xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision e2d2266a2ac1da67a74c855c24ed3acb54a1e410)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	u8 valid_sensor_mask;
109 	int offset;
110 	int mode;
111 };
112 
113 #define VALID_SENSOR_MAP(s0, s1, s2, s3) \
114 	.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
115 			      ((s1) ? BIT(1) : 0) | \
116 			      ((s2) ? BIT(2) : 0) | \
117 			      ((s3) ? BIT(3) : 0))
118 
119 #define lvts_for_each_valid_sensor(i, lvts_ctrl_data) \
120 	for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
121 		if (!((lvts_ctrl_data)->valid_sensor_mask & BIT(i))) \
122 			continue; \
123 		else
124 
125 struct lvts_data {
126 	const struct lvts_ctrl_data *lvts_ctrl;
127 	int num_lvts_ctrl;
128 	int temp_factor;
129 	int temp_offset;
130 	int gt_calib_bit_offset;
131 };
132 
133 struct lvts_sensor {
134 	struct thermal_zone_device *tz;
135 	void __iomem *msr;
136 	void __iomem *base;
137 	int id;
138 	int dt_id;
139 	int low_thresh;
140 	int high_thresh;
141 };
142 
143 struct lvts_ctrl {
144 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
145 	const struct lvts_data *lvts_data;
146 	u32 calibration[LVTS_SENSOR_MAX];
147 	u32 hw_tshut_raw_temp;
148 	int mode;
149 	void __iomem *base;
150 	int low_thresh;
151 	int high_thresh;
152 };
153 
154 struct lvts_domain {
155 	struct lvts_ctrl *lvts_ctrl;
156 	struct reset_control *reset;
157 	struct clk *clk;
158 	int num_lvts_ctrl;
159 	void __iomem *base;
160 	size_t calib_len;
161 	u8 *calib;
162 #ifdef CONFIG_DEBUG_FS
163 	struct dentry *dom_dentry;
164 #endif
165 };
166 
167 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
168 
169 #define LVTS_DEBUG_FS_REGS(__reg)		\
170 {						\
171 	.name = __stringify(__reg),		\
172 	.offset = __reg(0),			\
173 }
174 
175 static const struct debugfs_reg32 lvts_regs[] = {
176 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
177 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
178 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
179 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
180 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
181 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
182 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
183 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
184 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
185 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
186 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
187 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
188 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
191 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
192 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
193 	LVTS_DEBUG_FS_REGS(LVTS_ID),
194 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
195 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
196 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
197 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
198 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
199 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
200 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
201 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
202 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
203 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
204 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
205 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
206 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
207 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
208 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
209 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
210 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
211 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
212 };
213 
214 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
215 {
216 	struct debugfs_regset32 *regset;
217 	struct lvts_ctrl *lvts_ctrl;
218 	struct dentry *dentry;
219 	char name[64];
220 	int i;
221 
222 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
223 	if (IS_ERR(lvts_td->dom_dentry))
224 		return 0;
225 
226 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
227 
228 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
229 
230 		sprintf(name, "controller%d", i);
231 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
232 		if (IS_ERR(dentry))
233 			continue;
234 
235 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
236 		if (!regset)
237 			continue;
238 
239 		regset->base = lvts_ctrl->base;
240 		regset->regs = lvts_regs;
241 		regset->nregs = ARRAY_SIZE(lvts_regs);
242 
243 		debugfs_create_regset32("registers", 0400, dentry, regset);
244 	}
245 
246 	return 0;
247 }
248 
249 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
250 {
251 	debugfs_remove_recursive(lvts_td->dom_dentry);
252 }
253 
254 #else
255 
256 static inline int lvts_debugfs_init(struct device *dev,
257 				    struct lvts_domain *lvts_td)
258 {
259 	return 0;
260 }
261 
262 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
263 
264 #endif
265 
266 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
267 {
268 	int temperature;
269 
270 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
271 	temperature += golden_temp_offset;
272 
273 	return temperature;
274 }
275 
276 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
277 {
278 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
279 
280 	raw_temp = div_s64(raw_temp, -temp_factor);
281 
282 	return raw_temp;
283 }
284 
285 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
286 {
287 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
288 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
289 						   sensors[lvts_sensor->id]);
290 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
291 	void __iomem *msr = lvts_sensor->msr;
292 	u32 value;
293 	int rc;
294 
295 	/*
296 	 * Measurement registers:
297 	 *
298 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
299 	 *
300 	 * Bits:
301 	 *
302 	 * 32-17: Unused
303 	 * 16	: Valid temperature
304 	 * 15-0	: Raw temperature
305 	 */
306 	rc = readl_poll_timeout(msr, value, value & BIT(16),
307 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
308 
309 	/*
310 	 * As the thermal zone temperature will read before the
311 	 * hardware sensor is fully initialized, we have to check the
312 	 * validity of the temperature returned when reading the
313 	 * measurement register. The thermal controller will set the
314 	 * valid bit temperature only when it is totally initialized.
315 	 *
316 	 * Otherwise, we may end up with garbage values out of the
317 	 * functionning temperature and directly jump to a system
318 	 * shutdown.
