xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision 23f146296c6a166b9ba3d810a6a53cb5df6a5b4f)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33 
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37 
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40 	driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_second: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @clk_sec: pointer to the clock structure for accessing the base_second.
51  * @temp_error1: fused value of the first point trim.
52  * @temp_error2: fused value of the second point trim.
53  * @regulator: pointer to the TMU regulator structure.
54  * @reg_conf: pointer to structure to register with core thermal.
55  */
56 struct exynos_tmu_data {
57 	int id;
58 	struct exynos_tmu_platform_data *pdata;
59 	void __iomem *base;
60 	void __iomem *base_second;
61 	int irq;
62 	enum soc_type soc;
63 	struct work_struct irq_work;
64 	struct mutex lock;
65 	struct clk *clk, *clk_sec;
66 	u8 temp_error1, temp_error2;
67 	struct regulator *regulator;
68 	struct thermal_sensor_conf *reg_conf;
69 };
70 
71 /*
72  * TMU treats temperature as a mapped temperature code.
73  * The temperature is converted differently depending on the calibration type.
74  */
75 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
76 {
77 	struct exynos_tmu_platform_data *pdata = data->pdata;
78 	int temp_code;
79 
80 	switch (pdata->cal_type) {
81 	case TYPE_TWO_POINT_TRIMMING:
82 		temp_code = (temp - pdata->first_point_trim) *
83 			(data->temp_error2 - data->temp_error1) /
84 			(pdata->second_point_trim - pdata->first_point_trim) +
85 			data->temp_error1;
86 		break;
87 	case TYPE_ONE_POINT_TRIMMING:
88 		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
89 		break;
90 	default:
91 		temp_code = temp + pdata->default_temp_offset;
92 		break;
93 	}
94 
95 	return temp_code;
96 }
97 
98 /*
99  * Calculate a temperature value from a temperature code.
100  * The unit of the temperature is degree Celsius.
101  */
102 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
103 {
104 	struct exynos_tmu_platform_data *pdata = data->pdata;
105 	int temp;
106 
107 	switch (pdata->cal_type) {
108 	case TYPE_TWO_POINT_TRIMMING:
109 		temp = (temp_code - data->temp_error1) *
110 			(pdata->second_point_trim - pdata->first_point_trim) /
111 			(data->temp_error2 - data->temp_error1) +
112 			pdata->first_point_trim;
113 		break;
114 	case TYPE_ONE_POINT_TRIMMING:
115 		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
116 		break;
117 	default:
118 		temp = temp_code - pdata->default_temp_offset;
119 		break;
120 	}
121 
122 	return temp;
123 }
124 
125 static void exynos_tmu_clear_irqs(struct exynos_tmu_data *data)
126 {
127 	const struct exynos_tmu_registers *reg = data->pdata->registers;
128 	unsigned int val_irq;
129 
130 	val_irq = readl(data->base + reg->tmu_intstat);
131 	/*
132 	 * Clear the interrupts.  Please note that the documentation for
133 	 * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly
134 	 * states that INTCLEAR register has a different placing of bits
135 	 * responsible for FALL IRQs than INTSTAT register.  Exynos5420
136 	 * and Exynos5440 documentation is correct (Exynos4210 doesn't
137 	 * support FALL IRQs at all).
138 	 */
139 	writel(val_irq, data->base + reg->tmu_intclear);
140 }
141 
142 static int exynos_tmu_initialize(struct platform_device *pdev)
143 {
144 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
145 	struct exynos_tmu_platform_data *pdata = data->pdata;
146 	const struct exynos_tmu_registers *reg = pdata->registers;
147 	unsigned int status, trim_info = 0, con, ctrl;
148 	unsigned int rising_threshold = 0, falling_threshold = 0;
149 	int ret = 0, threshold_code, i;
150 
151 	mutex_lock(&data->lock);
152 	clk_enable(data->clk);
153 	if (!IS_ERR(data->clk_sec))
154 		clk_enable(data->clk_sec);
155 
156 	if (TMU_SUPPORTS(pdata, READY_STATUS)) {
157 		status = readb(data->base + EXYNOS_TMU_REG_STATUS);
158 		if (!status) {
159 			ret = -EBUSY;
160 			goto out;
161 		}
162 	}
163 
164 	if (TMU_SUPPORTS(pdata, TRIM_RELOAD)) {
165 		if (data->soc == SOC_ARCH_EXYNOS3250) {
166 			ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1);
167 			ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
168 			writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1);
169 		}
170 		ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2);
171 		ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE;
172 		writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2);
173 	}
174 
175 	/* Save trimming info in order to perform calibration */
176 	if (data->soc == SOC_ARCH_EXYNOS5440) {
177 		/*
178 		 * For exynos5440 soc triminfo value is swapped between TMU0 and
179 		 * TMU2, so the below logic is needed.
