xref: /linux/drivers/thermal/samsung/exynos_tmu.c (revision 14ddfaecc8ef462b24c96cf37dad7914fea09358)
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33 
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37 
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40 	driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_common: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @temp_error1: fused value of the first point trim.
51  * @temp_error2: fused value of the second point trim.
52  * @regulator: pointer to the TMU regulator structure.
53  * @reg_conf: pointer to structure to register with core thermal.
54  */
55 struct exynos_tmu_data {
56 	int id;
57 	struct exynos_tmu_platform_data *pdata;
58 	void __iomem *base;
59 	void __iomem *base_common;
60 	int irq;
61 	enum soc_type soc;
62 	struct work_struct irq_work;
63 	struct mutex lock;
64 	struct clk *clk;
65 	u8 temp_error1, temp_error2;
66 	struct regulator *regulator;
67 	struct thermal_sensor_conf *reg_conf;
68 };
69 
70 /*
71  * TMU treats temperature as a mapped temperature code.
72  * The temperature is converted differently depending on the calibration type.
73  */
74 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
75 {
76 	struct exynos_tmu_platform_data *pdata = data->pdata;
77 	int temp_code;
78 
79 	if (pdata->cal_mode == HW_MODE)
80 		return temp;
81 
82 	if (data->soc == SOC_ARCH_EXYNOS4210)
83 		/* temp should range between 25 and 125 */
84 		if (temp < 25 || temp > 125) {
85 			temp_code = -EINVAL;
86 			goto out;
87 		}
88 
89 	switch (pdata->cal_type) {
90 	case TYPE_TWO_POINT_TRIMMING:
91 		temp_code = (temp - pdata->first_point_trim) *
92 			(data->temp_error2 - data->temp_error1) /
93 			(pdata->second_point_trim - pdata->first_point_trim) +
94 			data->temp_error1;
95 		break;
96 	case TYPE_ONE_POINT_TRIMMING:
97 		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
98 		break;
99 	default:
100 		temp_code = temp + pdata->default_temp_offset;
101 		break;
102 	}
103 out:
104 	return temp_code;
105 }
106 
107 /*
108  * Calculate a temperature value from a temperature code.
109  * The unit of the temperature is degree Celsius.
110  */
111 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
112 {
113 	struct exynos_tmu_platform_data *pdata = data->pdata;
114 	int temp;
115 
116 	if (pdata->cal_mode == HW_MODE)
117 		return temp_code;
118 
119 	if (data->soc == SOC_ARCH_EXYNOS4210)
120 		/* temp_code should range between 75 and 175 */
121 		if (temp_code < 75 || temp_code > 175) {
122 			temp = -ENODATA;
123 			goto out;
124 		}
125 
126 	switch (pdata->cal_type) {
127 	case TYPE_TWO_POINT_TRIMMING:
128 		temp = (temp_code - data->temp_error1) *
129 			(pdata->second_point_trim - pdata->first_point_trim) /
130 			(data->temp_error2 - data->temp_error1) +
131 			pdata->first_point_trim;
132 		break;
133 	case TYPE_ONE_POINT_TRIMMING:
134 		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
135 		break;
136 	default:
137 		temp = temp_code - pdata->default_temp_offset;
138 		break;
139 	}
140 out:
141 	return temp;
142 }
143 
144 static int exynos_tmu_initialize(struct platform_device *pdev)
145 {
146 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
147 	struct exynos_tmu_platform_data *pdata = data->pdata;
148 	const struct exynos_tmu_registers *reg = pdata->registers;
149 	unsigned int status, trim_info = 0, con;
150 	unsigned int rising_threshold = 0, falling_threshold = 0;
151 	int ret = 0, threshold_code, i, trigger_levs = 0;
152 
153 	mutex_lock(&data->lock);
154 	clk_enable(data->clk);
155 
156 	if (TMU_SUPPORTS(pdata, READY_STATUS)) {
157 		status = readb(data->base + reg->tmu_status);
158 		if (!status) {
159 			ret = -EBUSY;
160 			goto out;
161 		}
162 	}
163 
164 	if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
165 		__raw_writel(1, data->base + reg->triminfo_ctrl);
166 
167 	if (pdata->cal_mode == HW_MODE)
168 		goto skip_calib_data;
169 
170 	/* Save trimming info in order to perform calibration */
171 	if (data->soc == SOC_ARCH_EXYNOS5440) {
172 		/*
173 		 * For exynos5440 soc triminfo value is swapped between TMU0 and
174 		 * TMU2, so the below logic is needed.
