1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2019, 2020, Linaro Ltd. 5 */ 6 7 #include <linux/debugfs.h> 8 #include <linux/err.h> 9 #include <linux/io.h> 10 #include <linux/module.h> 11 #include <linux/nvmem-consumer.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/of_platform.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm.h> 18 #include <linux/regmap.h> 19 #include <linux/slab.h> 20 #include <linux/suspend.h> 21 #include <linux/thermal.h> 22 #include "../thermal_hwmon.h" 23 #include "tsens.h" 24 25 /** 26 * struct tsens_irq_data - IRQ status and temperature violations 27 * @up_viol: upper threshold violated 28 * @up_thresh: upper threshold temperature value 29 * @up_irq_mask: mask register for upper threshold irqs 30 * @up_irq_clear: clear register for uppper threshold irqs 31 * @low_viol: lower threshold violated 32 * @low_thresh: lower threshold temperature value 33 * @low_irq_mask: mask register for lower threshold irqs 34 * @low_irq_clear: clear register for lower threshold irqs 35 * @crit_viol: critical threshold violated 36 * @crit_thresh: critical threshold temperature value 37 * @crit_irq_mask: mask register for critical threshold irqs 38 * @crit_irq_clear: clear register for critical threshold irqs 39 * 40 * Structure containing data about temperature threshold settings and 41 * irq status if they were violated. 42 */ 43 struct tsens_irq_data { 44 u32 up_viol; 45 int up_thresh; 46 u32 up_irq_mask; 47 u32 up_irq_clear; 48 u32 low_viol; 49 int low_thresh; 50 u32 low_irq_mask; 51 u32 low_irq_clear; 52 u32 crit_viol; 53 u32 crit_thresh; 54 u32 crit_irq_mask; 55 u32 crit_irq_clear; 56 }; 57 58 char *qfprom_read(struct device *dev, const char *cname) 59 { 60 struct nvmem_cell *cell; 61 ssize_t data; 62 char *ret; 63 64 cell = nvmem_cell_get(dev, cname); 65 if (IS_ERR(cell)) 66 return ERR_CAST(cell); 67 68 ret = nvmem_cell_read(cell, &data); 69 nvmem_cell_put(cell); 70 71 return ret; 72 } 73 74 int tsens_read_calibration(struct tsens_priv *priv, int shift, u32 *p1, u32 *p2, bool backup) 75 { 76 u32 mode; 77 u32 base1, base2; 78 char name[] = "sXX_pY_backup"; /* s10_p1_backup */ 79 int i, ret; 80 81 if (priv->num_sensors > MAX_SENSORS) 82 return -EINVAL; 83 84 ret = snprintf(name, sizeof(name), "mode%s", backup ? "_backup" : ""); 85 if (ret < 0) 86 return ret; 87 88 ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &mode); 89 if (ret == -ENOENT) 90 dev_warn(priv->dev, "Please migrate to separate nvmem cells for calibration data\n"); 91 if (ret < 0) 92 return ret; 93 94 dev_dbg(priv->dev, "calibration mode is %d\n", mode); 95 96 ret = snprintf(name, sizeof(name), "base1%s", backup ? "_backup" : ""); 97 if (ret < 0) 98 return ret; 99 100 ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &base1); 101 if (ret < 0) 102 return ret; 103 104 ret = snprintf(name, sizeof(name), "base2%s", backup ? "_backup" : ""); 105 if (ret < 0) 106 return ret; 107 108 ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &base2); 109 if (ret < 0) 110 return ret; 111 112 for (i = 0; i < priv->num_sensors; i++) { 113 ret = snprintf(name, sizeof(name), "s%d_p1%s", priv->sensor[i].hw_id, 114 backup ? "_backup" : ""); 115 if (ret < 0) 116 return ret; 117 118 ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &p1[i]); 119 if (ret) 120 return ret; 121 122 ret = snprintf(name, sizeof(name), "s%d_p2%s", priv->sensor[i].hw_id, 123 backup ? "_backup" : ""); 124 if (ret < 0) 125 return ret; 126 127 ret = nvmem_cell_read_variable_le_u32(priv->dev, name, &p2[i]); 128 if (ret) 129 return ret; 130 } 131 132 switch (mode) { 133 case ONE_PT_CALIB: 134 for (i = 0; i < priv->num_sensors; i++) 135 p1[i] = p1[i] + (base1 << shift); 136 break; 137 case TWO_PT_CALIB: 138 case TWO_PT_CALIB_NO_OFFSET: 139 for (i = 0; i < priv->num_sensors; i++) 140 p2[i] = (p2[i] + base2) << shift; 141 fallthrough; 142 case ONE_PT_CALIB2: 143 case ONE_PT_CALIB2_NO_OFFSET: 144 for (i = 0; i < priv->num_sensors; i++) 145 p1[i] = (p1[i] + base1) << shift; 146 break; 147 default: 148 dev_dbg(priv->dev, "calibrationless mode\n"); 149 for (i = 0; i < priv->num_sensors; i++) { 150 p1[i] = 500; 151 p2[i] = 780; 152 } 153 } 154 155 /* Apply calibration offset workaround except for _NO_OFFSET modes */ 156 switch (mode) { 157 case TWO_PT_CALIB: 158 for (i = 0; i < priv->num_sensors; i++) 159 p2[i] += priv->sensor[i].p2_calib_offset; 160 fallthrough; 161 case ONE_PT_CALIB2: 162 for (i = 0; i < priv->num_sensors; i++) 163 p1[i] += priv->sensor[i].p1_calib_offset; 164 break; 165 } 166 167 return mode; 168 } 169 170 int tsens_calibrate_nvmem(struct tsens_priv *priv, int shift) 171 { 172 u32 p1[MAX_SENSORS], p2[MAX_SENSORS]; 173 int mode; 174 175 mode = tsens_read_calibration(priv, shift, p1, p2, false); 176 if (mode < 0) 177 return mode; 178 179 