319 	 */
320 	if (rc)
321 		return -EAGAIN;
322 
323 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
324 
325 	return 0;
326 }
327 
328 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
329 {
330 	u32 masks[] = {
331 		LVTS_MONINT_OFFSET_SENSOR0,
332 		LVTS_MONINT_OFFSET_SENSOR1,
333 		LVTS_MONINT_OFFSET_SENSOR2,
334 		LVTS_MONINT_OFFSET_SENSOR3,
335 	};
336 	u32 value = 0;
337 	int i;
338 
339 	value = readl(LVTS_MONINT(lvts_ctrl->base));
340 
341 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
342 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
343 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
344 			value |= masks[i];
345 		else
346 			value &= ~masks[i];
347 	}
348 
349 	writel(value, LVTS_MONINT(lvts_ctrl->base));
350 }
351 
352 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
353 {
354 	int i;
355 
356 	if (high > lvts_ctrl->high_thresh)
357 		return true;
358 
359 	lvts_for_each_valid_sensor(i, lvts_ctrl->lvts_data->lvts_ctrl)
360 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
361 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
362 			return false;
363 
364 	return true;
365 }
366 
367 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
368 {
369 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
370 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
371 						   sensors[lvts_sensor->id]);
372 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
373 	void __iomem *base = lvts_sensor->base;
374 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
375 				       lvts_data->temp_factor);
376 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
377 	bool should_update_thresh;
378 
379 	lvts_sensor->low_thresh = low;
380 	lvts_sensor->high_thresh = high;
381 
382 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
383 	if (should_update_thresh) {
384 		lvts_ctrl->high_thresh = high;
385 		lvts_ctrl->low_thresh = low;
386 	}
387 	lvts_update_irq_mask(lvts_ctrl);
388 
389 	if (!should_update_thresh)
390 		return 0;
391 
392 	/*
393 	 * Low offset temperature threshold
394 	 *
395 	 * LVTS_OFFSETL
396 	 *
397 	 * Bits:
398 	 *
399 	 * 14-0 : Raw temperature for threshold
400 	 */
401 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
402 		 thermal_zone_device_type(tz), low);
403 	writel(raw_low, LVTS_OFFSETL(base));
404 
405 	/*
406 	 * High offset temperature threshold
407 	 *
408 	 * LVTS_OFFSETH
409 	 *
410 	 * Bits:
411 	 *
412 	 * 14-0 : Raw temperature for threshold
413 	 */
414 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
415 		 thermal_zone_device_type(tz), high);
416 	writel(raw_high, LVTS_OFFSETH(base));
417 
418 	return 0;
419 }
420 
421 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
422 {
423 	irqreturn_t iret = IRQ_NONE;
424 	u32 value;
425 	u32 masks[] = {
426 		LVTS_INT_SENSOR0,
427 		LVTS_INT_SENSOR1,
428 		LVTS_INT_SENSOR2,
429 		LVTS_INT_SENSOR3
430 	};
431 	int i;
432 
433 	/*
434 	 * Interrupt monitoring status
435 	 *
436 	 * LVTS_MONINTST
437 	 *
438 	 * Bits:
439 	 *
440 	 * 31 : Interrupt for stage 3
441 	 * 30 : Interrupt for stage 2
442 	 * 29 : Interrupt for state 1
443 	 * 28 : Interrupt using filter on sensor 3
444 	 *
445 	 * 27 : Interrupt using immediate on sensor 3
446 	 * 26 : Interrupt normal to hot on sensor 3
447 	 * 25 : Interrupt high offset on sensor 3
448 	 * 24 : Interrupt low offset on sensor 3
449 	 *
450 	 * 23 : Interrupt hot threshold on sensor 3
451 	 * 22 : Interrupt cold threshold on sensor 3
452 	 * 21 : Interrupt using filter on sensor 2
453 	 * 20 : Interrupt using filter on sensor 1
454 	 *
455 	 * 19 : Interrupt using filter on sensor 0
456 	 * 18 : Interrupt using immediate on sensor 2
457 	 * 17 : Interrupt using immediate on sensor 1
458 	 * 16 : Interrupt using immediate on sensor 0
459 	 *
460 	 * 15 : Interrupt device access timeout interrupt
461 	 * 14 : Interrupt normal to hot on sensor 2
462 	 * 13 : Interrupt high offset interrupt on sensor 2
463 	 * 12 : Interrupt low offset interrupt on sensor 2
464 	 *
465 	 * 11 : Interrupt hot threshold on sensor 2
466 	 * 10 : Interrupt cold threshold on sensor 2
467 	 *  9 : Interrupt normal to hot on sensor 1
468 	 *  8 : Interrupt high offset interrupt on sensor 1
469 	 *
470 	 *  7 : Interrupt low offset interrupt on sensor 1
471 	 *  6 : Interrupt hot threshold on sensor 1
472 	 *  5 : Interrupt cold threshold on sensor 1
473 	 *  4 : Interrupt normal to hot on sensor 0
474 	 *
475 	 *  3 : Interrupt high offset interrupt on sensor 0
476 	 *  2 : Interrupt low offset interrupt on sensor 0
477 	 *  1 : Interrupt hot threshold on sensor 0
478 	 *  0 : Interrupt cold threshold on sensor 0
479 	 *
480 	 * We are interested in the sensor(s) responsible of the
481 	 * interrupt event. We update the thermal framework with the
482 	 * thermal zone associated with the sensor. The framework will
483 	 * take care of the rest whatever the kind of interrupt, we
484 	 * are only interested in which sensor raised the interrupt.
485 	 *
486 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
487 	 *                  => 0x1FC00000
488 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
489 	 *                  => 0x00247C00
490 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
491 	 *                  => 0X001203E0
492 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
493 	 *                  => 0x0009001F
494 	 */
495 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
496 
497 	/*
498 	 * Let's figure out which sensors raised the interrupt
499 	 *
500 	 * NOTE: the masks array must be ordered with the index
501 	 * corresponding to the sensor id eg. index=0, mask for
502 	 * sensor0.
503 	 */
504 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
505 
506 		if (!(value & masks[i]))
507 			continue;
508 
509 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
510 					   THERMAL_TRIP_VIOLATED);
511 		iret = IRQ_HANDLED;
512 	}
513 
514 	/*
515 	 * Write back to clear the interrupt status (W1C)
516 	 */
517 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
518 
519 	return iret;
520 }
521 
522 /*
523  * Temperature interrupt handler. Even if the driver supports more
524  * interrupt modes, we use the interrupt when the temperature crosses
525  * the hot threshold the way up and the way down (modulo the
526  * hysteresis).
527  *
528  * Each thermal domain has a couple of interrupts, one for hardware
529  * reset and another one for all the thermal events happening on the
530  * different sensors.
531  *
532  * The interrupt is configured for thermal events when crossing the
533  * hot temperature limit. At each interrupt, we check in every
534  * controller if there is an interrupt pending.
