xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	u8 valid_sensor_mask;
109 	int offset;
110 	int mode;
111 };
112 
113 #define VALID_SENSOR_MAP(s0, s1, s2, s3) \
114 	.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
115 			      ((s1) ? BIT(1) : 0) | \
116 			      ((s2) ? BIT(2) : 0) | \
117 			      ((s3) ? BIT(3) : 0))
118 
119 #define lvts_for_each_valid_sensor(i, lvts_ctrl) \
120 	for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
121 		if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \
122 			continue; \
123 		else
124 
125 struct lvts_data {
126 	const struct lvts_ctrl_data *lvts_ctrl;
127 	int num_lvts_ctrl;
128 	int temp_factor;
129 	int temp_offset;
130 	int gt_calib_bit_offset;
131 	unsigned int def_calibration;
132 };
133 
134 struct lvts_sensor {
135 	struct thermal_zone_device *tz;
136 	void __iomem *msr;
137 	void __iomem *base;
138 	int id;
139 	int dt_id;
140 	int low_thresh;
141 	int high_thresh;
142 };
143 
144 struct lvts_ctrl {
145 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
146 	const struct lvts_data *lvts_data;
147 	u32 calibration[LVTS_SENSOR_MAX];
148 	u32 hw_tshut_raw_temp;
149 	u8 valid_sensor_mask;
150 	int mode;
151 	void __iomem *base;
152 	int low_thresh;
153 	int high_thresh;
154 };
155 
156 struct lvts_domain {
157 	struct lvts_ctrl *lvts_ctrl;
158 	struct reset_control *reset;
159 	struct clk *clk;
160 	int num_lvts_ctrl;
161 	void __iomem *base;
162 	size_t calib_len;
163 	u8 *calib;
164 #ifdef CONFIG_DEBUG_FS
165 	struct dentry *dom_dentry;
166 #endif
167 };
168 
169 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
170 
171 #define LVTS_DEBUG_FS_REGS(__reg)		\
172 {						\
173 	.name = __stringify(__reg),		\
174 	.offset = __reg(0),			\
175 }
176 
177 static const struct debugfs_reg32 lvts_regs[] = {
178 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
179 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
180 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
181 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
182 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
183 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
184 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
185 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
186 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
187 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
188 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
189 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
190 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
192 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
193 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
194 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
195 	LVTS_DEBUG_FS_REGS(LVTS_ID),
196 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
197 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
198 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
199 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
200 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
201 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
202 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
203 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
204 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
205 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
206 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
207 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
208 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
209 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
210 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
211 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
212 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
213 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
214 };
215 
216 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
217 {
218 	struct debugfs_regset32 *regset;
219 	struct lvts_ctrl *lvts_ctrl;
220 	struct dentry *dentry;
221 	char name[64];
222 	int i;
223 
224 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
225 	if (IS_ERR(lvts_td->dom_dentry))
226 		return 0;
227 
228 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
229 
230 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
231 
232 		sprintf(name, "controller%d", i);
233 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
234 		if (IS_ERR(dentry))
235 			continue;
236 
237 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
238 		if (!regset)
239 			continue;
240 
241 		regset->base = lvts_ctrl->base;
242 		regset->regs = lvts_regs;
243 		regset->nregs = ARRAY_SIZE(lvts_regs);
244 
245 		debugfs_create_regset32("registers", 0400, dentry, regset);
246 	}
247 
248 	return 0;
249 }
250 
251 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
252 {
253 	debugfs_remove_recursive(lvts_td->dom_dentry);
254 }
255 
256 #else
257 
258 static inline int lvts_debugfs_init(struct device *dev,
259 				    struct lvts_domain *lvts_td)
260 {
261 	return 0;
262 }
263 
264 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
265 
266 #endif
267 
268 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
269 {
270 	int temperature;
271 
272 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
273 	temperature += golden_temp_offset;
274 
275 	return temperature;
276 }
277 
278 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
279 {
280 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
281 
282 	raw_temp = div_s64(raw_temp, -temp_factor);
283 
284 	return raw_temp;
285 }
286 
287 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
288 {
289 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
290 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
291 						   sensors[lvts_sensor->id]);
292 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
293 	void __iomem *msr = lvts_sensor->msr;
294 	u32 value;
295 	int rc;
296 
297 	/*
298 	 * Measurement registers:
299 	 *
300 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
301 	 *
302 	 * Bits:
303 	 *
304 	 * 32-17: Unused
305 	 * 16	: Valid temperature
306 	 * 15-0	: Raw temperature
307 	 */
308 	rc = readl_poll_timeout(msr, value, value & BIT(16),
309 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
310 
311 	/*
312 	 * As the thermal zone temperature will read before the
313 	 * hardware sensor is fully initialized, we have to check the
314 	 * validity of the temperature returned when reading the
315 	 * measurement register. The thermal controller will set the
316 	 * valid bit temperature only when it is totally initialized.
317 	 *
318 	 * Otherwise, we may end up with garbage values out of the
319 	 * functionning temperature and directly jump to a system
320 	 * shutdown.