compute_intercept_slope(priv, p1, p2, mode); 180 181 return 0; 182 } 183 184 int tsens_calibrate_common(struct tsens_priv *priv) 185 { 186 return tsens_calibrate_nvmem(priv, 2); 187 } 188 189 static u32 tsens_read_cell(const struct tsens_single_value *cell, u8 len, u32 *data0, u32 *data1) 190 { 191 u32 val; 192 u32 *data = cell->blob ? data1 : data0; 193 194 if (cell->shift + len <= 32) { 195 val = data[cell->idx] >> cell->shift; 196 } else { 197 u8 part = 32 - cell->shift; 198 199 val = data[cell->idx] >> cell->shift; 200 val |= data[cell->idx + 1] << part; 201 } 202 203 return val & ((1 << len) - 1); 204 } 205 206 int tsens_read_calibration_legacy(struct tsens_priv *priv, 207 const struct tsens_legacy_calibration_format *format, 208 u32 *p1, u32 *p2, 209 u32 *cdata0, u32 *cdata1) 210 { 211 u32 mode, invalid; 212 u32 base1, base2; 213 int i; 214 215 mode = tsens_read_cell(&format->mode, 2, cdata0, cdata1); 216 invalid = tsens_read_cell(&format->invalid, 1, cdata0, cdata1); 217 if (invalid) 218 mode = NO_PT_CALIB; 219 dev_dbg(priv->dev, "calibration mode is %d\n", mode); 220 221 base1 = tsens_read_cell(&format->base[0], format->base_len, cdata0, cdata1); 222 base2 = tsens_read_cell(&format->base[1], format->base_len, cdata0, cdata1); 223 224 for (i = 0; i < priv->num_sensors; i++) { 225 p1[i] = tsens_read_cell(&format->sp[i][0], format->sp_len, cdata0, cdata1); 226 p2[i] = tsens_read_cell(&format->sp[i][1], format->sp_len, cdata0, cdata1); 227 } 228 229 switch (mode) { 230 case ONE_PT_CALIB: 231 for (i = 0; i < priv->num_sensors; i++) 232 p1[i] = p1[i] + (base1 << format->base_shift); 233 break; 234 case TWO_PT_CALIB: 235 for (i = 0; i < priv->num_sensors; i++) 236 p2[i] = (p2[i] + base2) << format->base_shift; 237 fallthrough; 238 case ONE_PT_CALIB2: 239 for (i = 0; i < priv->num_sensors; i++) 240 p1[i] = (p1[i] + base1) << format->base_shift; 241 break; 242 default: 243 dev_dbg(priv->dev, "calibrationless mode\n"); 244 for (i = 0; i < priv->num_sensors; i++) { 245 p1[i] = 500; 246 p2[i] = 780; 247 } 248 } 249 250 return mode; 251 } 252 253 /* 254 * Use this function on devices where slope and offset calculations 255 * depend on calibration data read from qfprom. On others the slope 256 * and offset values are derived from tz->tzp->slope and tz->tzp->offset 257 * resp. 258 */ 259 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, 260 u32 *p2, u32 mode) 261 { 262 int i; 263 int num, den; 264 265 for (i = 0; i < priv->num_sensors; i++) { 266 dev_dbg(priv->dev, 267 "%s: sensor%d - data_point1:%#x data_point2:%#x\n", 268 __func__, i, p1[i], p2 ? p2[i] : 0); 269 270 if (!priv->sensor[i].slope) 271 priv->sensor[i].slope = SLOPE_DEFAULT; 272 if (mode == TWO_PT_CALIB || mode == TWO_PT_CALIB_NO_OFFSET) { 273 /* 274 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ 275 * temp_120_degc - temp_30_degc (x2 - x1) 276 */ 277 num = p2[i] - p1[i]; 278 num *= SLOPE_FACTOR; 279 den = CAL_DEGC_PT2 - CAL_DEGC_PT1; 280 priv->sensor[i].slope = num / den; 281 } 282 283 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - 284 (CAL_DEGC_PT1 * 285 priv->sensor[i].slope); 286 dev_dbg(priv->dev, "%s: offset:%d\n", __func__, 287 priv->sensor[i].offset); 288 } 289 } 290 291 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s) 292 { 293 u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR); 294 295 pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc); 296 return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE); 297 } 298 299 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) 300 { 301 int degc, num, den; 302 303 num = (adc_code * SLOPE_FACTOR) - s->offset; 304 den = s->slope; 305 306 if (num > 0) 307 degc = num + (den / 2); 308 else if (num < 0) 309 degc = num - (den / 2); 310 else 311 degc = num; 312 313 degc /= den; 314 315 return degc; 316 } 317 318 /** 319 * tsens_hw_to_mC - Return sign-extended temperature in mCelsius. 320 * @s: Pointer to sensor struct 321 * @field: Index into regmap_field array pointing to temperature data 322 * 323 * This function handles temperature returned in ADC code or deciCelsius 324 * depending on IP version. 325 * 326 * Return: Temperature in milliCelsius on success, a negative errno will 327 * be returned in error cases 328 */ 329 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field) 330 { 331 struct tsens_priv *priv = s->priv; 332 u32 resolution; 333 u32 temp = 0; 334 int ret; 335 336 resolution = priv->fields[LAST_TEMP_0].msb - 337 priv->fields[LAST_TEMP_0].lsb; 338 339 ret = regmap_field_read(priv->rf[field], &temp); 340 if (ret) 341 return ret; 342 343 /* Convert temperature from ADC code to milliCelsius */ 344 if (priv->feat->adc) 345 return code_to_degc(temp, s) * 1000; 346 347 /* deciCelsius -> milliCelsius along with sign extension */ 348 return sign_extend32(temp, resolution) * 100; 349 } 350 351 /** 352 * tsens_mC_to_hw - Convert temperature to hardware register value 353 * @s: Pointer to sensor struct 354 * @temp: temperature in milliCelsius to be programmed to hardware 355 * 356 * This function outputs the value to be written to hardware in ADC code 357 * or deciCelsius depending on IP version. 