175 		 */
176 		switch (data->id) {
177 		case 0:
178 			trim_info = readl(data->base +
179 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
180 			break;
181 		case 1:
182 			trim_info = readl(data->base + reg->triminfo_data);
183 			break;
184 		case 2:
185 			trim_info = readl(data->base -
186 			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
187 		}
188 	} else {
189 		trim_info = readl(data->base + reg->triminfo_data);
190 	}
191 	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
192 	data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
193 				EXYNOS_TMU_TEMP_MASK);
194 
195 	if (!data->temp_error1 ||
196 		(pdata->min_efuse_value > data->temp_error1) ||
197 		(data->temp_error1 > pdata->max_efuse_value))
198 		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
199 
200 	if (!data->temp_error2)
201 		data->temp_error2 =
202 			(pdata->efuse_value >> reg->triminfo_85_shift) &
203 			EXYNOS_TMU_TEMP_MASK;
204 
205 skip_calib_data:
206 	if (pdata->max_trigger_level > MAX_THRESHOLD_LEVS) {
207 		dev_err(&pdev->dev, "Invalid max trigger level\n");
208 		goto out;
209 	}
210 
211 	for (i = 0; i < pdata->max_trigger_level; i++) {
212 		if (!pdata->trigger_levels[i])
213 			continue;
214 
215 		if ((pdata->trigger_type[i] == HW_TRIP) &&
216 		(!pdata->trigger_levels[pdata->max_trigger_level - 1])) {
217 			dev_err(&pdev->dev, "Invalid hw trigger level\n");
218 			ret = -EINVAL;
219 			goto out;
220 		}
221 
222 		/* Count trigger levels except the HW trip*/
223 		if (!(pdata->trigger_type[i] == HW_TRIP))
224 			trigger_levs++;
225 	}
226 
227 	if (data->soc == SOC_ARCH_EXYNOS4210) {
228 		/* Write temperature code for threshold */
229 		threshold_code = temp_to_code(data, pdata->threshold);
230 		if (threshold_code < 0) {
231 			ret = threshold_code;
232 			goto out;
233 		}
234 		writeb(threshold_code,
235 			data->base + reg->threshold_temp);
236 		for (i = 0; i < trigger_levs; i++)
237 			writeb(pdata->trigger_levels[i], data->base +
238 			reg->threshold_th0 + i * sizeof(reg->threshold_th0));
239 
240 		writel(reg->inten_rise_mask, data->base + reg->tmu_intclear);
241 	} else {
242 		/* Write temperature code for rising and falling threshold */
243 		for (i = 0;
244 		i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
245 			threshold_code = temp_to_code(data,
246 						pdata->trigger_levels[i]);
247 			if (threshold_code < 0) {
248 				ret = threshold_code;
249 				goto out;
250 			}
251 			rising_threshold |= threshold_code << 8 * i;
252 			if (pdata->threshold_falling) {
253 				threshold_code = temp_to_code(data,
254 						pdata->trigger_levels[i] -
255 						pdata->threshold_falling);
256 				if (threshold_code > 0)
257 					falling_threshold |=
258 						threshold_code << 8 * i;
259 			}
260 		}
261 
262 		writel(rising_threshold,
263 				data->base + reg->threshold_th0);
264 		writel(falling_threshold,
265 				data->base + reg->threshold_th1);
266 
267 		writel((reg->inten_rise_mask << reg->inten_rise_shift) |
268 			(reg->inten_fall_mask << reg->inten_fall_shift),
269 				data->base + reg->tmu_intclear);
270 
271 		/* if last threshold limit is also present */
272 		i = pdata->max_trigger_level - 1;
273 		if (pdata->trigger_levels[i] &&
274 				(pdata->trigger_type[i] == HW_TRIP)) {
275 			threshold_code = temp_to_code(data,
276 						pdata->trigger_levels[i]);
277 			if (threshold_code < 0) {
278 				ret = threshold_code;
279 				goto out;
280 			}
281 			if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
282 				/* 1-4 level to be assigned in th0 reg */
283 				rising_threshold |= threshold_code << 8 * i;
284 				writel(rising_threshold,
285 					data->base + reg->threshold_th0);
286 			} else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
