xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 8137bb90600d70eda524854ce3047a5681988dd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_SHUTDOWN_MT7988		105000
95 #define LVTS_HW_SHUTDOWN_MT8195		105000
96 
97 #define LVTS_MINIMUM_THRESHOLD		20000
98 
99 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
100 static int golden_temp_offset;
101 
102 struct lvts_sensor_data {
103 	int dt_id;
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	int cal_offset[LVTS_SENSOR_MAX];
109 	int hw_tshut_temp;
110 	int num_lvts_sensor;
111 	int offset;
112 	int mode;
113 };
114 
115 struct lvts_data {
116 	const struct lvts_ctrl_data *lvts_ctrl;
117 	int num_lvts_ctrl;
118 	int temp_factor;
119 	int temp_offset;
120 };
121 
122 struct lvts_sensor {
123 	struct thermal_zone_device *tz;
124 	void __iomem *msr;
125 	void __iomem *base;
126 	int id;
127 	int dt_id;
128 	int low_thresh;
129 	int high_thresh;
130 };
131 
132 struct lvts_ctrl {
133 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
134 	const struct lvts_data *lvts_data;
135 	u32 calibration[LVTS_SENSOR_MAX];
136 	u32 hw_tshut_raw_temp;
137 	int num_lvts_sensor;
138 	int mode;
139 	void __iomem *base;
140 	int low_thresh;
141 	int high_thresh;
142 };
143 
144 struct lvts_domain {
145 	struct lvts_ctrl *lvts_ctrl;
146 	struct reset_control *reset;
147 	struct clk *clk;
148 	int num_lvts_ctrl;
149 	void __iomem *base;
150 	size_t calib_len;
151 	u8 *calib;
152 #ifdef CONFIG_DEBUG_FS
153 	struct dentry *dom_dentry;
154 #endif
155 };
156 
157 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
158 
159 #define LVTS_DEBUG_FS_REGS(__reg)		\
160 {						\
161 	.name = __stringify(__reg),		\
162 	.offset = __reg(0),			\
163 }
164 
165 static const struct debugfs_reg32 lvts_regs[] = {
166 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
169 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
170 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
171 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
172 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
173 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
174 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
175 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
176 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
177 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
178 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
179 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
180 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
181 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
182 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
183 	LVTS_DEBUG_FS_REGS(LVTS_ID),
184 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
185 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
186 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
187 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
188 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
192 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
193 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
194 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
195 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
196 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
197 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
198 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
199 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
200 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
201 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
202 };
203 
204 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
205 {
206 	struct debugfs_regset32 *regset;
207 	struct lvts_ctrl *lvts_ctrl;
208 	struct dentry *dentry;
209 	char name[64];
210 	int i;
211 
212 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
213 	if (IS_ERR(lvts_td->dom_dentry))
214 		return 0;
215 
216 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
217 
218 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
219 
220 		sprintf(name, "controller%d", i);
221 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
222 		if (IS_ERR(dentry))
223 			continue;
224 
225 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
226 		if (!regset)
227 			continue;
228 
229 		regset->base = lvts_ctrl->base;
230 		regset->regs = lvts_regs;
231 		regset->nregs = ARRAY_SIZE(lvts_regs);
232 
233 		debugfs_create_regset32("registers", 0400, dentry, regset);
234 	}
235 
236 	return 0;
237 }
238 
239 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
240 {
241 	debugfs_remove_recursive(lvts_td->dom_dentry);
242 }
243 
244 #else
245 
246 static inline int lvts_debugfs_init(struct device *dev,
247 				    struct lvts_domain *lvts_td)
248 {
249 	return 0;
250 }
251 
252 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
253 
254 #endif
255 
256 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
257 {
258 	int temperature;
259 
260 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
261 	temperature += golden_temp_offset;
262 
263 	return temperature;
264 }
265 
266 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
267 {
268 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
269 
270 	raw_temp = div_s64(raw_temp, -temp_factor);
271 
272 	return raw_temp;
273 }
274 
275 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
276 {
277 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
278 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
279 						   sensors[lvts_sensor->id]);
280 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
281 	void __iomem *msr = lvts_sensor->msr;
282 	u32 value;
283 	int rc;
284 
285 	/*
286 	 * Measurement registers:
287 	 *
288 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
289 	 *
290 	 * Bits:
291 	 *
292 	 * 32-17: Unused
293 	 * 16	: Valid temperature
294 	 * 15-0	: Raw temperature
295 	 */
296 	rc = readl_poll_timeout(msr, value, value & BIT(16),
297 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
298 
299 	/*
300 	 * As the thermal zone temperature will read before the
301 	 * hardware sensor is fully initialized, we have to check the
302 	 * validity of the temperature returned when reading the
303 	 * measurement register. The thermal controller will set the
304 	 * valid bit temperature only when it is totally initialized.
305 	 *
306 	 * Otherwise, we may end up with garbage values out of the
307 	 * functionning temperature and directly jump to a system
308 	 * shutdown.