358 * 359 * Return: ADC code or temperature in deciCelsius. 360 */ 361 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp) 362 { 363 struct tsens_priv *priv = s->priv; 364 365 /* milliC to adc code */ 366 if (priv->feat->adc) 367 return degc_to_code(temp / 1000, s); 368 369 /* milliC to deciC */ 370 return temp / 100; 371 } 372 373 static inline enum tsens_ver tsens_version(struct tsens_priv *priv) 374 { 375 return priv->feat->ver_major; 376 } 377 378 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id, 379 enum tsens_irq_type irq_type, bool enable) 380 { 381 u32 index = 0; 382 383 switch (irq_type) { 384 case UPPER: 385 index = UP_INT_CLEAR_0 + hw_id; 386 break; 387 case LOWER: 388 index = LOW_INT_CLEAR_0 + hw_id; 389 break; 390 case CRITICAL: 391 /* No critical interrupts before v2 */ 392 return; 393 } 394 regmap_field_write(priv->rf[index], enable ? 0 : 1); 395 } 396 397 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id, 398 enum tsens_irq_type irq_type, bool enable) 399 { 400 u32 index_mask = 0, index_clear = 0; 401 402 /* 403 * To enable the interrupt flag for a sensor: 404 * - clear the mask bit 405 * To disable the interrupt flag for a sensor: 406 * - Mask further interrupts for this sensor 407 * - Write 1 followed by 0 to clear the interrupt 408 */ 409 switch (irq_type) { 410 case UPPER: 411 index_mask = UP_INT_MASK_0 + hw_id; 412 index_clear = UP_INT_CLEAR_0 + hw_id; 413 break; 414 case LOWER: 415 index_mask = LOW_INT_MASK_0 + hw_id; 416 index_clear = LOW_INT_CLEAR_0 + hw_id; 417 break; 418 case CRITICAL: 419 index_mask = CRIT_INT_MASK_0 + hw_id; 420 index_clear = CRIT_INT_CLEAR_0 + hw_id; 421 break; 422 } 423 424 if (enable) { 425 regmap_field_write(priv->rf[index_mask], 0); 426 } else { 427 regmap_field_write(priv->rf[index_mask], 1); 428 regmap_field_write(priv->rf[index_clear], 1); 429 regmap_field_write(priv->rf[index_clear], 0); 430 } 431 } 432 433 /** 434 * tsens_set_interrupt - Set state of an interrupt 435 * @priv: Pointer to tsens controller private data 436 * @hw_id: Hardware ID aka. sensor number 437 * @irq_type: irq_type from enum tsens_irq_type 438 * @enable: false = disable, true = enable 439 * 440 * Call IP-specific function to set state of an interrupt 441 * 442 * Return: void 443 */ 444 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id, 445 enum tsens_irq_type irq_type, bool enable) 446 { 447 dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__, 448 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW", 449 enable ? "en" : "dis"); 450 if (tsens_version(priv) > VER_1_X) 451 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable); 452 else 453 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable); 454 } 455 456 /** 457 * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold 458 * @priv: Pointer to tsens controller private data 459 * @hw_id: Hardware ID aka. sensor number 460 * @d: Pointer to irq state data 461 * 462 * Return: 0 if threshold was not violated, 1 if it was violated and negative 463 * errno in case of errors 464 */ 465 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id, 466 struct tsens_irq_data *d) 467 { 468 int ret; 469 470 ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol); 471 if (ret) 472 return ret; 473 ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol); 474 if (ret) 475 return ret; 476 477 if (priv->feat->crit_int) { 478 ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id], 479 &d->crit_viol); 480 if (ret) 481 return ret; 482 } 483 484 if (d->up_viol || d->low_viol || d->crit_viol) 485 return 1; 486 487 return 0; 488 } 489 490 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id, 491 const struct tsens_sensor *s, 492 struct tsens_irq_data *d) 493 { 494 int ret; 495 496 ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear); 497 if (ret) 498 return ret; 499 ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear); 500 if (ret) 501 return ret; 502 if (tsens_version(priv) > VER_1_X) { 503 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask); 504 if (ret) 505 return ret; 506 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask); 507 if (ret) 508 return ret; 509 ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id], 510 &d->crit_irq_clear); 511 if (ret) 512 return ret; 513 ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id], 514 &d->crit_irq_mask); 515 if (ret) 516 return ret; 517 518 d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id); 