287 				/* 5th level to be assigned in th2 reg */
288 				rising_threshold =
289 				threshold_code << reg->threshold_th3_l0_shift;
290 				writel(rising_threshold,
291 					data->base + reg->threshold_th2);
292 			}
293 			con = readl(data->base + reg->tmu_ctrl);
294 			con |= (1 << reg->therm_trip_en_shift);
295 			writel(con, data->base + reg->tmu_ctrl);
296 		}
297 	}
298 	/*Clear the PMIN in the common TMU register*/
299 	if (reg->tmu_pmin && !data->id)
300 		writel(0, data->base_common + reg->tmu_pmin);
301 out:
302 	clk_disable(data->clk);
303 	mutex_unlock(&data->lock);
304 
305 	return ret;
306 }
307 
308 static void exynos_tmu_control(struct platform_device *pdev, bool on)
309 {
310 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
311 	struct exynos_tmu_platform_data *pdata = data->pdata;
312 	const struct exynos_tmu_registers *reg = pdata->registers;
313 	unsigned int con, interrupt_en, cal_val;
314 
315 	mutex_lock(&data->lock);
316 	clk_enable(data->clk);
317 
318 	con = readl(data->base + reg->tmu_ctrl);
319 
320 	if (pdata->reference_voltage) {
321 		con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
322 		con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
323 	}
324 
325 	if (pdata->gain) {
326 		con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
327 		con |= (pdata->gain << reg->buf_slope_sel_shift);
328 	}
329 
330 	if (pdata->noise_cancel_mode) {
331 		con &= ~(reg->therm_trip_mode_mask <<
332 					reg->therm_trip_mode_shift);
333 		con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
334 	}
335 
336 	if (pdata->cal_mode == HW_MODE) {
337 		con &= ~(reg->calib_mode_mask << reg->calib_mode_shift);
338 		cal_val = 0;
339 		switch (pdata->cal_type) {
340 		case TYPE_TWO_POINT_TRIMMING:
341 			cal_val = 3;
342 			break;
343 		case TYPE_ONE_POINT_TRIMMING_85:
344 			cal_val = 2;
345 			break;
346 		case TYPE_ONE_POINT_TRIMMING_25:
347 			cal_val = 1;
348 			break;
349 		case TYPE_NONE:
350 			break;
351 		default:
352 			dev_err(&pdev->dev, "Invalid calibration type, using none\n");
353 		}
354 		con |= cal_val << reg->calib_mode_shift;
355 	}
356 
357 	if (on) {
358 		con |= (1 << reg->core_en_shift);
359 		interrupt_en =
360 			pdata->trigger_enable[3] << reg->inten_rise3_shift |
361 			pdata->trigger_enable[2] << reg->inten_rise2_shift |
362 			pdata->trigger_enable[1] << reg->inten_rise1_shift |
363 			pdata->trigger_enable[0] << reg->inten_rise0_shift;
364 		if (TMU_SUPPORTS(pdata, FALLING_TRIP))
365 			interrupt_en |=
366 				interrupt_en << reg->inten_fall0_shift;
367 	} else {
368 		con &= ~(1 << reg->core_en_shift);
369 		interrupt_en = 0; /* Disable all interrupts */
370 	}
371 	writel(interrupt_en, data->base + reg->tmu_inten);
372 	writel(con, data->base + reg->tmu_ctrl);
373 
374 	clk_disable(data->clk);
375 	mutex_unlock(&data->lock);
376 }
377 
378 static int exynos_tmu_read(struct exynos_tmu_data *data)
379 {
380 	struct exynos_tmu_platform_data *pdata = data->pdata;
381 	const struct exynos_tmu_registers *reg = pdata->registers;
382 	u8 temp_code;
383 	int temp;
384 
385 	mutex_lock(&data->lock);
386 	clk_enable(data->clk);
387 
388 	temp_code = readb(data->base + reg->tmu_cur_temp);
389 	temp = code_to_temp(data, temp_code);
390 
391 	clk_disable(data->clk);
392 	mutex_unlock(&data->lock);
393 
394 	return temp;
395 }
396 
397 #ifdef CONFIG_THERMAL_EMULATION
398 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
399 {
400 	struct exynos_tmu_data *data = drv_data;
401 	struct exynos_tmu_platform_data *pdata = data->pdata;
402 	const struct exynos_tmu_registers *reg = pdata->registers;
403 	unsigned int val;
404 	int ret = -EINVAL;
405 
406 	if (!TMU_SUPPORTS(pdata, EMULATION))