321 	 */
322 	if (rc)
323 		return -EAGAIN;
324 
325 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
326 
327 	return 0;
328 }
329 
330 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
331 {
332 	static const u32 masks[] = {
333 		LVTS_MONINT_OFFSET_SENSOR0,
334 		LVTS_MONINT_OFFSET_SENSOR1,
335 		LVTS_MONINT_OFFSET_SENSOR2,
336 		LVTS_MONINT_OFFSET_SENSOR3,
337 	};
338 	u32 value = 0;
339 	int i;
340 
341 	value = readl(LVTS_MONINT(lvts_ctrl->base));
342 
343 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
344 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
345 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
346 			value |= masks[i];
347 		else
348 			value &= ~masks[i];
349 	}
350 
351 	writel(value, LVTS_MONINT(lvts_ctrl->base));
352 }
353 
354 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
355 {
356 	int i;
357 
358 	if (high > lvts_ctrl->high_thresh)
359 		return true;
360 
361 	lvts_for_each_valid_sensor(i, lvts_ctrl)
362 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
363 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
364 			return false;
365 
366 	return true;
367 }
368 
369 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
370 {
371 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
372 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
373 						   sensors[lvts_sensor->id]);
374 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
375 	void __iomem *base = lvts_sensor->base;
376 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
377 				       lvts_data->temp_factor);
378 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
379 	bool should_update_thresh;
380 
381 	lvts_sensor->low_thresh = low;
382 	lvts_sensor->high_thresh = high;
383 
384 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
385 	if (should_update_thresh) {
386 		lvts_ctrl->high_thresh = high;
387 		lvts_ctrl->low_thresh = low;
388 	}
389 	lvts_update_irq_mask(lvts_ctrl);
390 
391 	if (!should_update_thresh)
392 		return 0;
393 
394 	/*
395 	 * Low offset temperature threshold
396 	 *
397 	 * LVTS_OFFSETL
398 	 *
399 	 * Bits:
400 	 *
401 	 * 14-0 : Raw temperature for threshold
402 	 */
403 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
404 		 thermal_zone_device_type(tz), low);
405 	writel(raw_low, LVTS_OFFSETL(base));
406 
407 	/*
408 	 * High offset temperature threshold
409 	 *
410 	 * LVTS_OFFSETH
411 	 *
412 	 * Bits:
413 	 *
414 	 * 14-0 : Raw temperature for threshold
415 	 */
416 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
417 		 thermal_zone_device_type(tz), high);
418 	writel(raw_high, LVTS_OFFSETH(base));
419 
420 	return 0;
421 }
422 
423 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
424 {
425 	irqreturn_t iret = IRQ_NONE;
426 	u32 value;
427 	static const u32 masks[] = {
428 		LVTS_INT_SENSOR0,
429 		LVTS_INT_SENSOR1,
430 		LVTS_INT_SENSOR2,
431 		LVTS_INT_SENSOR3
432 	};
433 	int i;
434 
435 	/*
436 	 * Interrupt monitoring status
437 	 *
438 	 * LVTS_MONINTST
439 	 *
440 	 * Bits:
441 	 *
442 	 * 31 : Interrupt for stage 3
443 	 * 30 : Interrupt for stage 2
444 	 * 29 : Interrupt for state 1
445 	 * 28 : Interrupt using filter on sensor 3
446 	 *
447 	 * 27 : Interrupt using immediate on sensor 3
448 	 * 26 : Interrupt normal to hot on sensor 3
449 	 * 25 : Interrupt high offset on sensor 3
450 	 * 24 : Interrupt low offset on sensor 3
451 	 *
452 	 * 23 : Interrupt hot threshold on sensor 3
453 	 * 22 : Interrupt cold threshold on sensor 3
454 	 * 21 : Interrupt using filter on sensor 2
455 	 * 20 : Interrupt using filter on sensor 1
456 	 *
457 	 * 19 : Interrupt using filter on sensor 0
458 	 * 18 : Interrupt using immediate on sensor 2
459 	 * 17 : Interrupt using immediate on sensor 1
460 	 * 16 : Interrupt using immediate on sensor 0
461 	 *
462 	 * 15 : Interrupt device access timeout interrupt
463 	 * 14 : Interrupt normal to hot on sensor 2
464 	 * 13 : Interrupt high offset interrupt on sensor 2
465 	 * 12 : Interrupt low offset interrupt on sensor 2
466 	 *
467 	 * 11 : Interrupt hot threshold on sensor 2
468 	 * 10 : Interrupt cold threshold on sensor 2
469 	 *  9 : Interrupt normal to hot on sensor 1
470 	 *  8 : Interrupt high offset interrupt on sensor 1
471 	 *
472 	 *  7 : Interrupt low offset interrupt on sensor 1
473 	 *  6 : Interrupt hot threshold on sensor 1
474 	 *  5 : Interrupt cold threshold on sensor 1
475 	 *  4 : Interrupt normal to hot on sensor 0
476 	 *
477 	 *  3 : Interrupt high offset interrupt on sensor 0
478 	 *  2 : Interrupt low offset interrupt on sensor 0
479 	 *  1 : Interrupt hot threshold on sensor 0
480 	 *  0 : Interrupt cold threshold on sensor 0
481 	 *
482 	 * We are interested in the sensor(s) responsible of the
483 	 * interrupt event. We update the thermal framework with the
484 	 * thermal zone associated with the sensor. The framework will
485 	 * take care of the rest whatever the kind of interrupt, we
486 	 * are only interested in which sensor raised the interrupt.
487 	 *
488 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
489 	 *                  => 0x1FC00000
490 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
491 	 *                  => 0x00247C00
492 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
493 	 *                  => 0X001203E0
494 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
495 	 *                  => 0x0009001F
496 	 */
497 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
498 
499 	/*
500 	 * Let's figure out which sensors raised the interrupt
501 	 *
502 	 * NOTE: the masks array must be ordered with the index
503 	 * corresponding to the sensor id eg. index=0, mask for
504 	 * sensor0.
505 	 */
506 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
507 
508 		if (!(value & masks[i]))
509 			continue;
510 
511 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
512 					   THERMAL_TRIP_VIOLATED);
513 		iret = IRQ_HANDLED;
514 	}
515 
516 	/*
517 	 * Write back to clear the interrupt status (W1C)
518 	 */
519 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
520 
521 	return iret;
522 }
523 
524 /*
525  * Temperature interrupt handler. Even if the driver supports more
526  * interrupt modes, we use the interrupt when the temperature crosses
527  * the hot threshold the way up and the way down (modulo the
528  * hysteresis).
529  *
530  * Each thermal domain has a couple of interrupts, one for hardware
531  * reset and another one for all the thermal events happening on the
532  * different sensors.
533  *
534  * The interrupt is configured for thermal events when crossing the
535  * hot temperature limit. At each interrupt, we check in every
536  * controller if there is an interrupt pending.