519 } else { 520 /* No mask register on older TSENS */ 521 d->up_irq_mask = 0; 522 d->low_irq_mask = 0; 523 d->crit_irq_clear = 0; 524 d->crit_irq_mask = 0; 525 d->crit_thresh = 0; 526 } 527 528 d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id); 529 d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id); 530 531 dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n", 532 hw_id, __func__, 533 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 534 d->low_viol, d->up_viol, d->crit_viol, 535 d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear, 536 d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask); 537 dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__, 538 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", 539 d->low_thresh, d->up_thresh, d->crit_thresh); 540 541 return 0; 542 } 543 544 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver) 545 { 546 if (ver > VER_1_X) 547 return mask & (1 << hw_id); 548 549 /* v1, v0.1 don't have a irq mask register */ 550 return 0; 551 } 552 553 /** 554 * tsens_critical_irq_thread() - Threaded handler for critical interrupts 555 * @irq: irq number 556 * @data: tsens controller private data 557 * 558 * Check FSM watchdog bark status and clear if needed. 559 * Check all sensors to find ones that violated their critical threshold limits. 560 * Clear and then re-enable the interrupt. 561 * 562 * The level-triggered interrupt might deassert if the temperature returned to 563 * within the threshold limits by the time the handler got scheduled. We 564 * consider the irq to have been handled in that case. 565 * 566 * Return: IRQ_HANDLED 567 */ 568 static irqreturn_t tsens_critical_irq_thread(int irq, void *data) 569 { 570 struct tsens_priv *priv = data; 571 struct tsens_irq_data d; 572 int temp, ret, i; 573 u32 wdog_status, wdog_count; 574 575 if (priv->feat->has_watchdog) { 576 ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS], 577 &wdog_status); 578 if (ret) 579 return ret; 580 581 if (wdog_status) { 582 /* Clear WDOG interrupt */ 583 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1); 584 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0); 585 ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT], 586 &wdog_count); 587 if (ret) 588 return ret; 589 if (wdog_count) 590 dev_dbg(priv->dev, "%s: watchdog count: %d\n", 591 __func__, wdog_count); 592 593 /* Fall through to handle critical interrupts if any */ 594 } 595 } 596 597 for (i = 0; i < priv->num_sensors; i++) { 598 const struct tsens_sensor *s = &priv->sensor[i]; 599 u32 hw_id = s->hw_id; 600 601 if (!s->tzd) 602 continue; 603 if (!tsens_threshold_violated(priv, hw_id, &d)) 604 continue; 605 ret = get_temp_tsens_valid(s, &temp); 606 if (ret) { 607 dev_err(priv->dev, "[%u] %s: error reading sensor\n", 608 hw_id, __func__); 609 continue; 610 } 611 612 tsens_read_irq_state(priv, hw_id, s, &d); 613 if (d.crit_viol && 614 !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) { 615 /* Mask critical interrupts, unused on Linux */ 616 tsens_set_interrupt(priv, hw_id, CRITICAL, false); 617 } 618 } 619 620 return IRQ_HANDLED; 621 } 622 623 /** 624 * tsens_irq_thread - Threaded interrupt handler for uplow interrupts 625 * @irq: irq number 626 * @data: tsens controller private data 627 * 628 * Check all sensors to find ones that violated their threshold limits. If the 629 * temperature is still outside the limits, call thermal_zone_device_update() to 630 * update the thresholds, else re-enable the interrupts. 631 * 632 * The level-triggered interrupt might deassert if the temperature returned to 633 * within the threshold limits by the time the handler got scheduled. We 634 * consider the irq to have been handled in that case. 635 * 636 * Return: IRQ_HANDLED 637 */ 638 static irqreturn_t tsens_irq_thread(int irq, void *data) 639 { 640 struct tsens_priv *priv = data; 641 struct tsens_irq_data d; 642 int i; 643 644 for (i = 0; i < priv->num_sensors; i++) { 645 const struct tsens_sensor *s = &priv->sensor[i]; 646 u32 hw_id = s->hw_id; 647 648 if (!s->tzd) 649 continue; 650 if (!tsens_threshold_violated(priv, hw_id, &d)) 651 continue; 652 653 thermal_zone_device_update(s->tzd, THERMAL_EVENT_UNSPECIFIED); 654 655 if (tsens_version(priv) < VER_0_1) { 656 /* Constraint: There is only 1 interrupt control register for all 657 * 11 temperature sensor. So monitoring more than 1 sensor based 658 * on interrupts will yield inconsistent result. To overcome this 659 * issue we will monitor only sensor 0 which is the master sensor. 