407 		goto out;
408 
409 	if (temp && temp < MCELSIUS)
410 		goto out;
411 
412 	mutex_lock(&data->lock);
413 	clk_enable(data->clk);
414 
415 	val = readl(data->base + reg->emul_con);
416 
417 	if (temp) {
418 		temp /= MCELSIUS;
419 
420 		if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
421 			val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
422 			val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
423 		}
424 		val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
425 		val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
426 			EXYNOS_EMUL_ENABLE;
427 	} else {
428 		val &= ~EXYNOS_EMUL_ENABLE;
429 	}
430 
431 	writel(val, data->base + reg->emul_con);
432 
433 	clk_disable(data->clk);
434 	mutex_unlock(&data->lock);
435 	return 0;
436 out:
437 	return ret;
438 }
439 #else
440 static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
441 	{ return -EINVAL; }
442 #endif/*CONFIG_THERMAL_EMULATION*/
443 
444 static void exynos_tmu_work(struct work_struct *work)
445 {
446 	struct exynos_tmu_data *data = container_of(work,
447 			struct exynos_tmu_data, irq_work);
448 	struct exynos_tmu_platform_data *pdata = data->pdata;
449 	const struct exynos_tmu_registers *reg = pdata->registers;
450 	unsigned int val_irq, val_type;
451 
452 	/* Find which sensor generated this interrupt */
453 	if (reg->tmu_irqstatus) {
454 		val_type = readl(data->base_common + reg->tmu_irqstatus);
455 		if (!((val_type >> data->id) & 0x1))
456 			goto out;
457 	}
458 
459 	exynos_report_trigger(data->reg_conf);
460 	mutex_lock(&data->lock);
461 	clk_enable(data->clk);
462 
463 	/* TODO: take action based on particular interrupt */
464 	val_irq = readl(data->base + reg->tmu_intstat);
465 	/* clear the interrupts */
466 	writel(val_irq, data->base + reg->tmu_intclear);
467 
468 	clk_disable(data->clk);
469 	mutex_unlock(&data->lock);
470 out:
471 	enable_irq(data->irq);
472 }
473 
474 static irqreturn_t exynos_tmu_irq(int irq, void *id)
475 {
476 	struct exynos_tmu_data *data = id;
477 
478 	disable_irq_nosync(irq);
479 	schedule_work(&data->irq_work);
480 
481 	return IRQ_HANDLED;
482 }
483 
484 static const struct of_device_id exynos_tmu_match[] = {
485 	{
486 		.compatible = "samsung,exynos4210-tmu",
487 		.data = (void *)EXYNOS4210_TMU_DRV_DATA,
488 	},
489 	{
490 		.compatible = "samsung,exynos4412-tmu",
491 		.data = (void *)EXYNOS4412_TMU_DRV_DATA,
492 	},
493 	{
494 		.compatible = "samsung,exynos5250-tmu",
495 		.data = (void *)EXYNOS5250_TMU_DRV_DATA,
496 	},
497 	{
498 		.compatible = "samsung,exynos5440-tmu",
499 		.data = (void *)EXYNOS5440_TMU_DRV_DATA,
500 	},
501 	{},
502 };
503 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
504 
505 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
506 			struct platform_device *pdev, int id)
507 {
508 	struct  exynos_tmu_init_data *data_table;
509 	struct exynos_tmu_platform_data *tmu_data;
510 	const struct of_device_id *match;
511 
512 	match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
513 	if (!match)
514 		return NULL;
515 	data_table = (struct exynos_tmu_init_data *) match->data;
516 	if (!data_table || id >= data_table->tmu_count)
517 		return NULL;
518 	tmu_data = data_table->tmu_data;
519 	return (struct exynos_tmu_platform_data *) (tmu_data + id);
520 }
521 
522 static int exynos_map_dt_data(struct platform_device *pdev)
523 {
524 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
525 	struct exynos_tmu_platform_data *pdata;
526 	struct resource res;
527 	int ret;
528 
529 	if (!data || !pdev->dev.of_node)
530 		return -ENODEV;
531 
532 	/*
533 	 * Try enabling the regulator if found
534 	 * TODO: Add regulator as an SOC feature, so that regulator enable
535 	 * is a compulsory call.