180 		 */
181 		switch (data->id) {
182 		case 0:
183 			trim_info = readl(data->base +
184 			EXYNOS5440_EFUSE_SWAP_OFFSET + EXYNOS5440_TMU_S0_7_TRIM);
185 			break;
186 		case 1:
187 			trim_info = readl(data->base + EXYNOS5440_TMU_S0_7_TRIM);
188 			break;
189 		case 2:
190 			trim_info = readl(data->base -
191 			EXYNOS5440_EFUSE_SWAP_OFFSET + EXYNOS5440_TMU_S0_7_TRIM);
192 		}
193 	} else {
194 		/* On exynos5420 the triminfo register is in the shared space */
195 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
196 			trim_info = readl(data->base_second +
197 						EXYNOS_TMU_REG_TRIMINFO);
198 		else
199 			trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO);
200 	}
201 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
202 	data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) &
203 				EXYNOS_TMU_TEMP_MASK);
204 
205 	if (!data->temp_error1 ||
206 		(pdata->min_efuse_value > data->temp_error1) ||
207 		(data->temp_error1 > pdata->max_efuse_value))
208 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
209 
210 	if (!data->temp_error2)
211 		data->temp_error2 =
212 			(pdata->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) &
213 			EXYNOS_TMU_TEMP_MASK;
214 
215 	rising_threshold = readl(data->base + reg->threshold_th0);
216 
217 	if (data->soc == SOC_ARCH_EXYNOS4210) {
218 		/* Write temperature code for threshold */
219 		threshold_code = temp_to_code(data, pdata->threshold);
220 		writeb(threshold_code,
221 			data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP);
222 		for (i = 0; i < pdata->non_hw_trigger_levels; i++)
223 			writeb(pdata->trigger_levels[i], data->base +
224 			reg->threshold_th0 + i * sizeof(reg->threshold_th0));
225 
226 		exynos_tmu_clear_irqs(data);
227 	} else {
228 		/* Write temperature code for rising and falling threshold */
229 		for (i = 0; i < pdata->non_hw_trigger_levels; i++) {
230 			threshold_code = temp_to_code(data,
231 						pdata->trigger_levels[i]);
232 			rising_threshold &= ~(0xff << 8 * i);
233 			rising_threshold |= threshold_code << 8 * i;
234 			if (data->soc != SOC_ARCH_EXYNOS5440) {
235 				threshold_code = temp_to_code(data,
236 						pdata->trigger_levels[i] -
237 						pdata->threshold_falling);
238 				falling_threshold |= threshold_code << 8 * i;
239 			}
240 		}
241 
242 		writel(rising_threshold,
243 				data->base + reg->threshold_th0);
244 		writel(falling_threshold,
245 				data->base + reg->threshold_th1);
246 
247 		exynos_tmu_clear_irqs(data);
248 
249 		/* if last threshold limit is also present */
250 		i = pdata->max_trigger_level - 1;
251 		if (pdata->trigger_levels[i] &&
252 				(pdata->trigger_type[i] == HW_TRIP)) {
253 			threshold_code = temp_to_code(data,
254 						pdata->trigger_levels[i]);
255 			if (data->soc != SOC_ARCH_EXYNOS5440) {
256 				/* 1-4 level to be assigned in th0 reg */
257 				rising_threshold &= ~(0xff << 8 * i);
258 				rising_threshold |= threshold_code << 8 * i;
259 				writel(rising_threshold,
260 					data->base + EXYNOS_THD_TEMP_RISE);
261 			} else {
262 				/* 5th level to be assigned in th2 reg */
263 				rising_threshold =
264 				threshold_code << EXYNOS5440_TMU_TH_RISE4_SHIFT;
265 				writel(rising_threshold,
266 					data->base + EXYNOS5440_TMU_S0_7_TH2);
267 			}
268 			con = readl(data->base + reg->tmu_ctrl);
269 			con |= (1 << EXYNOS_TMU_THERM_TRIP_EN_SHIFT);
270 			writel(con, data->base + reg->tmu_ctrl);
271 		}
272 	}
273 	/*Clear the PMIN in the common TMU register*/
274 	if (data->soc == SOC_ARCH_EXYNOS5440 && !data->id)