660 */ 661 break; 662 } 663 } 664 665 return IRQ_HANDLED; 666 } 667 668 /** 669 * tsens_combined_irq_thread() - Threaded interrupt handler for combined interrupts 670 * @irq: irq number 671 * @data: tsens controller private data 672 * 673 * Handle the combined interrupt as if it were 2 separate interrupts, so call the 674 * critical handler first and then the up/low one. 675 * 676 * Return: IRQ_HANDLED 677 */ 678 static irqreturn_t tsens_combined_irq_thread(int irq, void *data) 679 { 680 irqreturn_t ret; 681 682 ret = tsens_critical_irq_thread(irq, data); 683 if (ret != IRQ_HANDLED) 684 return ret; 685 686 return tsens_irq_thread(irq, data); 687 } 688 689 static int tsens_set_trips(struct thermal_zone_device *tz, int low, int high) 690 { 691 struct tsens_sensor *s = thermal_zone_device_priv(tz); 692 struct tsens_priv *priv = s->priv; 693 struct device *dev = priv->dev; 694 struct tsens_irq_data d; 695 unsigned long flags; 696 int high_val, low_val, cl_high, cl_low; 697 u32 hw_id = s->hw_id; 698 699 if (tsens_version(priv) < VER_0_1) { 700 /* Pre v0.1 IP had a single register for each type of interrupt 701 * and thresholds 702 */ 703 hw_id = 0; 704 } 705 706 dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n", 707 hw_id, __func__, low, high); 708 709 cl_high = clamp_val(high, priv->feat->trip_min_temp, priv->feat->trip_max_temp); 710 cl_low = clamp_val(low, priv->feat->trip_min_temp, priv->feat->trip_max_temp); 711 712 high_val = tsens_mC_to_hw(s, cl_high); 713 low_val = tsens_mC_to_hw(s, cl_low); 714 715 spin_lock_irqsave(&priv->ul_lock, flags); 716 717 tsens_read_irq_state(priv, hw_id, s, &d); 718 719 /* Write the new thresholds and clear the status */ 720 regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val); 721 regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val); 722 tsens_set_interrupt(priv, hw_id, LOWER, true); 723 tsens_set_interrupt(priv, hw_id, UPPER, true); 724 725 spin_unlock_irqrestore(&priv->ul_lock, flags); 726 727 dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n", 728 hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high); 729 730 return 0; 731 } 732 733 static int tsens_enable_irq(struct tsens_priv *priv) 734 { 735 int ret; 736 int val = tsens_version(priv) > VER_1_X ? 7 : 1; 737 738 ret = regmap_field_write(priv->rf[INT_EN], val); 739 if (ret < 0) 740 dev_err(priv->dev, "%s: failed to enable interrupts\n", 741 __func__); 742 743 return ret; 744 } 745 746 static void tsens_disable_irq(struct tsens_priv *priv) 747 { 748 regmap_field_write(priv->rf[INT_EN], 0); 749 } 750 751 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp) 752 { 753 struct tsens_priv *priv = s->priv; 754 int hw_id = s->hw_id; 755 u32 temp_idx = LAST_TEMP_0 + hw_id; 756 u32 valid_idx = VALID_0 + hw_id; 757 u32 valid; 758 int ret; 759 760 /* VER_0 doesn't have VALID bit */ 761 if (tsens_version(priv) == VER_0) 762 goto get_temp; 763 764 /* Valid bit is 0 for 6 AHB clock cycles. 765 * At 19.2MHz, 1 AHB clock is ~60ns. 766 * We should enter this loop very, very rarely. 767 * Wait 1 us since it's the min of poll_timeout macro. 768 * Old value was 400 ns. 769 */ 770 ret = regmap_field_read_poll_timeout(priv->rf[valid_idx], valid, 771 valid, 1, 20 * USEC_PER_MSEC); 772 if (ret) 773 return ret; 774 775 get_temp: 776 /* Valid bit is set, OK to read the temperature */ 777 *temp = tsens_hw_to_mC(s, temp_idx); 778 779 return 0; 780 } 781 782 int get_temp_common(const struct tsens_sensor *s, int *temp) 783 { 784 struct tsens_priv *priv = s->priv; 785 int hw_id = s->hw_id; 786 int last_temp = 0, ret, trdy; 787 unsigned long timeout; 788 789 timeout = jiffies + usecs_to_jiffies(TIMEOUT_US); 790 do { 791 if (tsens_version(priv) == VER_0) { 792 ret = regmap_field_read(priv->rf[TRDY], &trdy); 793 if (ret) 794 return ret; 795 if (!trdy) 796 continue; 797 } 798 799 ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp); 800 if (ret) 801 return ret; 802 803 *temp = code_to_degc(last_temp, s) * 1000; 804 805 return 0; 806 } while (time_before(jiffies, timeout)); 807 808 return -ETIMEDOUT; 809 } 810 811 #ifdef CONFIG_DEBUG_FS 812 static int dbg_sensors_show(struct seq_file *s, void *data) 813 { 814 struct platform_device *pdev = s->private; 815 struct tsens_priv *priv = platform_get_drvdata(pdev); 816 int i; 817 818 seq_printf(s, "max: %2d\nnum: %2d\n\n", 819 priv->feat->max_sensors, priv->num_sensors); 820 821 seq_puts(s, " id slope offset\n--------------------------\n"); 822 for (i = 0; i < priv->num_sensors; i++) { 823 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id, 824 priv->sensor[i].slope, priv->sensor[i].offset); 825 } 826 827 return 0; 828 } 829 830 static int dbg_version_show(struct seq_file *s, void *data) 831 { 832 struct platform_device *pdev = s->private; 833 struct tsens_priv *priv = platform_get_drvdata(pdev); 834 u32 maj_ver, min_ver, step_ver; 835 int ret; 836 837 if (tsens_version(priv) > VER_0_1) { 838 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver); 839 if (ret) 840 return ret; 841 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver); 842 if (ret) 843 return ret; 844 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver); 845 if (ret) 846 return ret; 847 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver); 848 } else { 849 seq_printf(s, "0.