537  */
538 static irqreturn_t lvts_irq_handler(int irq, void *data)
539 {
540 	struct lvts_domain *lvts_td = data;
541 	irqreturn_t aux, iret = IRQ_NONE;
542 	int i;
543 
544 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
545 
546 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
547 		if (aux != IRQ_HANDLED)
548 			continue;
549 
550 		iret = IRQ_HANDLED;
551 	}
552 
553 	return iret;
554 }
555 
556 static struct thermal_zone_device_ops lvts_ops = {
557 	.get_temp = lvts_get_temp,
558 	.set_trips = lvts_set_trips,
559 };
560 
561 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
562 					const struct lvts_ctrl_data *lvts_ctrl_data)
563 {
564 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
565 
566 	void __iomem *msr_regs[] = {
567 		LVTS_MSR0(lvts_ctrl->base),
568 		LVTS_MSR1(lvts_ctrl->base),
569 		LVTS_MSR2(lvts_ctrl->base),
570 		LVTS_MSR3(lvts_ctrl->base)
571 	};
572 
573 	void __iomem *imm_regs[] = {
574 		LVTS_IMMD0(lvts_ctrl->base),
575 		LVTS_IMMD1(lvts_ctrl->base),
576 		LVTS_IMMD2(lvts_ctrl->base),
577 		LVTS_IMMD3(lvts_ctrl->base)
578 	};
579 
580 	int i;
581 
582 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
583 
584 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
585 
586 		/*
587 		 * At this point, we don't know which id matches which
588 		 * sensor. Let's set arbitrally the id from the index.
589 		 */
590 		lvts_sensor[i].id = i;
591 
592 		/*
593 		 * The thermal zone registration will set the trip
594 		 * point interrupt in the thermal controller
595 		 * register. But this one will be reset in the
596 		 * initialization after. So we need to post pone the
597 		 * thermal zone creation after the controller is
598 		 * setup. For this reason, we store the device tree
599 		 * node id from the data in the sensor structure
600 		 */
601 		lvts_sensor[i].dt_id = dt_id;
602 
603 		/*
604 		 * We assign the base address of the thermal
605 		 * controller as a back pointer. So it will be
606 		 * accessible from the different thermal framework ops
607 		 * as we pass the lvts_sensor pointer as thermal zone
608 		 * private data.
609 		 */
610 		lvts_sensor[i].base = lvts_ctrl->base;
611 
612 		/*
613 		 * Each sensor has its own register address to read from.
614 		 */
615 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
616 			imm_regs[i] : msr_regs[i];
617 
618 		lvts_sensor[i].low_thresh = INT_MIN;
619 		lvts_sensor[i].high_thresh = INT_MIN;
620 	};
621 
622 	lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask;
623 
624 	return 0;
625 }
626 
627 /*
628  * The efuse blob values follows the sensor enumeration per thermal
629  * controller. The decoding of the stream is as follow:
630  *
631  * MT8192 :
632  * Stream index map for MCU Domain mt8192 :
633  *
634  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
635  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
636  *
637  * <-----sensor#2----->        <-----sensor#3----->
638  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
639  *
640  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
641  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
642  *
643  * Stream index map for AP Domain mt8192 :
644  *
645  * <-----sensor#0----->        <-----sensor#1----->
646  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
647  *
648  * <-----sensor#2----->        <-----sensor#3----->
649  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
650  *
651  * <-----sensor#4----->        <-----sensor#5----->
652  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
653  *
654  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
655  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
656  *
657  * MT8195 :
658  * Stream index map for MCU Domain mt8195 :
659  *
660  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
661  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
662  *
663  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
664  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
665  *
666  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
667  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
668  *
669  * Stream index map for AP Domain mt8195 :
670  *
671  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
672  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
673  *
674  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
675  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
676  *
677  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
678  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
679  *
680  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
681  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
682  *
683  * Note: In some cases, values don't strictly follow a little endian ordering.
684  * The data description gives byte offsets constituting each calibration value
685  * for each sensor.
686  */
687 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
688 					const struct lvts_ctrl_data *lvts_ctrl_data,
689 					u8 *efuse_calibration,
690 					size_t calib_len)
691 {
692 	int i;
693 	u32 gt;
694 
695 	/* A zero value for gt means that device has invalid efuse data */
696 	gt = (((u32 *)efuse_calibration)[0] >> lvts_ctrl->lvts_data->gt_calib_bit_offset) & 0xff;
697 
698 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
699 		const struct lvts_sensor_data *sensor =
700 					&lvts_ctrl_data->lvts_sensor[i];
701 
702 		if (sensor->cal_offsets[0] >= calib_len ||
703 		    sensor->cal_offsets[1] >= calib_len ||
704 		    sensor->cal_offsets[2] >= calib_len)
705 			return -EINVAL;
706 
707 		if (gt) {
708 			lvts_ctrl->calibration[i] =
709 				(efuse_calibration[sensor->cal_offsets[0]] << 0) +
710 				(efuse_calibration[sensor->cal_offsets[1]] << 8) +
711 				(efuse_calibration[sensor->cal_offsets[2]] << 16);
712 		} else if (lvts_ctrl->lvts_data->def_calibration) {
713 			lvts_ctrl->calibration[i] = lvts_ctrl->lvts_data->def_calibration;
714 		} else {
715 			dev_err(dev, "efuse contains invalid calibration data and no default given.\n");
716 			return -ENODATA;
717 		}
718 	}
719 
720 	return 0;
721 }
722 
723 /*
724  * The efuse bytes stream can be split into different chunk of
725  * nvmems. This function reads and concatenate those into a single
726  * buffer so it can be read sequentially when initializing the
727  * calibration data.
728  */
729 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
730 					const struct lvts_data *lvts_data)
731 {
732 	struct device_node *np = dev_of_node(dev);
733 	struct nvmem_cell *cell;
734 	struct property *prop;
735 	const char *cell_name;
736 
737 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
738 		size_t len;
739 		u8 *efuse;
740 
741 		cell = of_nvmem_cell_get(np, cell_name);
742 		if (IS_ERR(cell)) {
743 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
744 			return PTR_ERR(cell);
745 		}
746 
747 		efuse = nvmem_cell_read(cell, &len);
748 
749 		nvmem_cell_put(cell);
750 
751 		if (IS_ERR(efuse)) {
752 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
753 			return PTR_ERR(efuse);
754 		}
755 
756 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
757 					       lvts_td->calib_len + len, GFP_KERNEL);
758 		if (!lvts_td->calib) {
759 			kfree(efuse);
760 			return -ENOMEM;
761 		}
762 
763 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
764 
765 		lvts_td->calib_len += len;
766 
767 		kfree(efuse);
768 	}
769 
770 	return 0;
771 }
772 
773 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
774 				 const struct lvts_data *lvts_data)
775 {
776 	u32 gt;
777 
778 	/*
779 	 * The golden temp information is contained in the first 32-bit
780 	 * word  of efuse data at a specific bit offset.