535  */
536 static irqreturn_t lvts_irq_handler(int irq, void *data)
537 {
538 	struct lvts_domain *lvts_td = data;
539 	irqreturn_t aux, iret = IRQ_NONE;
540 	int i;
541 
542 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
543 
544 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
545 		if (aux != IRQ_HANDLED)
546 			continue;
547 
548 		iret = IRQ_HANDLED;
549 	}
550 
551 	return iret;
552 }
553 
554 static struct thermal_zone_device_ops lvts_ops = {
555 	.get_temp = lvts_get_temp,
556 	.set_trips = lvts_set_trips,
557 };
558 
559 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
560 					const struct lvts_ctrl_data *lvts_ctrl_data)
561 {
562 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
563 
564 	void __iomem *msr_regs[] = {
565 		LVTS_MSR0(lvts_ctrl->base),
566 		LVTS_MSR1(lvts_ctrl->base),
567 		LVTS_MSR2(lvts_ctrl->base),
568 		LVTS_MSR3(lvts_ctrl->base)
569 	};
570 
571 	void __iomem *imm_regs[] = {
572 		LVTS_IMMD0(lvts_ctrl->base),
573 		LVTS_IMMD1(lvts_ctrl->base),
574 		LVTS_IMMD2(lvts_ctrl->base),
575 		LVTS_IMMD3(lvts_ctrl->base)
576 	};
577 
578 	int i;
579 
580 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
581 
582 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
583 
584 		/*
585 		 * At this point, we don't know which id matches which
586 		 * sensor. Let's set arbitrally the id from the index.
587 		 */
588 		lvts_sensor[i].id = i;
589 
590 		/*
591 		 * The thermal zone registration will set the trip
592 		 * point interrupt in the thermal controller
593 		 * register. But this one will be reset in the
594 		 * initialization after. So we need to post pone the
595 		 * thermal zone creation after the controller is
596 		 * setup. For this reason, we store the device tree
597 		 * node id from the data in the sensor structure
598 		 */
599 		lvts_sensor[i].dt_id = dt_id;
600 
601 		/*
602 		 * We assign the base address of the thermal
603 		 * controller as a back pointer. So it will be
604 		 * accessible from the different thermal framework ops
605 		 * as we pass the lvts_sensor pointer as thermal zone
606 		 * private data.
607 		 */
608 		lvts_sensor[i].base = lvts_ctrl->base;
609 
610 		/*
611 		 * Each sensor has its own register address to read from.
612 		 */
613 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
614 			imm_regs[i] : msr_regs[i];
615 
616 		lvts_sensor[i].low_thresh = INT_MIN;
617 		lvts_sensor[i].high_thresh = INT_MIN;
618 	};
619 
620 	return 0;
621 }
622 
623 /*
624  * The efuse blob values follows the sensor enumeration per thermal
625  * controller. The decoding of the stream is as follow:
626  *
627  * MT8192 :
628  * Stream index map for MCU Domain mt8192 :
629  *
630  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
631  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
632  *
633  * <-----sensor#2----->        <-----sensor#3----->
634  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
635  *
636  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
637  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
638  *
639  * Stream index map for AP Domain mt8192 :
640  *
641  * <-----sensor#0----->        <-----sensor#1----->
642  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
643  *
644  * <-----sensor#2----->        <-----sensor#3----->
645  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
646  *
647  * <-----sensor#4----->        <-----sensor#5----->
648  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
649  *
650  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
651  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
652  *
653  * MT8195 :
654  * Stream index map for MCU Domain mt8195 :
655  *
656  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
657  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
658  *
659  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
660  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
661  *
662  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
663  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
664  *
665  * Stream index map for AP Domain mt8195 :
666  *
667  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
668  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
669  *
670  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
671  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
672  *
673  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
674  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
675  *
676  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
677  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
678  *
679  * Note: In some cases, values don't strictly follow a little endian ordering.
680  * The data description gives byte offsets constituting each calibration value
681  * for each sensor.
682  */
683 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
684 					const struct lvts_ctrl_data *lvts_ctrl_data,
685 					u8 *efuse_calibration,
686 					size_t calib_len)
687 {
688 	int i;
689 
690 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
691 		const struct lvts_sensor_data *sensor =
692 					&lvts_ctrl_data->lvts_sensor[i];
693 
694 		if (sensor->cal_offsets[0] >= calib_len ||
695 		    sensor->cal_offsets[1] >= calib_len ||
696 		    sensor->cal_offsets[2] >= calib_len)
697 			return -EINVAL;
698 
699 		lvts_ctrl->calibration[i] =
700 			(efuse_calibration[sensor->cal_offsets[0]] << 0) +
701 			(efuse_calibration[sensor->cal_offsets[1]] << 8) +
702 			(efuse_calibration[sensor->cal_offsets[2]] << 16);
703 	}
704 
705 	return 0;
706 }
707 
708 /*
709  * The efuse bytes stream can be split into different chunk of
710  * nvmems. This function reads and concatenate those into a single
711  * buffer so it can be read sequentially when initializing the
712  * calibration data.
713  */
714 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
715 					const struct lvts_data *lvts_data)
716 {
717 	struct device_node *np = dev_of_node(dev);
718 	struct nvmem_cell *cell;
719 	struct property *prop;
720 	const char *cell_name;
721 
722 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
723 		size_t len;
724 		u8 *efuse;
725 
726 		cell = of_nvmem_cell_get(np, cell_name);
727 		if (IS_ERR(cell)) {
728 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
729 			return PTR_ERR(cell);
730 		}
731 
732 		efuse = nvmem_cell_read(cell, &len);
733 
734 		nvmem_cell_put(cell);
735 
736 		if (IS_ERR(efuse)) {
737 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
738 			return PTR_ERR(efuse);
739 		}
740 
741 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
742 					       lvts_td->calib_len + len, GFP_KERNEL);
743 		if (!lvts_td->calib) {
744 			kfree(efuse);
745 			return -ENOMEM;
746 		}
747 
748 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
749 
750 		lvts_td->calib_len += len;
751 
752 		kfree(efuse);
753 	}
754 
755 	return 0;
756 }
757 
758 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
759 				 const struct lvts_data *lvts_data)
760 {
761 	u32 gt;
762 
763 	/*
764 	 * The golden temp information is contained in the first 32-bit
765 	 * word  of efuse data at a specific bit offset.