%d.0\n", priv->feat->ver_major); 850 } 851 852 return 0; 853 } 854 855 DEFINE_SHOW_ATTRIBUTE(dbg_version); 856 DEFINE_SHOW_ATTRIBUTE(dbg_sensors); 857 858 static void tsens_debug_init(struct platform_device *pdev) 859 { 860 struct tsens_priv *priv = platform_get_drvdata(pdev); 861 862 priv->debug_root = debugfs_lookup("tsens", NULL); 863 if (!priv->debug_root) 864 priv->debug_root = debugfs_create_dir("tsens", NULL); 865 866 /* A directory for each instance of the TSENS IP */ 867 priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root); 868 debugfs_create_file("version", 0444, priv->debug, pdev, &dbg_version_fops); 869 debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops); 870 } 871 #else 872 static inline void tsens_debug_init(struct platform_device *pdev) {} 873 #endif 874 875 static const struct regmap_config tsens_config = { 876 .name = "tm", 877 .reg_bits = 32, 878 .val_bits = 32, 879 .reg_stride = 4, 880 }; 881 882 static const struct regmap_config tsens_srot_config = { 883 .name = "srot", 884 .reg_bits = 32, 885 .val_bits = 32, 886 .reg_stride = 4, 887 }; 888 889 int __init init_common(struct tsens_priv *priv) 890 { 891 void __iomem *tm_base, *srot_base; 892 struct device *dev = priv->dev; 893 u32 ver_minor; 894 struct resource *res; 895 u32 enabled; 896 int ret, i, j; 897 struct platform_device *op = of_find_device_by_node(priv->dev->of_node); 898 899 if (!op) 900 return -EINVAL; 901 902 if (op->num_resources > 1) { 903 /* DT with separate SROT and TM address space */ 904 priv->tm_offset = 0; 905 res = platform_get_resource(op, IORESOURCE_MEM, 1); 906 srot_base = devm_ioremap_resource(dev, res); 907 if (IS_ERR(srot_base)) { 908 ret = PTR_ERR(srot_base); 909 goto err_put_device; 910 } 911 912 priv->srot_map = devm_regmap_init_mmio(dev, srot_base, 913 &tsens_srot_config); 914 if (IS_ERR(priv->srot_map)) { 915 ret = PTR_ERR(priv->srot_map); 916 goto err_put_device; 917 } 918 } else { 919 /* old DTs where SROT and TM were in a contiguous 2K block */ 920 priv->tm_offset = 0x1000; 921 } 922 923 if (tsens_version(priv) >= VER_0_1) { 924 res = platform_get_resource(op, IORESOURCE_MEM, 0); 925 tm_base = devm_ioremap_resource(dev, res); 926 if (IS_ERR(tm_base)) { 927 ret = PTR_ERR(tm_base); 928 goto err_put_device; 929 } 930 931 priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); 932 } else { /* VER_0 share the same gcc regs using a syscon */ 933 struct device *parent = priv->dev->parent; 934 935 if (parent) 936 priv->tm_map = syscon_node_to_regmap(parent->of_node); 937 } 938 939 if (IS_ERR_OR_NULL(priv->tm_map)) { 940 if (!priv->tm_map) 941 ret = -ENODEV; 942 else 943 ret = PTR_ERR(priv->tm_map); 944 goto err_put_device; 945 } 946 947 /* VER_0 have only tm_map */ 948 if (!priv->srot_map) 949 priv->srot_map = priv->tm_map; 950 951 if (tsens_version(priv) > VER_0_1) { 952 for (i = VER_MAJOR; i <= VER_STEP; i++) { 953 priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map, 954 priv->fields[i]); 955 if (IS_ERR(priv->rf[i])) { 956 ret = PTR_ERR(priv->rf[i]); 957 goto err_put_device; 958 } 959 } 960 ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor); 961 if (ret) 962 goto err_put_device; 963 } 964 965 priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 966 priv->fields[TSENS_EN]); 967 if (IS_ERR(priv->rf[TSENS_EN])) { 968 ret = PTR_ERR(priv->rf[TSENS_EN]); 969 goto err_put_device; 970 } 971 /* in VER_0 TSENS need to be explicitly enabled */ 972 if (tsens_version(priv) == VER_0) 973 regmap_field_write(priv->rf[TSENS_EN], 1); 974 975 ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); 976 if (ret) 977 goto err_put_device; 978 if (!enabled) { 979 dev_err(dev, "%s: device not enabled\n", __func__); 980 ret = -ENODEV; 981 goto err_put_device; 982 } 983 984 priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, 985 priv->fields[SENSOR_EN]); 986 if (IS_ERR(priv->rf[SENSOR_EN])) { 987 ret = PTR_ERR(priv->rf[SENSOR_EN]); 988 goto err_put_device; 989 } 990 priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map, 991 priv->fields[INT_EN]); 992 if (IS_ERR(priv->rf[INT_EN])) { 993 ret = PTR_ERR(priv->rf[INT_EN]); 994 goto err_put_device; 995 } 996 997 priv->rf[TSENS_SW_RST] = 998 devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]); 999 if (IS_ERR(priv->rf[TSENS_SW_RST])) { 1000 ret = PTR_ERR(priv->rf[TSENS_SW_RST]); 1001 goto err_put_device; 1002 } 1003 1004 priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]); 1005 if (IS_ERR(priv->rf[TRDY])) { 1006 ret = PTR_ERR(priv->rf[TRDY]); 1007 goto err_put_device; 1008 } 1009 1010 /* This loop might need changes if enum regfield_ids is reordered */ 1011 for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) { 1012 for (i = 0; i < priv->feat->max_sensors; i++) { 1013 int idx = j + i; 1014 1015 priv->rf[idx] = devm_regmap_field_alloc(dev, 1016 priv->tm_map, 1017 priv->fields[idx]); 1018 if (IS_ERR(priv->rf[idx])) { 1019 ret = PTR_ERR(priv->rf[idx]); 1020 goto err_put_device; 1021 } 1022 } 1023 } 1024 1025 if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) { 1026 /* Loop might need changes if enum regfield_ids is reordered */ 1027 for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) { 1028 for (i = 0; i < priv->feat->max_sensors; i++) { 1029 int idx = j + i; 1030 1031 priv->rf[idx] = 1032 devm_regmap_field_alloc(dev, 1033 priv->tm_map, 1034 priv->fields[idx]); 1035 if (IS_ERR(priv->rf[idx])) { 1036 ret = PTR_ERR(priv->rf[idx]); 1037 goto err_put_device; 1038 } 1039 } 1040 } 1041 } 1042 1043 if (tsens_version(priv) > VER_1_X && ver_minor > 2) { 1044 /* Watchdog is present only on v2.3+ */ 1045 priv->feat->has_watchdog = 1; 1046 for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) { 1047 priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map, 1048 priv->fields[i]); 1049 if (IS_ERR(priv->rf[i])) { 1050 ret = PTR_ERR(priv->rf[i]); 1051 goto err_put_device; 1052 } 1053 } 1054 /* 1055 * Watchdog is already enabled, unmask the bark. 1056 * Disable cycle completion monitoring 1057 */ 1058 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); 1059 regmap_field_write(priv->rf[CC_MON_MASK], 1); 1060 } 1061 1062 spin_lock_init(&priv->ul_lock); 1063 1064 /* VER_0 interrupt doesn't need to be enabled */ 1065 if (tsens_version(priv) >= VER_0_1) 1066 tsens_enable_irq(priv); 1067 1068 err_put_device: 1069 put_device(&op->dev); 1070 return ret; 1071 } 1072 1073 static int tsens_get_temp(struct thermal_zone_device *tz, int *temp) 1074 { 1075 struct tsens_sensor *s = thermal_zone_device_priv(tz); 1076 struct tsens_priv *priv = s->priv; 1077 1078 return priv->ops->get_temp(s, temp); 1079 } 1080 1081 static int __maybe_unused tsens_suspend(struct device *dev) 1082 { 1083 struct tsens_priv *priv = dev_get_drvdata(dev); 1084 1085 if (priv->ops && priv->ops->suspend) 1086 return priv->ops->suspend(priv); 1087 1088 return 0; 1089 } 1090 1091 static int __maybe_unused tsens_resume(struct device *dev) 1092 { 1093 struct tsens_priv *priv = dev_get_drvdata(dev); 1094 1095 if (priv->ops && priv->ops->resume) 1096 return priv->ops->resume(priv); 1097 1098 return 0; 1099 } 1100 1101 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume); 1102 1103 static const struct of_device_id tsens_table[] = { 1104 { 1105 .compatible = "qcom,ipq8064-tsens", 1106 .data = &data_8960, 1107 }, { 1108 .compatible = "qcom,ipq8074-tsens", 1109 .data = &data_ipq8074, 1110 }, { 1111 .compatible = "qcom,mdm9607-tsens", 1112 .data = &data_9607, 1113 }, { 1114 .compatible = "qcom,msm8226-tsens", 1115 .data = &data_8226, 1116 }, { 1117 .compatible = "qcom,msm8909-tsens", 1118 .data = &data_8909, 1119 }, { 1120 .compatible = "qcom,msm8916-tsens", 1121 .data = &data_8916, 1122 }, { 1123 .compatible = "qcom,msm8937-tsens", 1124 .data = &data_8937, 1125 }, { 1126 .compatible = "qcom,msm8939-tsens", 1127 .data = &data_8939, 1128 }, { 1129 .compatible = "qcom,msm8956-tsens", 1130 .data = &data_8956, 1131 }, { 1132 .compatible = "qcom,msm8960-tsens", 1133 .data = &data_8960, 1134 }, { 1135 .compatible = "qcom,msm8974-tsens", 1136 .data = &data_8974, 1137 }, { 1138 .compatible = "qcom,msm8976-tsens", 1139 .data = &data_8976, 1140 }, { 1141 .compatible = "qcom,msm8996-tsens", 1142 .data = &data_8996, 1143 }, { 1144 .compatible = "qcom,tsens-v1", 1145 .data = &data_tsens_v1, 1146 }, { 1147 .compatible = "qcom,tsens-v2", 1148 .data = &data_tsens_v2, 1149 }, 1150 {} 1151 }; 1152 MODULE_DEVICE_TABLE(of, tsens_table); 1153 1154 static const struct thermal_zone_device_ops tsens_of_ops = { 1155 .get_temp = tsens_get_temp, 1156 .set_trips = tsens_set_trips, 1157 }; 1158 1159 static int tsens_register_irq(struct tsens_priv *priv, char *irqname, 1160 irq_handler_t thread_fn) 1161 { 1162 struct platform_device *pdev; 1163 int ret, irq; 1164 1165 pdev = of_find_device_by_node(priv->dev->of_node); 1166 if (!pdev) 1167 return -ENODEV; 1168 1169 irq = platform_get_irq_byname(pdev, irqname); 1170 if (irq < 0) { 1171 ret = irq; 1172 /* For old DTs with no IRQ defined */ 1173 if (irq == -ENXIO) 1174 ret = 0; 1175 } else { 1176 /* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */ 1177 if (tsens_version(priv) == VER_0) 1178 ret = devm_request_threaded_irq(&pdev->dev, irq, 1179 thread_fn, NULL, 1180 IRQF_TRIGGER_RISING, 1181 dev_name(&pdev->dev), 1182 priv); 1183 else 1184 ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, 1185 