781 	 */
782 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
783 
784 	/* A zero value for gt means that device has invalid efuse data */
785 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
786 		golden_temp = gt;
787 
788 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
789 
790 	dev_info(dev, "%sgolden temp=%d\n", gt ? "" : "fake ", golden_temp);
791 
792 	return 0;
793 }
794 
795 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
796 					const struct lvts_data *lvts_data)
797 {
798 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
799 	struct lvts_ctrl *lvts_ctrl;
800 	int i, ret;
801 
802 	/*
803 	 * Create the calibration bytes stream from efuse data
804 	 */
805 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
806 	if (ret)
807 		return ret;
808 
809 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
810 	if (ret)
811 		return ret;
812 
813 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
814 	if (!lvts_ctrl)
815 		return -ENOMEM;
816 
817 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
818 
819 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
820 		lvts_ctrl[i].lvts_data = lvts_data;
821 
822 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
823 				       &lvts_data->lvts_ctrl[i]);
824 		if (ret)
825 			return ret;
826 
827 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
828 					    &lvts_data->lvts_ctrl[i],
829 					    lvts_td->calib,
830 					    lvts_td->calib_len);
831 		if (ret)
832 			return ret;
833 
834 		/*
835 		 * The mode the ctrl will use to read the temperature
836 		 * (filtered or immediate)
837 		 */
838 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
839 
840 		/*
841 		 * The temperature to raw temperature must be done
842 		 * after initializing the calibration.
843 		 */
844 		lvts_ctrl[i].hw_tshut_raw_temp =
845 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
846 					 lvts_data->temp_factor);
847 
848 		lvts_ctrl[i].low_thresh = INT_MIN;
849 		lvts_ctrl[i].high_thresh = INT_MIN;
850 	}
851 
852 	/*
853 	 * We no longer need the efuse bytes stream, let's free it
854 	 */
855 	devm_kfree(dev, lvts_td->calib);
856 
857 	lvts_td->lvts_ctrl = lvts_ctrl;
858 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
859 
860 	return 0;
861 }
862 
863 /*
864  * At this point the configuration register is the only place in the
865  * driver where we write multiple values. Per hardware constraint,
866  * each write in the configuration register must be separated by a
867  * delay of 2 us.
868  */
869 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
870 {
871 	int i;
872 
873 	/*
874 	 * Configuration register
875 	 */
876 	for (i = 0; i < nr_cmds; i++) {
877 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
878 		usleep_range(2, 4);
879 	}
880 }
881 
882 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
883 {
884 	/*
885 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
886 	 *
887 	 * Bits:
888 	 *
889 	 * 19-18 : Sensor to base the protection on
890 	 * 17-16 : Strategy:
891 	 *         00 : Average of 4 sensors
892 	 *         01 : Max of 4 sensors
893 	 *         10 : Selected sensor with bits 19-18
894 	 *         11 : Reserved
895 	 */
896 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
897 
898 	/*
899 	 * LVTS_PROTTA : Stage 1 temperature threshold
900 	 * LVTS_PROTTB : Stage 2 temperature threshold
901 	 * LVTS_PROTTC : Stage 3 temperature threshold
902 	 *
903 	 * Bits:
904 	 *
905 	 * 14-0: Raw temperature threshold
906 	 *
907 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
908 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
909 	 */
910 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
911 
912 	/*
913 	 * LVTS_MONINT : Interrupt configuration register
914 	 *
915 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
916 	 * register, except we set the bits to enable the interrupt.
917 	 */
918 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
919 
920 	return 0;
921 }
922 
923 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
924 {
925 	int ret;
926 
927 	ret = reset_control_assert(reset);
928 	if (ret)
929 		return ret;
930 
931 	return reset_control_deassert(reset);
932 }
933 
934 /*
935  * Enable or disable the clocks of a specified thermal controller
936  */
937 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
938 {
939 	/*
940 	 * LVTS_CLKEN : Internal LVTS clock
941 	 *
942 	 * Bits:
943 	 *
944 	 * 0 : enable / disable clock
945 	 */
946 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
947 
948 	return 0;
949 }
950 
951 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
952 {
953 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
954 
955 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
956 
957 	/*
958 	 * LVTS_ID : Get ID and status of the thermal controller
959 	 *
960 	 * Bits:
961 	 *
962 	 * 0-5	: thermal controller id
963 	 *   7	: thermal controller connection is valid
964 	 */
965 	id = readl(LVTS_ID(lvts_ctrl->base));
966 	if (!(id & BIT(7)))
967 		return -EIO;
968 
969 	return 0;
970 }
971 
972 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
973 {
974 	/*
975 	 * Write device mask: 0xC1030000
976 	 */
977 	u32 cmds[] = {
978 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
979 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
980 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
981 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
982 	};
983 
984 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
985 
986 	return 0;
987 }
988 
989 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
990 {
991 	int i;
992 	void __iomem *lvts_edata[] = {
993 		LVTS_EDATA00(lvts_ctrl->base),
994 		LVTS_EDATA01(lvts_ctrl->base),
995 		LVTS_EDATA02(lvts_ctrl->base),
996 		LVTS_EDATA03(lvts_ctrl->base)
997 	};
998 
999 	/*
1000 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
1001 	 *
1002 	 * Bits:
1003 	 *
1004 	 * 20-0 : Efuse value for normalization data
1005 	 */
1006 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
1007 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
1008 
1009 	return 0;
1010 }
1011 
1012 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1013 {
1014 	u32 value;
1015 
1016 	/*
1017 	 * LVTS_TSSEL : Sensing point index numbering
1018 	 *
1019 	 * Bits:
1020 	 *
1021 	 * 31-24: ADC Sense 3
1022 	 * 23-16: ADC Sense 2
1023 	 * 15-8	: ADC Sense 1
1024 	 * 7-0	: ADC Sense 0
1025 	 */
1026 	value = LVTS_TSSEL_CONF;
1027 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1028 
1029 	/*
1030 	 * LVTS_CALSCALE : ADC voltage round
1031 	 */
1032 	value = 0x300;
1033 	value = LVTS_CALSCALE_CONF;
1034 
1035 	/*
1036 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1037 	 *
1038 	 * Filters:
1039 	 *
1040 	 * 000 : One sample
1041 	 * 001 : Avg 2 samples
1042 	 * 010 : 4 samples, drop min and max, avg 2 samples
1043 	 * 011 : 6 samples, drop min and max, avg 4 samples
1044 	 * 100 : 10 samples, drop min and max, avg 8 samples
1045 	 * 101 : 18 samples, drop min and max, avg 16 samples
1046 	 *
1047 	 * Bits:
1048 	 *
1049 	 * 0-2  : Sensor0 filter
1050 	 * 3-5  : Sensor1 filter
1051 	 * 6-8  : Sensor2 filter
1052 	 * 9-11 : Sensor3 filter
1053 	 */
1054 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1055 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1056 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1057 
1058 	/*
1059 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1060 	 *
1061 	 * The clock source of LVTS thermal controller is 26MHz.