766 	 */
767 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
768 
769 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
770 		golden_temp = gt;
771 
772 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
773 
774 	return 0;
775 }
776 
777 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
778 					const struct lvts_data *lvts_data)
779 {
780 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
781 	struct lvts_ctrl *lvts_ctrl;
782 	int i, ret;
783 
784 	/*
785 	 * Create the calibration bytes stream from efuse data
786 	 */
787 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
788 	if (ret)
789 		return ret;
790 
791 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
792 	if (ret)
793 		return ret;
794 
795 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
796 	if (!lvts_ctrl)
797 		return -ENOMEM;
798 
799 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
800 
801 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
802 		lvts_ctrl[i].lvts_data = lvts_data;
803 
804 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
805 				       &lvts_data->lvts_ctrl[i]);
806 		if (ret)
807 			return ret;
808 
809 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
810 					    &lvts_data->lvts_ctrl[i],
811 					    lvts_td->calib,
812 					    lvts_td->calib_len);
813 		if (ret)
814 			return ret;
815 
816 		/*
817 		 * The mode the ctrl will use to read the temperature
818 		 * (filtered or immediate)
819 		 */
820 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
821 
822 		/*
823 		 * The temperature to raw temperature must be done
824 		 * after initializing the calibration.
825 		 */
826 		lvts_ctrl[i].hw_tshut_raw_temp =
827 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
828 					 lvts_data->temp_factor);
829 
830 		lvts_ctrl[i].low_thresh = INT_MIN;
831 		lvts_ctrl[i].high_thresh = INT_MIN;
832 	}
833 
834 	/*
835 	 * We no longer need the efuse bytes stream, let's free it
836 	 */
837 	devm_kfree(dev, lvts_td->calib);
838 
839 	lvts_td->lvts_ctrl = lvts_ctrl;
840 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
841 
842 	return 0;
843 }
844 
845 /*
846  * At this point the configuration register is the only place in the
847  * driver where we write multiple values. Per hardware constraint,
848  * each write in the configuration register must be separated by a
849  * delay of 2 us.
850  */
851 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
852 {
853 	int i;
854 
855 	/*
856 	 * Configuration register
857 	 */
858 	for (i = 0; i < nr_cmds; i++) {
859 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
860 		usleep_range(2, 4);
861 	}
862 }
863 
864 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
865 {
866 	/*
867 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
868 	 *
869 	 * Bits:
870 	 *
871 	 * 19-18 : Sensor to base the protection on
872 	 * 17-16 : Strategy:
873 	 *         00 : Average of 4 sensors
874 	 *         01 : Max of 4 sensors
875 	 *         10 : Selected sensor with bits 19-18
876 	 *         11 : Reserved
877 	 */
878 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
879 
880 	/*
881 	 * LVTS_PROTTA : Stage 1 temperature threshold
882 	 * LVTS_PROTTB : Stage 2 temperature threshold
883 	 * LVTS_PROTTC : Stage 3 temperature threshold
884 	 *
885 	 * Bits:
886 	 *
887 	 * 14-0: Raw temperature threshold
888 	 *
889 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
890 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
891 	 */
892 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
893 
894 	/*
895 	 * LVTS_MONINT : Interrupt configuration register
896 	 *
897 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
898 	 * register, except we set the bits to enable the interrupt.
899 	 */
900 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
901 
902 	return 0;
903 }
904 
905 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
906 {
907 	int ret;
908 
909 	ret = reset_control_assert(reset);
910 	if (ret)
911 		return ret;
912 
913 	return reset_control_deassert(reset);
914 }
915 
916 /*
917  * Enable or disable the clocks of a specified thermal controller
918  */
919 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
920 {
921 	/*
922 	 * LVTS_CLKEN : Internal LVTS clock
923 	 *
924 	 * Bits:
925 	 *
926 	 * 0 : enable / disable clock
927 	 */
928 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
929 
930 	return 0;
931 }
932 
933 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
934 {
935 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
936 
937 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
938 
939 	/*
940 	 * LVTS_ID : Get ID and status of the thermal controller
941 	 *
942 	 * Bits:
943 	 *
944 	 * 0-5	: thermal controller id
945 	 *   7	: thermal controller connection is valid
946 	 */
947 	id = readl(LVTS_ID(lvts_ctrl->base));
948 	if (!(id & BIT(7)))
949 		return -EIO;
950 
951 	return 0;
952 }
953 
954 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
955 {
956 	/*
957 	 * Write device mask: 0xC1030000
958 	 */
959 	u32 cmds[] = {
960 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
961 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
962 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
963 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
964 	};
965 
966 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
967 
968 	return 0;
969 }
970 
971 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
972 {
973 	int i;
974 	void __iomem *lvts_edata[] = {
975 		LVTS_EDATA00(lvts_ctrl->base),
976 		LVTS_EDATA01(lvts_ctrl->base),
977 		LVTS_EDATA02(lvts_ctrl->base),
978 		LVTS_EDATA03(lvts_ctrl->base)
979 	};
980 
981 	/*
982 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
983 	 *
984 	 * Bits:
985 	 *
986 	 * 20-0 : Efuse value for normalization data
987 	 */
988 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
989 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
990 
991 	return 0;
992 }
993 
994 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
995 {
996 	u32 value;
997 
998 	/*
999 	 * LVTS_TSSEL : Sensing point index numbering
1000 	 *
1001 	 * Bits:
1002 	 *
1003 	 * 31-24: ADC Sense 3
1004 	 * 23-16: ADC Sense 2
1005 	 * 15-8	: ADC Sense 1
1006 	 * 7-0	: ADC Sense 0
1007 	 */
1008 	value = LVTS_TSSEL_CONF;
1009 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1010 
1011 	/*
1012 	 * LVTS_CALSCALE : ADC voltage round
1013 	 */
1014 	value = 0x300;
1015 	value = LVTS_CALSCALE_CONF;
1016 
1017 	/*
1018 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1019 	 *
1020 	 * Filters:
1021 	 *
1022 	 * 000 : One sample
1023 	 * 001 : Avg 2 samples
1024 	 * 010 : 4 samples, drop min and max, avg 2 samples
1025 	 * 011 : 6 samples, drop min and max, avg 4 samples
1026 	 * 100 : 10 samples, drop min and max, avg 8 samples
1027 	 * 101 : 18 samples, drop min and max, avg 16 samples
1028 	 *
1029 	 * Bits:
1030 	 *
1031 	 * 0-2  : Sensor0 filter
1032 	 * 3-5  : Sensor1 filter
1033 	 * 6-8  : Sensor2 filter
1034 	 * 9-11 : Sensor3 filter
1035 	 */
1036 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1037 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1038 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1039 
1040 	/*
1041 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1042 	 *
1043 	 * The clock source of LVTS thermal controller is 26MHz.