275 		writel(0, data->base_second + EXYNOS5440_TMU_PMIN);
276 out:
277 	clk_disable(data->clk);
278 	mutex_unlock(&data->lock);
279 	if (!IS_ERR(data->clk_sec))
280 		clk_disable(data->clk_sec);
281 
282 	return ret;
283 }
284 
285 static void exynos_tmu_control(struct platform_device *pdev, bool on)
286 {
287 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
288 	struct exynos_tmu_platform_data *pdata = data->pdata;
289 	const struct exynos_tmu_registers *reg = pdata->registers;
290 	unsigned int con, interrupt_en;
291 
292 	mutex_lock(&data->lock);
293 	clk_enable(data->clk);
294 
295 	con = readl(data->base + reg->tmu_ctrl);
296 
297 	if (pdata->test_mux)
298 		con |= (pdata->test_mux << EXYNOS4412_MUX_ADDR_SHIFT);
299 
300 	con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT);
301 	con |= pdata->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT;
302 
303 	con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
304 	con |= (pdata->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT);
305 
306 	if (pdata->noise_cancel_mode) {
307 		con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT);
308 		con |= (pdata->noise_cancel_mode << EXYNOS_TMU_TRIP_MODE_SHIFT);
309 	}
310 
311 	if (on) {
312 		con |= (1 << EXYNOS_TMU_CORE_EN_SHIFT);
313 		interrupt_en =
314 			pdata->trigger_enable[3] << reg->inten_rise3_shift |
315 			pdata->trigger_enable[2] << reg->inten_rise2_shift |
316 			pdata->trigger_enable[1] << reg->inten_rise1_shift |
317 			pdata->trigger_enable[0] << reg->inten_rise0_shift;
318 		if (TMU_SUPPORTS(pdata, FALLING_TRIP))
319 			interrupt_en |=
320 				interrupt_en << reg->inten_fall0_shift;
321 	} else {
322 		con &= ~(1 << EXYNOS_TMU_CORE_EN_SHIFT);
323 		interrupt_en = 0; /* Disable all interrupts */
324 	}
325 	writel(interrupt_en, data->base + reg->tmu_inten);
326 	writel(con, data->base + reg->tmu_ctrl);
327 
328 	clk_disable(data->clk);
329 	mutex_unlock(&data->lock);
330 }
331 
332 static int exynos_tmu_read(struct exynos_tmu_data *data)
333 {
334 	struct exynos_tmu_platform_data *pdata = data->pdata;
335 	const struct exynos_tmu_registers *reg = pdata->registers;
336 	u8 temp_code;
337 	int temp;
338 
339 	mutex_lock(&data->lock);
340 	clk_enable(data->clk);
341 
342 	temp_code = readb(data->base + reg->tmu_cur_temp);
343 
344 	if (data->soc == SOC_ARCH_EXYNOS4210)
345 		/* temp_code should range between 75 and 175 */
346 		if (temp_code < 75 || temp_code > 175) {
347 			temp = -ENODATA;
348 			goto out;
349 		}
350 
351 	temp = code_to_temp(data, temp_code);
352 out:
353 	clk_disable(data->clk);
354 	mutex_unlock(&data->lock);
355 
356 	return temp;
357 }
358 
359 #ifdef CONFIG_THERMAL_EMULATION
360 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
361 {
362 	struct exynos_tmu_data *data = drv_data;
363 	struct exynos_tmu_platform_data *pdata = data->pdata;
364 	const struct exynos_tmu_registers *reg = pdata->registers;
365 	unsigned int val;
366 	int ret = -EINVAL;
367 
368 	if (!TMU_SUPPORTS(pdata, EMULATION))
369 		goto out;
370 
371 	if (temp && temp < MCELSIUS)
372 		goto out;
373 
374 	mutex_lock(&data->lock);
375 	clk_enable(data->clk);
376 
377 	val = readl(data->base + reg->emul_con);
378 
379 	if (temp) {
380 		temp /= MCELSIUS;
381 
382 		if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
383 			val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT);
384 			val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT);
385 		}
386 		val &= ~(EXYNOS_EMUL_DATA_MASK << EXYNOS_EMUL_DATA_SHIFT);
387 		val |= (temp_to_code(data, temp) << EXYNOS_EMUL_DATA_SHIFT) |