1062 	 *
1063 	 * The period unit is a time base for all the interval delays
1064 	 * specified in the registers. By default we use 12. The time
1065 	 * conversion is done by multiplying by 256 and 1/26.10^6
1066 	 *
1067 	 * An interval delay multiplied by the period unit gives the
1068 	 * duration in seconds.
1069 	 *
1070 	 * - Filter interval delay is a delay between two samples of
1071 	 * the same sensor.
1072 	 *
1073 	 * - Sensor interval delay is a delay between two samples of
1074 	 * different sensors.
1075 	 *
1076 	 * - Group interval delay is a delay between different rounds.
1077 	 *
1078 	 * For example:
1079 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1080 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1081 	 *     and then
1082 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1083 	 *     Filter interval delay = 1 * Period unit = 118.149us
1084 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1085 	 *     Group interval delay = 1 * Period unit = 118.149us
1086 	 *
1087 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1088 	 *        <--> Filter interval delay
1089 	 *                       <--> Sensor interval delay
1090 	 *                                             <--> Group interval delay
1091 	 * Bits:
1092 	 *      29 - 20 : Group interval
1093 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1094 	 *                or an interrupt everytime the hot threshold is crossed (0)
1095 	 *       9 - 0  : Period unit
1096 	 *
1097 	 */
1098 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1099 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1100 
1101 	/*
1102 	 * LVTS_MONCTL2 : Filtering and sensor interval
1103 	 *
1104 	 * Bits:
1105 	 *
1106 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1107 	 *              the same sensor, filter interval
1108 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1109 	 *
1110 	 */
1111 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1112 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1113 
1114 	return lvts_irq_init(lvts_ctrl);
1115 }
1116 
1117 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1118 {
1119 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1120 	struct thermal_zone_device *tz;
1121 	u32 sensor_map = 0;
1122 	int i;
1123 	/*
1124 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1125 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1126 	 */
1127 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1128 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1129 
1130 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1131 			     sensor_imm_bitmap : sensor_filt_bitmap;
1132 
1133 	lvts_for_each_valid_sensor(i, lvts_ctrl) {
1134 
1135 		int dt_id = lvts_sensors[i].dt_id;
1136 
1137 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1138 						   &lvts_ops);
1139 		if (IS_ERR(tz)) {
1140 			/*
1141 			 * This thermal zone is not described in the
1142 			 * device tree. It is not an error from the
1143 			 * thermal OF code POV, we just continue.
1144 			 */
1145 			if (PTR_ERR(tz) == -ENODEV)
1146 				continue;
1147 
1148 			return PTR_ERR(tz);
1149 		}
1150 
1151 		devm_thermal_add_hwmon_sysfs(dev, tz);
1152 
1153 		/*
1154 		 * The thermal zone pointer will be needed in the
1155 		 * interrupt handler, we store it in the sensor
1156 		 * structure. The thermal domain structure will be
1157 		 * passed to the interrupt handler private data as the
1158 		 * interrupt is shared for all the controller
1159 		 * belonging to the thermal domain.
1160 		 */
1161 		lvts_sensors[i].tz = tz;
1162 
1163 		/*
1164 		 * This sensor was correctly associated with a thermal
1165 		 * zone, let's set the corresponding bit in the sensor
1166 		 * map, so we can enable the temperature monitoring in
1167 		 * the hardware thermal controller.
1168 		 */
1169 		sensor_map |= sensor_bitmap[i];
1170 	}
1171 
1172 	/*
1173 	 * The initialization of the thermal zones give us
1174 	 * which sensor point to enable. If any thermal zone
1175 	 * was not described in the device tree, it won't be
1176 	 * enabled here in the sensor map.