1044 	 *
1045 	 * The period unit is a time base for all the interval delays
1046 	 * specified in the registers. By default we use 12. The time
1047 	 * conversion is done by multiplying by 256 and 1/26.10^6
1048 	 *
1049 	 * An interval delay multiplied by the period unit gives the
1050 	 * duration in seconds.
1051 	 *
1052 	 * - Filter interval delay is a delay between two samples of
1053 	 * the same sensor.
1054 	 *
1055 	 * - Sensor interval delay is a delay between two samples of
1056 	 * different sensors.
1057 	 *
1058 	 * - Group interval delay is a delay between different rounds.
1059 	 *
1060 	 * For example:
1061 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1062 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1063 	 *     and then
1064 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1065 	 *     Filter interval delay = 1 * Period unit = 118.149us
1066 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1067 	 *     Group interval delay = 1 * Period unit = 118.149us
1068 	 *
1069 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1070 	 *        <--> Filter interval delay
1071 	 *                       <--> Sensor interval delay
1072 	 *                                             <--> Group interval delay
1073 	 * Bits:
1074 	 *      29 - 20 : Group interval
1075 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1076 	 *                or an interrupt everytime the hot threshold is crossed (0)
1077 	 *       9 - 0  : Period unit
1078 	 *
1079 	 */
1080 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1081 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1082 
1083 	/*
1084 	 * LVTS_MONCTL2 : Filtering and sensor interval
1085 	 *
1086 	 * Bits:
1087 	 *
1088 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1089 	 *              the same sensor, filter interval
1090 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1091 	 *
1092 	 */
1093 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1094 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1095 
1096 	return lvts_irq_init(lvts_ctrl);
1097 }
1098 
1099 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1100 {
1101 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1102 	struct thermal_zone_device *tz;
1103 	u32 sensor_map = 0;
1104 	int i;
1105 	/*
1106 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1107 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1108 	 */
1109 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1110 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1111 
1112 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1113 			     sensor_imm_bitmap : sensor_filt_bitmap;
1114 
1115 	lvts_for_each_valid_sensor(i, lvts_ctrl->lvts_data->lvts_ctrl) {
1116 
1117 		int dt_id = lvts_sensors[i].dt_id;
1118 
1119 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1120 						   &lvts_ops);
1121 		if (IS_ERR(tz)) {
1122 			/*
1123 			 * This thermal zone is not described in the
1124 			 * device tree. It is not an error from the
1125 			 * thermal OF code POV, we just continue.
1126 			 */
1127 			if (PTR_ERR(tz) == -ENODEV)
1128 				continue;
1129 
1130 			return PTR_ERR(tz);
1131 		}
1132 
1133 		devm_thermal_add_hwmon_sysfs(dev, tz);
1134 
1135 		/*
1136 		 * The thermal zone pointer will be needed in the
1137 		 * interrupt handler, we store it in the sensor
1138 		 * structure. The thermal domain structure will be
1139 		 * passed to the interrupt handler private data as the
1140 		 * interrupt is shared for all the controller
1141 		 * belonging to the thermal domain.
1142 		 */
1143 		lvts_sensors[i].tz = tz;
1144 
1145 		/*
1146 		 * This sensor was correctly associated with a thermal
1147 		 * zone, let's set the corresponding bit in the sensor
1148 		 * map, so we can enable the temperature monitoring in
1149 		 * the hardware thermal controller.
1150 		 */
1151 		sensor_map |= sensor_bitmap[i];
1152 	}
1153 
1154 	/*
1155 	 * The initialization of the thermal zones give us
1156 	 * which sensor point to enable. If any thermal zone
1157 	 * was not described in the device tree, it won't be
1158 	 * enabled here in the sensor map.