388 			EXYNOS_EMUL_ENABLE;
389 	} else {
390 		val &= ~EXYNOS_EMUL_ENABLE;
391 	}
392 
393 	writel(val, data->base + reg->emul_con);
394 
395 	clk_disable(data->clk);
396 	mutex_unlock(&data->lock);
397 	return 0;
398 out:
399 	return ret;
400 }
401 #else
402 static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
403 	{ return -EINVAL; }
404 #endif/*CONFIG_THERMAL_EMULATION*/
405 
406 static void exynos_tmu_work(struct work_struct *work)
407 {
408 	struct exynos_tmu_data *data = container_of(work,
409 			struct exynos_tmu_data, irq_work);
410 	unsigned int val_type;
411 
412 	if (!IS_ERR(data->clk_sec))
413 		clk_enable(data->clk_sec);
414 	/* Find which sensor generated this interrupt */
415 	if (data->soc == SOC_ARCH_EXYNOS5440) {
416 		val_type = readl(data->base_second + EXYNOS5440_TMU_IRQ_STATUS);
417 		if (!((val_type >> data->id) & 0x1))
418 			goto out;
419 	}
420 	if (!IS_ERR(data->clk_sec))
421 		clk_disable(data->clk_sec);
422 
423 	exynos_report_trigger(data->reg_conf);
424 	mutex_lock(&data->lock);
425 	clk_enable(data->clk);
426 
427 	/* TODO: take action based on particular interrupt */
428 	exynos_tmu_clear_irqs(data);
429 
430 	clk_disable(data->clk);
431 	mutex_unlock(&data->lock);
432 out:
433 	enable_irq(data->irq);
434 }
435 
436 static irqreturn_t exynos_tmu_irq(int irq, void *id)
437 {
438 	struct exynos_tmu_data *data = id;
439 
440 	disable_irq_nosync(irq);
441 	schedule_work(&data->irq_work);
442 
443 	return IRQ_HANDLED;
444 }
445 
446 static const struct of_device_id exynos_tmu_match[] = {
447 	{
448 		.compatible = "samsung,exynos3250-tmu",
449 		.data = (void *)EXYNOS3250_TMU_DRV_DATA,
450 	},
451 	{
452 		.compatible = "samsung,exynos4210-tmu",
453 		.data = (void *)EXYNOS4210_TMU_DRV_DATA,
454 	},
455 	{
456 		.compatible = "samsung,exynos4412-tmu",
457 		.data = (void *)EXYNOS4412_TMU_DRV_DATA,
458 	},
459 	{
460 		.compatible = "samsung,exynos5250-tmu",
461 		.data = (void *)EXYNOS5250_TMU_DRV_DATA,
462 	},
463 	{
464 		.compatible = "samsung,exynos5260-tmu",
465 		.data = (void *)EXYNOS5260_TMU_DRV_DATA,
466 	},
467 	{
468 		.compatible = "samsung,exynos5420-tmu",
469 		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
470 	},
471 	{
472 		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
473 		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
474 	},
475 	{
476 		.compatible = "samsung,exynos5440-tmu",
477 		.data = (void *)EXYNOS5440_TMU_DRV_DATA,
478 	},
479 	{},
480 };
481 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
482 
483 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
484 			struct platform_device *pdev, int id)
485 {
486 	struct  exynos_tmu_init_data *data_table;
487 	struct exynos_tmu_platform_data *tmu_data;
488 	const struct of_device_id *match;
489 
490 	match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
491 	if (!match)
492 		return NULL;
493 	data_table = (struct exynos_tmu_init_data *) match->data;
494 	if (!data_table || id >= data_table->tmu_count)
495 		return NULL;
496 	tmu_data = data_table->tmu_data;
497 	return (struct exynos_tmu_platform_data *) (tmu_data + id);
498 }
499 
500 static int exynos_map_dt_data(struct platform_device *pdev)
501 {
502 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
503 	struct exynos_tmu_platform_data *pdata;
504 	struct resource res;
505 	int ret;
506 
507 	if (!data || !pdev->dev.of_node)
508 		return -ENODEV;
509 
510 	/*
511 	 * Try enabling the regulator if found
512 	 * TODO: Add regulator as an SOC feature, so that regulator enable
513 	 * is a compulsory call.