1177 	 */
1178 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1179 		/*
1180 		 * LVTS_MSRCTL1 : Measurement control
1181 		 *
1182 		 * Bits:
1183 		 *
1184 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1185 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1186 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1187 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1188 		 *
1189 		 * That configuration will ignore the filtering and the delays
1190 		 * introduced in MONCTL1 and MONCTL2
1191 		 */
1192 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1193 	} else {
1194 		/*
1195 		 * Bits:
1196 		 *      9: Single point access flow
1197 		 *    0-3: Enable sensing point 0-3
1198 		 */
1199 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1206 					const struct lvts_data *lvts_data)
1207 {
1208 	struct lvts_ctrl *lvts_ctrl;
1209 	int i, ret;
1210 
1211 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1212 	if (ret)
1213 		return ret;
1214 
1215 	ret = lvts_domain_reset(dev, lvts_td->reset);
1216 	if (ret) {
1217 		dev_dbg(dev, "Failed to reset domain");
1218 		return ret;
1219 	}
1220 
1221 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1222 
1223 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1224 
1225 		/*
1226 		 * Initialization steps:
1227 		 *
1228 		 * - Enable the clock
1229 		 * - Connect to the LVTS
1230 		 * - Initialize the LVTS
1231 		 * - Prepare the calibration data
1232 		 * - Select monitored sensors
1233 		 * [ Configure sampling ]
1234 		 * [ Configure the interrupt ]
1235 		 * - Start measurement
1236 		 */
1237 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1238 		if (ret) {
1239 			dev_dbg(dev, "Failed to enable LVTS clock");
1240 			return ret;
1241 		}
1242 
1243 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1244 		if (ret) {
1245 			dev_dbg(dev, "Failed to connect to LVTS controller");
1246 			return ret;
1247 		}
1248 
1249 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1250 		if (ret) {
1251 			dev_dbg(dev, "Failed to initialize controller");
1252 			return ret;
1253 		}
1254 
1255 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1256 		if (ret) {
1257 			dev_dbg(dev, "Failed to calibrate controller");
1258 			return ret;
1259 		}
1260 
1261 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1262 		if (ret) {
1263 			dev_dbg(dev, "Failed to configure controller");
1264 			return ret;
1265 		}
1266 
1267 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1268 		if (ret) {
1269 			dev_dbg(dev, "Failed to start controller");
1270 			return ret;
1271 		}
1272 	}
1273 
1274 	return lvts_debugfs_init(dev, lvts_td);
1275 }
1276 
1277 static int lvts_probe(struct platform_device *pdev)
1278 {
1279 	const struct lvts_data *lvts_data;
1280 	struct lvts_domain *lvts_td;
1281 	struct device *dev = &pdev->dev;
1282 	struct resource *res;
1283 	int irq, ret;
1284 
1285 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1286 	if (!lvts_td)
1287 		return -ENOMEM;
1288 
1289 	lvts_data = of_device_get_match_data(dev);
1290 	if (!lvts_data)
1291 		return -ENODEV;
1292 
1293 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1294 	if (IS_ERR(lvts_td->clk))
1295 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1296 
1297 	res = platform_get_mem_or_io(pdev, 0);
1298 	if (!res)
1299 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1300 
1301 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1302 	if (IS_ERR(lvts_td->base))
1303 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1304 
1305 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1306 	if (IS_ERR(lvts_td->reset))
1307 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1308 
1309 	irq = platform_get_irq(pdev, 0);
1310 	if (irq < 0)
1311 		return irq;
1312 
1313 	golden_temp_offset = lvts_data->temp_offset;
1314 
1315 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1316 	if (ret)
1317 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1318 
1319 	/*
1320 	 * At this point the LVTS is initialized and enabled. We can
1321 	 * safely enable the interrupt.
1322 	 */
1323 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1324 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1325 	if (ret)
1326 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1327 
1328 	platform_set_drvdata(pdev, lvts_td);
1329 
1330 	return 0;
1331 }
1332 
1333 static void lvts_remove(struct platform_device *pdev)
1334 {
1335 	struct lvts_domain *lvts_td;
1336 	int i;
1337 
1338 	lvts_td = platform_get_drvdata(pdev);
1339 
1340 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1341 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1342 
1343 	lvts_debugfs_exit(lvts_td);
1344 }
1345 
1346 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1347 	{
1348 		.lvts_sensor = {
1349 			{ .dt_id = MT7988_CPU_0,
1350 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1351 			{ .dt_id = MT7988_CPU_1,
1352 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1353 			{ .dt_id = MT7988_ETH2P5G_0,
1354 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1355 			{ .dt_id = MT7988_ETH2P5G_1,
1356 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1357 		},
1358 		VALID_SENSOR_MAP(1, 1, 1, 1),
1359 		.offset = 0x0,
1360 	},
1361 	{
1362 		.lvts_sensor = {
1363 			{ .dt_id = MT7988_TOPS_0,
1364 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1365 			{ .dt_id = MT7988_TOPS_1,
1366 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1367 			{ .dt_id = MT7988_ETHWARP_0,
1368 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1369 			{ .dt_id = MT7988_ETHWARP_1,
1370 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1371 		},
1372 		VALID_SENSOR_MAP(1, 1, 1, 1),
1373 		.offset = 0x100,
1374 	}
1375 };
1376 
1377 static int lvts_suspend(struct device *dev)
1378 {
1379 	struct lvts_domain *lvts_td;
1380 	int i;
1381 
1382 	lvts_td = dev_get_drvdata(dev);
1383 
1384 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1385 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1386 
1387 	clk_disable_unprepare(lvts_td->clk);
1388 
1389 	return 0;
1390 }
1391 
1392 static int lvts_resume(struct device *dev)
1393 {
1394 	struct lvts_domain *lvts_td;
1395 	int i, ret;
1396 
1397 	lvts_td = dev_get_drvdata(dev);
1398 
1399 	ret = clk_prepare_enable(lvts_td->clk);
1400 	if (ret)
1401 		return ret;
1402 
1403 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1404 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * The MT8186 calibration data is stored as packed 3-byte little-endian
1411  * values using a weird layout that makes sense only when viewed as a 32-bit
1412  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1413  * y = byte number where the LSB is y=0. We then have:
1414  *
1415  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1416  *
1417  * However, when considering a byte stream, those appear as follows:
1418  *
1419  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1420  *
1421  * Hence the rather confusing offsets provided below.