1159 	 */
1160 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1161 		/*
1162 		 * LVTS_MSRCTL1 : Measurement control
1163 		 *
1164 		 * Bits:
1165 		 *
1166 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1167 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1168 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1169 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1170 		 *
1171 		 * That configuration will ignore the filtering and the delays
1172 		 * introduced in MONCTL1 and MONCTL2
1173 		 */
1174 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1175 	} else {
1176 		/*
1177 		 * Bits:
1178 		 *      9: Single point access flow
1179 		 *    0-3: Enable sensing point 0-3
1180 		 */
1181 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1188 					const struct lvts_data *lvts_data)
1189 {
1190 	struct lvts_ctrl *lvts_ctrl;
1191 	int i, ret;
1192 
1193 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1194 	if (ret)
1195 		return ret;
1196 
1197 	ret = lvts_domain_reset(dev, lvts_td->reset);
1198 	if (ret) {
1199 		dev_dbg(dev, "Failed to reset domain");
1200 		return ret;
1201 	}
1202 
1203 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1204 
1205 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1206 
1207 		/*
1208 		 * Initialization steps:
1209 		 *
1210 		 * - Enable the clock
1211 		 * - Connect to the LVTS
1212 		 * - Initialize the LVTS
1213 		 * - Prepare the calibration data
1214 		 * - Select monitored sensors
1215 		 * [ Configure sampling ]
1216 		 * [ Configure the interrupt ]
1217 		 * - Start measurement
1218 		 */
1219 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1220 		if (ret) {
1221 			dev_dbg(dev, "Failed to enable LVTS clock");
1222 			return ret;
1223 		}
1224 
1225 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1226 		if (ret) {
1227 			dev_dbg(dev, "Failed to connect to LVTS controller");
1228 			return ret;
1229 		}
1230 
1231 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1232 		if (ret) {
1233 			dev_dbg(dev, "Failed to initialize controller");
1234 			return ret;
1235 		}
1236 
1237 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1238 		if (ret) {
1239 			dev_dbg(dev, "Failed to calibrate controller");
1240 			return ret;
1241 		}
1242 
1243 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1244 		if (ret) {
1245 			dev_dbg(dev, "Failed to configure controller");
1246 			return ret;
1247 		}
1248 
1249 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1250 		if (ret) {
1251 			dev_dbg(dev, "Failed to start controller");
1252 			return ret;
1253 		}
1254 	}
1255 
1256 	return lvts_debugfs_init(dev, lvts_td);
1257 }
1258 
1259 static int lvts_probe(struct platform_device *pdev)
1260 {
1261 	const struct lvts_data *lvts_data;
1262 	struct lvts_domain *lvts_td;
1263 	struct device *dev = &pdev->dev;
1264 	struct resource *res;
1265 	int irq, ret;
1266 
1267 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1268 	if (!lvts_td)
1269 		return -ENOMEM;
1270 
1271 	lvts_data = of_device_get_match_data(dev);
1272 	if (!lvts_data)
1273 		return -ENODEV;
1274 
1275 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1276 	if (IS_ERR(lvts_td->clk))
1277 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1278 
1279 	res = platform_get_mem_or_io(pdev, 0);
1280 	if (!res)
1281 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1282 
1283 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1284 	if (IS_ERR(lvts_td->base))
1285 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1286 
1287 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1288 	if (IS_ERR(lvts_td->reset))
1289 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1290 
1291 	irq = platform_get_irq(pdev, 0);
1292 	if (irq < 0)
1293 		return irq;
1294 
1295 	golden_temp_offset = lvts_data->temp_offset;
1296 
1297 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1298 	if (ret)
1299 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1300 
1301 	/*
1302 	 * At this point the LVTS is initialized and enabled. We can
1303 	 * safely enable the interrupt.
1304 	 */
1305 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1306 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1307 	if (ret)
1308 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1309 
1310 	platform_set_drvdata(pdev, lvts_td);
1311 
1312 	return 0;
1313 }
1314 
1315 static void lvts_remove(struct platform_device *pdev)
1316 {
1317 	struct lvts_domain *lvts_td;
1318 	int i;
1319 
1320 	lvts_td = platform_get_drvdata(pdev);
1321 
1322 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1323 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1324 
1325 	lvts_debugfs_exit(lvts_td);
1326 }
1327 
1328 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1329 	{
1330 		.lvts_sensor = {
1331 			{ .dt_id = MT7988_CPU_0,
1332 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1333 			{ .dt_id = MT7988_CPU_1,
1334 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1335 			{ .dt_id = MT7988_ETH2P5G_0,
1336 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1337 			{ .dt_id = MT7988_ETH2P5G_1,
1338 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1339 		},
1340 		VALID_SENSOR_MAP(1, 1, 1, 1),
1341 		.offset = 0x0,
1342 	},
1343 	{
1344 		.lvts_sensor = {
1345 			{ .dt_id = MT7988_TOPS_0,
1346 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1347 			{ .dt_id = MT7988_TOPS_1,
1348 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1349 			{ .dt_id = MT7988_ETHWARP_0,
1350 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1351 			{ .dt_id = MT7988_ETHWARP_1,
1352 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1353 		},
1354 		VALID_SENSOR_MAP(1, 1, 1, 1),
1355 		.offset = 0x100,
1356 	}
1357 };
1358 
1359 static int lvts_suspend(struct device *dev)
1360 {
1361 	struct lvts_domain *lvts_td;
1362 	int i;
1363 
1364 	lvts_td = dev_get_drvdata(dev);
1365 
1366 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1367 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1368 
1369 	clk_disable_unprepare(lvts_td->clk);
1370 
1371 	return 0;
1372 }
1373 
1374 static int lvts_resume(struct device *dev)
1375 {
1376 	struct lvts_domain *lvts_td;
1377 	int i, ret;
1378 
1379 	lvts_td = dev_get_drvdata(dev);
1380 
1381 	ret = clk_prepare_enable(lvts_td->clk);
1382 	if (ret)
1383 		return ret;
1384 
1385 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1386 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1387 
1388 	return 0;
1389 }
1390 
1391 /*
1392  * The MT8186 calibration data is stored as packed 3-byte little-endian
1393  * values using a weird layout that makes sense only when viewed as a 32-bit
1394  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1395  * y = byte number where the LSB is y=0. We then have:
1396  *
1397  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1398  *
1399  * However, when considering a byte stream, those appear as follows:
1400  *
1401  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1402  *
1403  * Hence the rather confusing offsets provided below.