514 	 */
515 	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
516 	if (!IS_ERR(data->regulator)) {
517 		ret = regulator_enable(data->regulator);
518 		if (ret) {
519 			dev_err(&pdev->dev, "failed to enable vtmu\n");
520 			return ret;
521 		}
522 	} else {
523 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
524 	}
525 
526 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
527 	if (data->id < 0)
528 		data->id = 0;
529 
530 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
531 	if (data->irq <= 0) {
532 		dev_err(&pdev->dev, "failed to get IRQ\n");
533 		return -ENODEV;
534 	}
535 
536 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
537 		dev_err(&pdev->dev, "failed to get Resource 0\n");
538 		return -ENODEV;
539 	}
540 
541 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
542 	if (!data->base) {
543 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
544 		return -EADDRNOTAVAIL;
545 	}
546 
547 	pdata = exynos_get_driver_data(pdev, data->id);
548 	if (!pdata) {
549 		dev_err(&pdev->dev, "No platform init data supplied.\n");
550 		return -ENODEV;
551 	}
552 	data->pdata = pdata;
553 	/*
554 	 * Check if the TMU shares some registers and then try to map the
555 	 * memory of common registers.
556 	 */
557 	if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE))
558 		return 0;
559 
560 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
561 		dev_err(&pdev->dev, "failed to get Resource 1\n");
562 		return -ENODEV;
563 	}
564 
565 	data->base_second = devm_ioremap(&pdev->dev, res.start,
566 					resource_size(&res));
567 	if (!data->base_second) {
568 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
569 		return -ENOMEM;
570 	}
571 
572 	return 0;
573 }
574 
575 static int exynos_tmu_probe(struct platform_device *pdev)
576 {
577 	struct exynos_tmu_data *data;
578 	struct exynos_tmu_platform_data *pdata;
579 	struct thermal_sensor_conf *sensor_conf;
580 	int ret, i;
581 
582 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
583 					GFP_KERNEL);
584 	if (!data)
585 		return -ENOMEM;
586 
587 	platform_set_drvdata(pdev, data);
588 	mutex_init(&data->lock);
589 
590 	ret = exynos_map_dt_data(pdev);
591 	if (ret)
592 		return ret;
593 
594 	pdata = data->pdata;
595 
596 	INIT_WORK(&data->irq_work, exynos_tmu_work);
597 
598 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
599 	if (IS_ERR(data->clk)) {
600 		dev_err(&pdev->dev, "Failed to get clock\n");
601 		return  PTR_ERR(data->clk);
602 	}
603 
604 	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
605 	if (IS_ERR(data->clk_sec)) {
606 		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
607 			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
608 			return PTR_ERR(data->clk_sec);
609 		}
610 	} else {
611 		ret = clk_prepare(data->clk_sec);
612 		if (ret) {
613 			dev_err(&pdev->dev, "Failed to get clock\n");
614 			return ret;
615 		}
616 	}
617 
618 	ret = clk_prepare(data->clk);
619 	if (ret) {
620 		dev_err(&pdev->dev, "Failed to get clock\n");
621 		goto err_clk_sec;
622 	}
623 
624 	if (pdata->type == SOC_ARCH_EXYNOS3250 ||
625 	    pdata->type == SOC_ARCH_EXYNOS4210 ||
626 	    pdata->type == SOC_ARCH_EXYNOS4412 ||
627 	    pdata->type == SOC_ARCH_EXYNOS5250 ||
628 	    pdata->type == SOC_ARCH_EXYNOS5260 ||
629 	    pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO ||
630 	    pdata->type == SOC_ARCH_EXYNOS5440)
631 		data->soc = pdata->type;
632 	else {
633 		ret = -EINVAL;
634 		dev_err(&pdev->dev, "Platform not supported\n");
635 		goto err_clk;
636 	}
637 
638 	ret = exynos_tmu_initialize(pdev);
639 	if (ret) {
640 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