thread_fn, IRQF_ONESHOT, 1186 dev_name(&pdev->dev), 1187 priv); 1188 1189 if (ret) 1190 dev_err(&pdev->dev, "%s: failed to get irq\n", 1191 __func__); 1192 else 1193 enable_irq_wake(irq); 1194 } 1195 1196 put_device(&pdev->dev); 1197 return ret; 1198 } 1199 1200 #ifdef CONFIG_SUSPEND 1201 static int tsens_reinit(struct tsens_priv *priv) 1202 { 1203 if (tsens_version(priv) >= VER_2_X) { 1204 /* 1205 * Re-enable the watchdog, unmask the bark. 1206 * Disable cycle completion monitoring 1207 */ 1208 if (priv->feat->has_watchdog) { 1209 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); 1210 regmap_field_write(priv->rf[CC_MON_MASK], 1); 1211 } 1212 1213 /* Re-enable interrupts */ 1214 tsens_enable_irq(priv); 1215 } 1216 1217 return 0; 1218 } 1219 1220 int tsens_resume_common(struct tsens_priv *priv) 1221 { 1222 if (pm_suspend_target_state == PM_SUSPEND_MEM) 1223 tsens_reinit(priv); 1224 1225 return 0; 1226 } 1227 1228 #endif /* !CONFIG_SUSPEND */ 1229 1230 static int tsens_register(struct tsens_priv *priv) 1231 { 1232 int i, ret; 1233 struct thermal_zone_device *tzd; 1234 1235 for (i = 0; i < priv->num_sensors; i++) { 1236 priv->sensor[i].priv = priv; 1237 tzd = devm_thermal_of_zone_register(priv->dev, priv->sensor[i].hw_id, 1238 &priv->sensor[i], 1239 &tsens_of_ops); 1240 if (IS_ERR(tzd)) 1241 continue; 1242 priv->sensor[i].tzd = tzd; 1243 if (priv->ops->enable) 1244 priv->ops->enable(priv, i); 1245 1246 devm_thermal_add_hwmon_sysfs(priv->dev, tzd); 1247 } 1248 1249 /* VER_0 require to set MIN and MAX THRESH 1250 * These 2 regs are set using the: 1251 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C 1252 * - CRIT_THRESH_1 for MIN THRESH hardcoded to 0°C 1253 */ 1254 if (tsens_version(priv) < VER_0_1) { 1255 regmap_field_write(priv->rf[CRIT_THRESH_0], 1256 tsens_mC_to_hw(priv->sensor, 120000)); 1257 1258 regmap_field_write(priv->rf[CRIT_THRESH_1], 1259 tsens_mC_to_hw(priv->sensor, 0)); 1260 } 1261 1262 if (priv->feat->combo_int) { 1263 ret = tsens_register_irq(priv, "combined", 1264 tsens_combined_irq_thread); 1265 } else { 1266 ret = tsens_register_irq(priv, "uplow", tsens_irq_thread); 1267 if (ret < 0) 1268 return ret; 1269 1270 if (priv->feat->crit_int) 1271 ret = tsens_register_irq(priv, "critical", 1272 tsens_critical_irq_thread); 1273 } 1274 1275 return ret; 1276 } 1277 1278 static int tsens_probe(struct platform_device *pdev) 1279 { 1280 int ret, i; 1281 struct device *dev; 1282 struct device_node *np; 1283 struct tsens_priv *priv; 1284 const struct tsens_plat_data *data; 1285 const struct of_device_id *id; 1286 u32 num_sensors; 1287 1288 if (pdev->dev.of_node) 1289 dev = &pdev->dev; 1290 else 1291 dev = pdev->dev.parent; 1292 1293 np = dev->of_node; 1294 1295 id = of_match_node(tsens_table, np); 1296 if (id) 1297 data = id->data; 1298 else 1299 data = &data_8960; 1300 1301 num_sensors = data->num_sensors; 1302 1303 if (np) 1304 of_property_read_u32(np, "#qcom,sensors", &num_sensors); 1305 1306 if (num_sensors <= 0) { 1307 dev_err(dev, "%s: invalid number of sensors\n", __func__); 1308 return -EINVAL; 1309 } 1310 1311 priv = devm_kzalloc(dev, 1312 struct_size(priv, sensor, num_sensors), 1313 GFP_KERNEL); 1314 if (!priv) 1315 return -ENOMEM; 1316 1317 priv->dev = dev; 1318 priv->num_sensors = num_sensors; 1319 priv->ops = data->ops; 1320 for (i = 0; i < priv->num_sensors; i++) { 1321 if (data->hw_ids) 1322 priv->sensor[i].hw_id = data->hw_ids[i]; 1323 else 1324 priv->sensor[i].hw_id = i; 1325 } 1326 priv->feat = data->feat; 1327 priv->fields = data->fields; 1328 1329 platform_set_drvdata(pdev, priv); 1330 1331 if (!priv->ops || !priv->ops->init || !priv->ops->get_temp) 1332 return -EINVAL; 1333 1334 ret = priv->ops->init(priv); 1335 if (ret < 0) { 1336 dev_err(dev, "%s: init failed\n", __func__); 1337 return ret; 1338 } 1339 1340 if (priv->ops->calibrate) { 1341 ret = priv->ops->calibrate(priv); 1342 if (ret < 0) 1343 return dev_err_probe(dev, ret, "%s: calibration failed\n", 1344 __func__); 1345 } 1346 1347 ret = tsens_register(priv); 1348 if (!ret) 1349 tsens_debug_init(pdev); 1350 1351 return ret; 1352 } 1353 1354 static void tsens_remove(struct platform_device *pdev) 1355 { 1356 struct tsens_priv *priv = platform_get_drvdata(pdev); 1357 1358 debugfs_remove_recursive(priv->debug_root); 1359 tsens_disable_irq(priv); 1360 if (priv->ops->disable) 1361 priv->ops->disable(priv); 1362 } 1363 1364 static struct platform_driver tsens_driver = { 1365 .probe = tsens_probe, 1366 .remove = tsens_remove, 1367 .driver = { 1368 .name = "qcom-tsens", 1369 .pm = &tsens_pm_ops, 1370 .of_match_table = tsens_table, 1371 }, 1372 }; 1373 module_platform_driver(tsens_driver); 1374 1375 MODULE_LICENSE("GPL v2"); 1376 MODULE_DESCRIPTION("QCOM Temperature Sensor driver"); 1377 MODULE_ALIAS("platform:qcom-tsens"); 1378