1404  */
1405 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1406 	{
1407 		.lvts_sensor = {
1408 			{ .dt_id = MT8186_LITTLE_CPU0,
1409 			  .cal_offsets = { 5, 6, 7 } },
1410 			{ .dt_id = MT8186_LITTLE_CPU1,
1411 			  .cal_offsets = { 10, 11, 4 } },
1412 			{ .dt_id = MT8186_LITTLE_CPU2,
1413 			  .cal_offsets = { 15, 8, 9 } },
1414 			{ .dt_id = MT8186_CAM,
1415 			  .cal_offsets = { 12, 13, 14 } }
1416 		},
1417 		VALID_SENSOR_MAP(1, 1, 1, 1),
1418 		.offset = 0x0,
1419 	},
1420 	{
1421 		.lvts_sensor = {
1422 			{ .dt_id = MT8186_BIG_CPU0,
1423 			  .cal_offsets = { 22, 23, 16 } },
1424 			{ .dt_id = MT8186_BIG_CPU1,
1425 			  .cal_offsets = { 27, 20, 21 } }
1426 		},
1427 		VALID_SENSOR_MAP(1, 1, 0, 0),
1428 		.offset = 0x100,
1429 	},
1430 	{
1431 		.lvts_sensor = {
1432 			{ .dt_id = MT8186_NNA,
1433 			  .cal_offsets = { 29, 30, 31 } },
1434 			{ .dt_id = MT8186_ADSP,
1435 			  .cal_offsets = { 34, 35, 28 } },
1436 			{ .dt_id = MT8186_MFG,
1437 			  .cal_offsets = { 39, 32, 33 } }
1438 		},
1439 		VALID_SENSOR_MAP(1, 1, 1, 0),
1440 		.offset = 0x200,
1441 	}
1442 };
1443 
1444 static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
1445 	{
1446 		.lvts_sensor = {
1447 			{ .dt_id = MT8188_MCU_LITTLE_CPU0,
1448 			  .cal_offsets = { 22, 23, 24 } },
1449 			{ .dt_id = MT8188_MCU_LITTLE_CPU1,
1450 			  .cal_offsets = { 25, 26, 27 } },
1451 			{ .dt_id = MT8188_MCU_LITTLE_CPU2,
1452 			  .cal_offsets = { 28, 29, 30 } },
1453 			{ .dt_id = MT8188_MCU_LITTLE_CPU3,
1454 			  .cal_offsets = { 31, 32, 33 } },
1455 		},
1456 		VALID_SENSOR_MAP(1, 1, 1, 1),
1457 		.offset = 0x0,
1458 		.mode = LVTS_MSR_FILTERED_MODE,
1459 	},
1460 	{
1461 		.lvts_sensor = {
1462 			{ .dt_id = MT8188_MCU_BIG_CPU0,
1463 			  .cal_offsets = { 34, 35, 36 } },
1464 			{ .dt_id = MT8188_MCU_BIG_CPU1,
1465 			  .cal_offsets = { 37, 38, 39 } },
1466 		},
1467 		VALID_SENSOR_MAP(1, 1, 0, 0),
1468 		.offset = 0x100,
1469 		.mode = LVTS_MSR_FILTERED_MODE,
1470 	}
1471 };
1472 
1473 static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
1474 	{
1475 		.lvts_sensor = {
1476 
1477 			{ /* unused */ },
1478 			{ .dt_id = MT8188_AP_APU,
1479 			  .cal_offsets = { 40, 41, 42 } },
1480 		},
1481 		VALID_SENSOR_MAP(0, 1, 0, 0),
1482 		.offset = 0x0,
1483 		.mode = LVTS_MSR_FILTERED_MODE,
1484 	},
1485 	{
1486 		.lvts_sensor = {
1487 			{ .dt_id = MT8188_AP_GPU1,
1488 			  .cal_offsets = { 43, 44, 45 } },
1489 			{ .dt_id = MT8188_AP_GPU2,
1490 			  .cal_offsets = { 46, 47, 48 } },
1491 			{ .dt_id = MT8188_AP_SOC1,
1492 			  .cal_offsets = { 49, 50, 51 } },
1493 		},
1494 		VALID_SENSOR_MAP(1, 1, 1, 0),
1495 		.offset = 0x100,
1496 		.mode = LVTS_MSR_FILTERED_MODE,
1497 	},
1498 	{
1499 		.lvts_sensor = {
1500 			{ .dt_id = MT8188_AP_SOC2,
1501 			  .cal_offsets = { 52, 53, 54 } },
1502 			{ .dt_id = MT8188_AP_SOC3,
1503 			  .cal_offsets = { 55, 56, 57 } },
1504 		},
1505 		VALID_SENSOR_MAP(1, 1, 0, 0),
1506 		.offset = 0x200,
1507 		.mode = LVTS_MSR_FILTERED_MODE,
1508 	},
1509 	{
1510 		.lvts_sensor = {
1511 			{ .dt_id = MT8188_AP_CAM1,
1512 			  .cal_offsets = { 58, 59, 60 } },
1513 			{ .dt_id = MT8188_AP_CAM2,
1514 			  .cal_offsets = { 61, 62, 63 } },
1515 		},
1516 		VALID_SENSOR_MAP(1, 1, 0, 0),
1517 		.offset = 0x300,
1518 		.mode = LVTS_MSR_FILTERED_MODE,
1519 	}
1520 };
1521 
1522 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1523 	{
1524 		.lvts_sensor = {
1525 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1526 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1527 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1528 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1529 		},
1530 		VALID_SENSOR_MAP(1, 1, 0, 0),
1531 		.offset = 0x0,
1532 		.mode = LVTS_MSR_FILTERED_MODE,
1533 	},
1534 	{
1535 		.lvts_sensor = {
1536 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1537 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1538 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1539 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1540 		},
1541 		VALID_SENSOR_MAP(1, 1, 0, 0),
1542 		.offset = 0x100,
1543 		.mode = LVTS_MSR_FILTERED_MODE,
1544 	},
1545 	{
1546 		.lvts_sensor = {
1547 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1548 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1549 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1550 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1551 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1552 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1553 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1554 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1555 		},
1556 		VALID_SENSOR_MAP(1, 1, 1, 1),
1557 		.offset = 0x200,
1558 		.mode = LVTS_MSR_FILTERED_MODE,
1559 	}
1560 };
1561 
1562 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1563 	{
1564 		.lvts_sensor = {
1565 			{ .dt_id = MT8192_AP_VPU0,
1566 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1567 			{ .dt_id = MT8192_AP_VPU1,
1568 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1569 		},
1570 		VALID_SENSOR_MAP(1, 1, 0, 0),
1571 		.offset = 0x0,
1572 	},
1573 	{
1574 		.lvts_sensor = {
1575 			{ .dt_id = MT8192_AP_GPU0,
1576 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1577 			{ .dt_id = MT8192_AP_GPU1,
1578 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1579 		},
1580 		VALID_SENSOR_MAP(1, 1, 0, 0),
1581 		.offset = 0x100,
1582 	},
1583 	{
1584 		.lvts_sensor = {
1585 			{ .dt_id = MT8192_AP_INFRA,
1586 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1587 			{ .dt_id = MT8192_AP_CAM,
1588 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1589 		},
1590 		VALID_SENSOR_MAP(1, 1, 0, 0),
1591 		.offset = 0x200,
1592 	},
1593 	{
1594 		.lvts_sensor = {
1595 			{ .dt_id = MT8192_AP_MD0,
1596 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1597 			{ .dt_id = MT8192_AP_MD1,
1598 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1599 			{ .dt_id = MT8192_AP_MD2,
1600 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1601 		},
1602 		VALID_SENSOR_MAP(1, 1, 1, 0),
1603 		.offset = 0x300,
1604 	}
1605 };
1606 
1607 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1608 	{