1422  */
1423 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1424 	{
1425 		.lvts_sensor = {
1426 			{ .dt_id = MT8186_LITTLE_CPU0,
1427 			  .cal_offsets = { 5, 6, 7 } },
1428 			{ .dt_id = MT8186_LITTLE_CPU1,
1429 			  .cal_offsets = { 10, 11, 4 } },
1430 			{ .dt_id = MT8186_LITTLE_CPU2,
1431 			  .cal_offsets = { 15, 8, 9 } },
1432 			{ .dt_id = MT8186_CAM,
1433 			  .cal_offsets = { 12, 13, 14 } }
1434 		},
1435 		VALID_SENSOR_MAP(1, 1, 1, 1),
1436 		.offset = 0x0,
1437 	},
1438 	{
1439 		.lvts_sensor = {
1440 			{ .dt_id = MT8186_BIG_CPU0,
1441 			  .cal_offsets = { 22, 23, 16 } },
1442 			{ .dt_id = MT8186_BIG_CPU1,
1443 			  .cal_offsets = { 27, 20, 21 } }
1444 		},
1445 		VALID_SENSOR_MAP(1, 1, 0, 0),
1446 		.offset = 0x100,
1447 	},
1448 	{
1449 		.lvts_sensor = {
1450 			{ .dt_id = MT8186_NNA,
1451 			  .cal_offsets = { 29, 30, 31 } },
1452 			{ .dt_id = MT8186_ADSP,
1453 			  .cal_offsets = { 34, 35, 28 } },
1454 			{ .dt_id = MT8186_GPU,
1455 			  .cal_offsets = { 39, 32, 33 } }
1456 		},
1457 		VALID_SENSOR_MAP(1, 1, 1, 0),
1458 		.offset = 0x200,
1459 	}
1460 };
1461 
1462 static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
1463 	{
1464 		.lvts_sensor = {
1465 			{ .dt_id = MT8188_MCU_LITTLE_CPU0,
1466 			  .cal_offsets = { 22, 23, 24 } },
1467 			{ .dt_id = MT8188_MCU_LITTLE_CPU1,
1468 			  .cal_offsets = { 25, 26, 27 } },
1469 			{ .dt_id = MT8188_MCU_LITTLE_CPU2,
1470 			  .cal_offsets = { 28, 29, 30 } },
1471 			{ .dt_id = MT8188_MCU_LITTLE_CPU3,
1472 			  .cal_offsets = { 31, 32, 33 } },
1473 		},
1474 		VALID_SENSOR_MAP(1, 1, 1, 1),
1475 		.offset = 0x0,
1476 	},
1477 	{
1478 		.lvts_sensor = {
1479 			{ .dt_id = MT8188_MCU_BIG_CPU0,
1480 			  .cal_offsets = { 34, 35, 36 } },
1481 			{ .dt_id = MT8188_MCU_BIG_CPU1,
1482 			  .cal_offsets = { 37, 38, 39 } },
1483 		},
1484 		VALID_SENSOR_MAP(1, 1, 0, 0),
1485 		.offset = 0x100,
1486 	}
1487 };
1488 
1489 static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
1490 	{
1491 		.lvts_sensor = {
1492 
1493 			{ /* unused */ },
1494 			{ .dt_id = MT8188_AP_APU,
1495 			  .cal_offsets = { 40, 41, 42 } },
1496 		},
1497 		VALID_SENSOR_MAP(0, 1, 0, 0),
1498 		.offset = 0x0,
1499 	},
1500 	{
1501 		.lvts_sensor = {
1502 			{ .dt_id = MT8188_AP_GPU0,
1503 			  .cal_offsets = { 43, 44, 45 } },
1504 			{ .dt_id = MT8188_AP_GPU1,
1505 			  .cal_offsets = { 46, 47, 48 } },
1506 			{ .dt_id = MT8188_AP_ADSP,
1507 			  .cal_offsets = { 49, 50, 51 } },
1508 		},
1509 		VALID_SENSOR_MAP(1, 1, 1, 0),
1510 		.offset = 0x100,
1511 	},
1512 	{
1513 		.lvts_sensor = {
1514 			{ .dt_id = MT8188_AP_VDO,
1515 			  .cal_offsets = { 52, 53, 54 } },
1516 			{ .dt_id = MT8188_AP_INFRA,
1517 			  .cal_offsets = { 55, 56, 57 } },
1518 		},
1519 		VALID_SENSOR_MAP(1, 1, 0, 0),
1520 		.offset = 0x200,
1521 	},
1522 	{
1523 		.lvts_sensor = {
1524 			{ .dt_id = MT8188_AP_CAM1,
1525 			  .cal_offsets = { 58, 59, 60 } },
1526 			{ .dt_id = MT8188_AP_CAM2,
1527 			  .cal_offsets = { 61, 62, 63 } },
1528 		},
1529 		VALID_SENSOR_MAP(1, 1, 0, 0),
1530 		.offset = 0x300,
1531 	}
1532 };
1533 
1534 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1535 	{
1536 		.lvts_sensor = {
1537 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1538 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1539 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1540 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1541 		},
1542 		VALID_SENSOR_MAP(1, 1, 0, 0),
1543 		.offset = 0x0,
1544 		.mode = LVTS_MSR_FILTERED_MODE,
1545 	},
1546 	{
1547 		.lvts_sensor = {
1548 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1549 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1550 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1551 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1552 		},
1553 		VALID_SENSOR_MAP(1, 1, 0, 0),
1554 		.offset = 0x100,
1555 		.mode = LVTS_MSR_FILTERED_MODE,
1556 	},
1557 	{
1558 		.lvts_sensor = {
1559 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1560 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1561 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1562 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1563 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1564 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1565 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1566 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1567 		},
1568 		VALID_SENSOR_MAP(1, 1, 1, 1),
1569 		.offset = 0x200,
1570 		.mode = LVTS_MSR_FILTERED_MODE,
1571 	}
1572 };
1573 
1574 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1575 	{
1576 		.lvts_sensor = {
1577 			{ .dt_id = MT8192_AP_VPU0,
1578 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1579 			{ .dt_id = MT8192_AP_VPU1,
1580 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1581 		},
1582 		VALID_SENSOR_MAP(1, 1, 0, 0),
1583 		.offset = 0x0,
1584 	},
1585 	{
1586 		.lvts_sensor = {
1587 			{ .dt_id = MT8192_AP_GPU0,
1588 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1589 			{ .dt_id = MT8192_AP_GPU1,
1590 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1591 		},
1592 		VALID_SENSOR_MAP(1, 1, 0, 0),
1593 		.offset = 0x100,
1594 	},
1595 	{
1596 		.lvts_sensor = {
1597 			{ .dt_id = MT8192_AP_INFRA,
1598 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1599 			{ .dt_id = MT8192_AP_CAM,
1600 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1601 		},
1602 		VALID_SENSOR_MAP(1, 1, 0, 0),
1603 		.offset = 0x200,
1604 	},
1605 	{
1606 		.lvts_sensor = {
1607 			{ .dt_id = MT8192_AP_MD0,
1608 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1609 			{ .dt_id = MT8192_AP_MD1,
1610 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1611 			{ .dt_id = MT8192_AP_MD2,
1612 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1613 		},
1614 		VALID_SENSOR_MAP(1, 1, 1, 0),
1615 		.offset = 0x300,
1616 	}
1617 };
1618 
1619 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1620 	{
1621 		.lvts_sensor = {
1622 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1623 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1624 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1625 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1626 		},
