepare(data->clk); 716 if (!IS_ERR(data->clk_sec)) 717 clk_unprepare(data->clk_sec); 718 719 if (!IS_ERR(data->regulator)) 720 regulator_disable(data->regulator); 721 722 return 0; 723 } 724 725 #ifdef CONFIG_PM_SLEEP 726 static int exynos_tmu_suspend(struct device *dev) 727 { 728 exynos_tmu_control(to_platform_device(dev), false); 729 730 return 0; 731 } 732 733 static int exynos_tmu_resume(struct device *dev) 734 { 735 struct platform_device *pdev = to_platform_device(dev); 736 737 exynos_tmu_initialize(pdev); 738 exynos_tmu_control(pdev, true); 739 740 return 0; 741 } 742 743 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, 744 exynos_tmu_suspend, exynos_tmu_resume); 745 #define EXYNOS_TMU_PM (&exynos_tmu_pm) 746 #else 747 #define EXYNOS_TMU_PM NULL 748 #endif 749 750 static struct platform_driver exynos_tmu_driver = { 751 .driver = { 752 .name = "exynos-tmu", 753 .owner = THIS_MODULE, 754 .pm = EXYNOS_TMU_PM, 755 .of_match_table = exynos_tmu_match, 756 }, 757 .probe = exynos_tmu_probe, 758 .remove = exynos_tmu_remove, 759 }; 760 761 module_platform_driver(exynos_tmu_driver); 762 763 MODULE_DESCRIPTION("EXYNOS TMU Driver"); 764 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>"); 765 MODULE_LICENSE("GPL"); 766 MODULE_ALIAS("platform:exynos-tmu"); 767