536 	 */
537 	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
538 	if (!IS_ERR(data->regulator)) {
539 		ret = regulator_enable(data->regulator);
540 		if (ret) {
541 			dev_err(&pdev->dev, "failed to enable vtmu\n");
542 			return ret;
543 		}
544 	} else {
545 		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
546 	}
547 
548 	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
549 	if (data->id < 0)
550 		data->id = 0;
551 
552 	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
553 	if (data->irq <= 0) {
554 		dev_err(&pdev->dev, "failed to get IRQ\n");
555 		return -ENODEV;
556 	}
557 
558 	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
559 		dev_err(&pdev->dev, "failed to get Resource 0\n");
560 		return -ENODEV;
561 	}
562 
563 	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
564 	if (!data->base) {
565 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
566 		return -EADDRNOTAVAIL;
567 	}
568 
569 	pdata = exynos_get_driver_data(pdev, data->id);
570 	if (!pdata) {
571 		dev_err(&pdev->dev, "No platform init data supplied.\n");
572 		return -ENODEV;
573 	}
574 	data->pdata = pdata;
575 	/*
576 	 * Check if the TMU shares some registers and then try to map the
577 	 * memory of common registers.
578 	 */
579 	if (!TMU_SUPPORTS(pdata, SHARED_MEMORY))
580 		return 0;
581 
582 	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
583 		dev_err(&pdev->dev, "failed to get Resource 1\n");
584 		return -ENODEV;
585 	}
586 
587 	data->base_common = devm_ioremap(&pdev->dev, res.start,
588 					resource_size(&res));
589 	if (!data->base_common) {
590 		dev_err(&pdev->dev, "Failed to ioremap memory\n");
591 		return -ENOMEM;
592 	}
593 
594 	return 0;
595 }
596 
597 static int exynos_tmu_probe(struct platform_device *pdev)
598 {
599 	struct exynos_tmu_data *data;
600 	struct exynos_tmu_platform_data *pdata;
601 	struct thermal_sensor_conf *sensor_conf;
602 	int ret, i;
603 
604 	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
605 					GFP_KERNEL);
606 	if (!data) {
607 		dev_err(&pdev->dev, "Failed to allocate driver structure\n");
608 		return -ENOMEM;
609 	}
610 
611 	platform_set_drvdata(pdev, data);
612 	mutex_init(&data->lock);
613 
614 	ret = exynos_map_dt_data(pdev);
615 	if (ret)
616 		return ret;
617 
618 	pdata = data->pdata;
619 
620 	INIT_WORK(&data->irq_work, exynos_tmu_work);
621 
622 	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
623 	if (IS_ERR(data->clk)) {
624 		dev_err(&pdev->dev, "Failed to get clock\n");
625 		return  PTR_ERR(data->clk);
626 	}
627 
628 	ret = clk_prepare(data->clk);
629 	if (ret)
630 		return ret;
631 
632 	if (pdata->type == SOC_ARCH_EXYNOS4210 ||
633 	    pdata->type == SOC_ARCH_EXYNOS4412 ||
634 	    pdata->type == SOC_ARCH_EXYNOS5250 ||
635 	    pdata->type == SOC_ARCH_EXYNOS5440)
636 		data->soc = pdata->type;
637 	else {
638 		ret = -EINVAL;
639 		dev_err(&pdev->dev, "Platform not supported\n");
640 		goto err_clk;
641 	}
642 
643 	ret = exynos_tmu_initialize(pdev);
644 	if (ret) {
645 		dev_err(&pdev->dev, "Failed to initialize TMU\n");
646 		goto err_clk;
647 	}
648 
649 	exynos_tmu_control(pdev, true);
650 
651 	/* Allocate a structure to register with the exynos core thermal */
652 	sensor_conf = devm_kzalloc(&pdev->dev,
653 				sizeof(struct thermal_sensor_conf), GFP_KERNEL);