641 		goto err_clk;
642 	}
643 
644 	exynos_tmu_control(pdev, true);
645 
646 	/* Allocate a structure to register with the exynos core thermal */
647 	sensor_conf = devm_kzalloc(&pdev->dev,
648 				sizeof(struct thermal_sensor_conf), GFP_KERNEL);
649 	if (!sensor_conf) {
650 		ret = -ENOMEM;
651 		goto err_clk;
652 	}
653 	sprintf(sensor_conf->name, "therm_zone%d", data->id);
654 	sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
655 	sensor_conf->write_emul_temp =
656 		(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
657 	sensor_conf->driver_data = data;
658 	sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
659 			pdata->trigger_enable[1] + pdata->trigger_enable[2]+
660 			pdata->trigger_enable[3];
661 
662 	for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
663 		sensor_conf->trip_data.trip_val[i] =
664 			pdata->threshold + pdata->trigger_levels[i];
665 		sensor_conf->trip_data.trip_type[i] =
666 					pdata->trigger_type[i];
667 	}
668 
669 	sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
670 
671 	sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
672 	for (i = 0; i < pdata->freq_tab_count; i++) {
673 		sensor_conf->cooling_data.freq_data[i].freq_clip_max =
674 					pdata->freq_tab[i].freq_clip_max;
675 		sensor_conf->cooling_data.freq_data[i].temp_level =
676 					pdata->freq_tab[i].temp_level;
677 	}
678 	sensor_conf->dev = &pdev->dev;
679 	/* Register the sensor with thermal management interface */
680 	ret = exynos_register_thermal(sensor_conf);
681 	if (ret) {
682 		dev_err(&pdev->dev, "Failed to register thermal interface\n");
683 		goto err_clk;
684 	}
685 	data->reg_conf = sensor_conf;
686 
687 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
688 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
689 	if (ret) {
690 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
691 		goto err_clk;
692 	}
693 
694 	return 0;
695 err_clk:
696 	clk_unprepare(data->clk);
697 err_clk_sec:
698 	if (!IS_ERR(data->clk_sec))
699 		clk_unprepare(data->clk_sec);
700 	return ret;
701 }
702 
703 static int exynos_tmu_remove(struct platform_device *pdev)
704 {
705 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
706 
707 	exynos_unregister_thermal(data->reg_conf);
708 
709 	exynos_tmu_control(pdev, false);
710 
711 	clk_unprepare(data->clk);
712 	if (!IS_ERR(data->clk_sec))
713 		clk_unprepare(data->clk_sec);
714 
715 	if (!IS_ERR(data->regulator))
716 		regulator_disable(data->regulator);
717 
718 	return 0;
719 }
720 
721 #ifdef CONFIG_PM_SLEEP
722 static int exynos_tmu_suspend(struct device *dev)
723 {
724 	exynos_tmu_control(to_platform_device(dev), false);
725 
726 	return 0;
727 }
728 
729 static int exynos_tmu_resume(struct device *dev)
730 {
731 	struct platform_device *pdev = to_platform_device(dev);
732 
733 	exynos_tmu_initialize(pdev);
734 	exynos_tmu_control(pdev, true);
735 
736 	return 0;
737 }
738 
739 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
740 			 exynos_tmu_suspend, exynos_tmu_resume);
741 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
742 #else
743 #define EXYNOS_TMU_PM	NULL
744 #endif
745 
746 static struct platform_driver exynos_tmu_driver = {
747 	.driver = {
748 		.name   = "exynos-tmu",
749 		.owner  = THIS_MODULE,
750 		.pm     = EXYNOS_TMU_PM,
751 		.of_match_table = exynos_tmu_match,
752 	},
753 	.probe = exynos_tmu_probe,
754 	.remove	= exynos_tmu_remove,
755 };
756 
757 module_platform_driver(exynos_tmu_driver);
758 
759 MODULE_DESCRIPTION("EXYNOS TMU Driver");
760 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
761 MODULE_LICENSE("GPL");
762 MODULE_ALIAS("platform:exynos-tmu");
763