1609 		.lvts_sensor = {
1610 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1611 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1612 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1613 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1614 		},
1615 		VALID_SENSOR_MAP(1, 1, 0, 0),
1616 		.offset = 0x0,
1617 	},
1618 	{
1619 		.lvts_sensor = {
1620 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1621 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1622 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1623 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1624 		},
1625 		VALID_SENSOR_MAP(1, 1, 0, 0),
1626 		.offset = 0x100,
1627 	},
1628 	{
1629 		.lvts_sensor = {
1630 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1631 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1632 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1633 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1634 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1635 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1636 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1637 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1638 		},
1639 		VALID_SENSOR_MAP(1, 1, 1, 1),
1640 		.offset = 0x200,
1641 	}
1642 };
1643 
1644 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1645 	{
1646 		.lvts_sensor = {
1647 			{ .dt_id = MT8195_AP_VPU0,
1648 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1649 			{ .dt_id = MT8195_AP_VPU1,
1650 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1651 		},
1652 		VALID_SENSOR_MAP(1, 1, 0, 0),
1653 		.offset = 0x0,
1654 	},
1655 	{
1656 		.lvts_sensor = {
1657 			{ .dt_id = MT8195_AP_GPU0,
1658 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1659 			{ .dt_id = MT8195_AP_GPU1,
1660 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1661 		},
1662 		VALID_SENSOR_MAP(1, 1, 0, 0),
1663 		.offset = 0x100,
1664 	},
1665 	{
1666 		.lvts_sensor = {
1667 			{ .dt_id = MT8195_AP_VDEC,
1668 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1669 			{ .dt_id = MT8195_AP_IMG,
1670 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1671 			{ .dt_id = MT8195_AP_INFRA,
1672 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1673 		},
1674 		VALID_SENSOR_MAP(1, 1, 1, 0),
1675 		.offset = 0x200,
1676 	},
1677 	{
1678 		.lvts_sensor = {
1679 			{ .dt_id = MT8195_AP_CAM0,
1680 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1681 			{ .dt_id = MT8195_AP_CAM1,
1682 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1683 		},
1684 		VALID_SENSOR_MAP(1, 1, 0, 0),
1685 		.offset = 0x300,
1686 	}
1687 };
1688 
1689 static const struct lvts_data mt7988_lvts_ap_data = {
1690 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1691 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1692 	.temp_factor	= LVTS_COEFF_A_MT7988,
1693 	.temp_offset	= LVTS_COEFF_B_MT7988,
1694 	.gt_calib_bit_offset = 24,
1695 };
1696 
1697 static const struct lvts_data mt8186_lvts_data = {
1698 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1699 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1700 	.temp_factor	= LVTS_COEFF_A_MT7988,
1701 	.temp_offset	= LVTS_COEFF_B_MT7988,
1702 	.gt_calib_bit_offset = 24,
1703 };
1704 
1705 static const struct lvts_data mt8188_lvts_mcu_data = {
1706 	.lvts_ctrl	= mt8188_lvts_mcu_data_ctrl,
1707 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
1708 	.temp_factor	= LVTS_COEFF_A_MT8195,
1709 	.temp_offset	= LVTS_COEFF_B_MT8195,
1710 	.gt_calib_bit_offset = 20,
1711 };
1712 
1713 static const struct lvts_data mt8188_lvts_ap_data = {
1714 	.lvts_ctrl	= mt8188_lvts_ap_data_ctrl,
1715 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
1716 	.temp_factor	= LVTS_COEFF_A_MT8195,
1717 	.temp_offset	= LVTS_COEFF_B_MT8195,
1718 	.gt_calib_bit_offset = 20,
1719 };
1720 
1721 static const struct lvts_data mt8192_lvts_mcu_data = {
1722 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1723 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1724 	.temp_factor	= LVTS_COEFF_A_MT8195,
1725 	.temp_offset	= LVTS_COEFF_B_MT8195,
1726 	.gt_calib_bit_offset = 24,
1727 };
1728 
1729 static const struct lvts_data mt8192_lvts_ap_data = {
1730 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1731 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1732 	.temp_factor	= LVTS_COEFF_A_MT8195,
1733 	.temp_offset	= LVTS_COEFF_B_MT8195,
1734 	.gt_calib_bit_offset = 24,
1735 };
1736 
1737 static const struct lvts_data mt8195_lvts_mcu_data = {
1738 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1739 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1740 	.temp_factor	= LVTS_COEFF_A_MT8195,
1741 	.temp_offset	= LVTS_COEFF_B_MT8195,
1742 	.gt_calib_bit_offset = 24,
1743 };
1744 
1745 static const struct lvts_data mt8195_lvts_ap_data = {
1746 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1747 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1748 	.temp_factor	= LVTS_COEFF_A_MT8195,
1749 	.temp_offset	= LVTS_COEFF_B_MT8195,
1750 	.gt_calib_bit_offset = 24,
1751 };
1752 
1753 static const struct of_device_id lvts_of_match[] = {
1754 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1755 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1756 	{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
1757 	{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
1758 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1759 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1760 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1761 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1762 	{},
1763 };
1764 MODULE_DEVICE_TABLE(of, lvts_of_match);
1765 
1766 static const struct dev_pm_ops lvts_pm_ops = {
1767 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1768 };
1769 
1770 static struct platform_driver lvts_driver = {
1771 	.probe = lvts_probe,
1772 	.remove_new = lvts_remove,
1773 	.driver = {
1774 		.name = "mtk-lvts-thermal",
1775 		.of_match_table = lvts_of_match,
1776 		.pm = &lvts_pm_ops,
1777 	},
1778 };
1779 module_platform_driver(lvts_driver);
1780 
1781 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1782 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1783 MODULE_LICENSE("GPL");
1784