654 	if (!sensor_conf) {
655 		dev_err(&pdev->dev, "Failed to allocate registration struct\n");
656 		ret = -ENOMEM;
657 		goto err_clk;
658 	}
659 	sprintf(sensor_conf->name, "therm_zone%d", data->id);
660 	sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
661 	sensor_conf->write_emul_temp =
662 		(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
663 	sensor_conf->driver_data = data;
664 	sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
665 			pdata->trigger_enable[1] + pdata->trigger_enable[2]+
666 			pdata->trigger_enable[3];
667 
668 	for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
669 		sensor_conf->trip_data.trip_val[i] =
670 			pdata->threshold + pdata->trigger_levels[i];
671 		sensor_conf->trip_data.trip_type[i] =
672 					pdata->trigger_type[i];
673 	}
674 
675 	sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
676 
677 	sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
678 	for (i = 0; i < pdata->freq_tab_count; i++) {
679 		sensor_conf->cooling_data.freq_data[i].freq_clip_max =
680 					pdata->freq_tab[i].freq_clip_max;
681 		sensor_conf->cooling_data.freq_data[i].temp_level =
682 					pdata->freq_tab[i].temp_level;
683 	}
684 	sensor_conf->dev = &pdev->dev;
685 	/* Register the sensor with thermal management interface */
686 	ret = exynos_register_thermal(sensor_conf);
687 	if (ret) {
688 		dev_err(&pdev->dev, "Failed to register thermal interface\n");
689 		goto err_clk;
690 	}
691 	data->reg_conf = sensor_conf;
692 
693 	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
694 		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
695 	if (ret) {
696 		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
697 		goto err_clk;
698 	}
699 
700 	return 0;
701 err_clk:
702 	clk_unprepare(data->clk);
703 	return ret;
704 }
705 
706 static int exynos_tmu_remove(struct platform_device *pdev)
707 {
708 	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
709 
710 	exynos_tmu_control(pdev, false);
711 
712 	exynos_unregister_thermal(data->reg_conf);
713 
714 	clk_unprepare(data->clk);
715 
716 	if (!IS_ERR(data->regulator))
717 		regulator_disable(data->regulator);
718 
719 	return 0;
720 }
721 
722 #ifdef CONFIG_PM_SLEEP
723 static int exynos_tmu_suspend(struct device *dev)
724 {
725 	exynos_tmu_control(to_platform_device(dev), false);
726 
727 	return 0;
728 }
729 
730 static int exynos_tmu_resume(struct device *dev)
731 {
732 	struct platform_device *pdev = to_platform_device(dev);
733 
734 	exynos_tmu_initialize(pdev);
735 	exynos_tmu_control(pdev, true);
736 
737 	return 0;
738 }
739 
740 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
741 			 exynos_tmu_suspend, exynos_tmu_resume);
742 #define EXYNOS_TMU_PM	(&exynos_tmu_pm)
743 #else
744 #define EXYNOS_TMU_PM	NULL
745 #endif
746 
747 static struct platform_driver exynos_tmu_driver = {
748 	.driver = {
749 		.name   = "exynos-tmu",
750 		.owner  = THIS_MODULE,
751 		.pm     = EXYNOS_TMU_PM,
752 		.of_match_table = exynos_tmu_match,
753 	},
754 	.probe = exynos_tmu_probe,
755 	.remove	= exynos_tmu_remove,
756 };
757 
758 module_platform_driver(exynos_tmu_driver);
759 
760 MODULE_DESCRIPTION("EXYNOS TMU Driver");
761 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
762 MODULE_LICENSE("GPL");
763 MODULE_ALIAS("platform:exynos-tmu");
764