1627 		VALID_SENSOR_MAP(1, 1, 0, 0),
1628 		.offset = 0x0,
1629 	},
1630 	{
1631 		.lvts_sensor = {
1632 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1633 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1634 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1635 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1636 		},
1637 		VALID_SENSOR_MAP(1, 1, 0, 0),
1638 		.offset = 0x100,
1639 	},
1640 	{
1641 		.lvts_sensor = {
1642 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1643 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1644 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1645 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1646 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1647 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1648 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1649 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1650 		},
1651 		VALID_SENSOR_MAP(1, 1, 1, 1),
1652 		.offset = 0x200,
1653 	}
1654 };
1655 
1656 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1657 	{
1658 		.lvts_sensor = {
1659 			{ .dt_id = MT8195_AP_VPU0,
1660 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1661 			{ .dt_id = MT8195_AP_VPU1,
1662 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1663 		},
1664 		VALID_SENSOR_MAP(1, 1, 0, 0),
1665 		.offset = 0x0,
1666 	},
1667 	{
1668 		.lvts_sensor = {
1669 			{ .dt_id = MT8195_AP_GPU0,
1670 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1671 			{ .dt_id = MT8195_AP_GPU1,
1672 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1673 		},
1674 		VALID_SENSOR_MAP(1, 1, 0, 0),
1675 		.offset = 0x100,
1676 	},
1677 	{
1678 		.lvts_sensor = {
1679 			{ .dt_id = MT8195_AP_VDEC,
1680 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1681 			{ .dt_id = MT8195_AP_IMG,
1682 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1683 			{ .dt_id = MT8195_AP_INFRA,
1684 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1685 		},
1686 		VALID_SENSOR_MAP(1, 1, 1, 0),
1687 		.offset = 0x200,
1688 	},
1689 	{
1690 		.lvts_sensor = {
1691 			{ .dt_id = MT8195_AP_CAM0,
1692 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1693 			{ .dt_id = MT8195_AP_CAM1,
1694 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1695 		},
1696 		VALID_SENSOR_MAP(1, 1, 0, 0),
1697 		.offset = 0x300,
1698 	}
1699 };
1700 
1701 static const struct lvts_data mt7988_lvts_ap_data = {
1702 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1703 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1704 	.temp_factor	= LVTS_COEFF_A_MT7988,
1705 	.temp_offset	= LVTS_COEFF_B_MT7988,
1706 	.gt_calib_bit_offset = 24,
1707 };
1708 
1709 static const struct lvts_data mt8186_lvts_data = {
1710 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1711 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1712 	.temp_factor	= LVTS_COEFF_A_MT7988,
1713 	.temp_offset	= LVTS_COEFF_B_MT7988,
1714 	.gt_calib_bit_offset = 24,
1715 	.def_calibration = 19000,
1716 };
1717 
1718 static const struct lvts_data mt8188_lvts_mcu_data = {
1719 	.lvts_ctrl	= mt8188_lvts_mcu_data_ctrl,
1720 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
1721 	.temp_factor	= LVTS_COEFF_A_MT8195,
1722 	.temp_offset	= LVTS_COEFF_B_MT8195,
1723 	.gt_calib_bit_offset = 20,
1724 	.def_calibration = 35000,
1725 };
1726 
1727 static const struct lvts_data mt8188_lvts_ap_data = {
1728 	.lvts_ctrl	= mt8188_lvts_ap_data_ctrl,
1729 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
1730 	.temp_factor	= LVTS_COEFF_A_MT8195,
1731 	.temp_offset	= LVTS_COEFF_B_MT8195,
1732 	.gt_calib_bit_offset = 20,
1733 	.def_calibration = 35000,
1734 };
1735 
1736 static const struct lvts_data mt8192_lvts_mcu_data = {
1737 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1738 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1739 	.temp_factor	= LVTS_COEFF_A_MT8195,
1740 	.temp_offset	= LVTS_COEFF_B_MT8195,
1741 	.gt_calib_bit_offset = 24,
1742 	.def_calibration = 35000,
1743 };
1744 
1745 static const struct lvts_data mt8192_lvts_ap_data = {
1746 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1747 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1748 	.temp_factor	= LVTS_COEFF_A_MT8195,
1749 	.temp_offset	= LVTS_COEFF_B_MT8195,
1750 	.gt_calib_bit_offset = 24,
1751 	.def_calibration = 35000,
1752 };
1753 
1754 static const struct lvts_data mt8195_lvts_mcu_data = {
1755 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1756 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1757 	.temp_factor	= LVTS_COEFF_A_MT8195,
1758 	.temp_offset	= LVTS_COEFF_B_MT8195,
1759 	.gt_calib_bit_offset = 24,
1760 	.def_calibration = 35000,
1761 };
1762 
1763 static const struct lvts_data mt8195_lvts_ap_data = {
1764 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1765 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1766 	.temp_factor	= LVTS_COEFF_A_MT8195,
1767 	.temp_offset	= LVTS_COEFF_B_MT8195,
1768 	.gt_calib_bit_offset = 24,
1769 	.def_calibration = 35000,
1770 };
1771 
1772 static const struct of_device_id lvts_of_match[] = {
1773 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1774 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1775 	{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
1776 	{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
1777 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1778 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1779 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1780 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1781 	{},
1782 };
1783 MODULE_DEVICE_TABLE(of, lvts_of_match);
1784 
1785 static const struct dev_pm_ops lvts_pm_ops = {
1786 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1787 };
1788 
1789 static struct platform_driver lvts_driver = {
1790 	.probe = lvts_probe,
1791 	.remove = lvts_remove,
1792 	.driver = {
1793 		.name = "mtk-lvts-thermal",
1794 		.of_match_table = lvts_of_match,
1795 		.pm = &lvts_pm_ops,
1796 	},
1797 };
1798 module_platform_driver(lvts_driver);
1799 
1800 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1801 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1802 MODULE_LICENSE("GPL");
1803