309 	 */
310 	if (rc)
311 		return -EAGAIN;
312 
313 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
314 
315 	return 0;
316 }
317 
318 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
319 {
320 	u32 masks[] = {
321 		LVTS_MONINT_OFFSET_SENSOR0,
322 		LVTS_MONINT_OFFSET_SENSOR1,
323 		LVTS_MONINT_OFFSET_SENSOR2,
324 		LVTS_MONINT_OFFSET_SENSOR3,
325 	};
326 	u32 value = 0;
327 	int i;
328 
329 	value = readl(LVTS_MONINT(lvts_ctrl->base));
330 
331 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
332 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
333 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
334 			value |= masks[i];
335 		else
336 			value &= ~masks[i];
337 	}
338 
339 	writel(value, LVTS_MONINT(lvts_ctrl->base));
340 }
341 
342 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
343 {
344 	int i;
345 
346 	if (high > lvts_ctrl->high_thresh)
347 		return true;
348 
349 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
350 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
351 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
352 			return false;
353 
354 	return true;
355 }
356 
357 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
358 {
359 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
360 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
361 						   sensors[lvts_sensor->id]);
362 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
363 	void __iomem *base = lvts_sensor->base;
364 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
365 				       lvts_data->temp_factor);
366 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
367 	bool should_update_thresh;
368 
369 	lvts_sensor->low_thresh = low;
370 	lvts_sensor->high_thresh = high;
371 
372 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
373 	if (should_update_thresh) {
374 		lvts_ctrl->high_thresh = high;
375 		lvts_ctrl->low_thresh = low;
376 	}
377 	lvts_update_irq_mask(lvts_ctrl);
378 
379 	if (!should_update_thresh)
380 		return 0;
381 
382 	/*
383 	 * Low offset temperature threshold
384 	 *
385 	 * LVTS_OFFSETL
386 	 *
387 	 * Bits:
388 	 *
389 	 * 14-0 : Raw temperature for threshold
390 	 */
391 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
392 		 thermal_zone_device_type(tz), low);
393 	writel(raw_low, LVTS_OFFSETL(base));
394 
395 	/*
396 	 * High offset temperature threshold
397 	 *
398 	 * LVTS_OFFSETH
399 	 *
400 	 * Bits:
401 	 *
402 	 * 14-0 : Raw temperature for threshold
403 	 */
404 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
405 		 thermal_zone_device_type(tz), high);
406 	writel(raw_high, LVTS_OFFSETH(base));
407 
408 	return 0;
409 }
410 
411 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
412 {
413 	irqreturn_t iret = IRQ_NONE;
414 	u32 value;
415 	u32 masks[] = {
416 		LVTS_INT_SENSOR0,
417 		LVTS_INT_SENSOR1,
418 		LVTS_INT_SENSOR2,
419 		LVTS_INT_SENSOR3
420 	};
421 	int i;
422 
423 	/*
424 	 * Interrupt monitoring status
425 	 *
426 	 * LVTS_MONINTST
427 	 *
428 	 * Bits:
429 	 *
430 	 * 31 : Interrupt for stage 3
431 	 * 30 : Interrupt for stage 2
432 	 * 29 : Interrupt for state 1
433 	 * 28 : Interrupt using filter on sensor 3
434 	 *
435 	 * 27 : Interrupt using immediate on sensor 3
436 	 * 26 : Interrupt normal to hot on sensor 3
437 	 * 25 : Interrupt high offset on sensor 3
438 	 * 24 : Interrupt low offset on sensor 3
439 	 *
440 	 * 23 : Interrupt hot threshold on sensor 3
441 	 * 22 : Interrupt cold threshold on sensor 3
442 	 * 21 : Interrupt using filter on sensor 2
443 	 * 20 : Interrupt using filter on sensor 1
444 	 *
445 	 * 19 : Interrupt using filter on sensor 0
446 	 * 18 : Interrupt using immediate on sensor 2
447 	 * 17 : Interrupt using immediate on sensor 1
448 	 * 16 : Interrupt using immediate on sensor 0
449 	 *
450 	 * 15 : Interrupt device access timeout interrupt
451 	 * 14 : Interrupt normal to hot on sensor 2
452 	 * 13 : Interrupt high offset interrupt on sensor 2
453 	 * 12 : Interrupt low offset interrupt on sensor 2
454 	 *
455 	 * 11 : Interrupt hot threshold on sensor 2
456 	 * 10 : Interrupt cold threshold on sensor 2
457 	 *  9 : Interrupt normal to hot on sensor 1
458 	 *  8 : Interrupt high offset interrupt on sensor 1
459 	 *
460 	 *  7 : Interrupt low offset interrupt on sensor 1
461 	 *  6 : Interrupt hot threshold on sensor 1
462 	 *  5 : Interrupt cold threshold on sensor 1
463 	 *  4 : Interrupt normal to hot on sensor 0
464 	 *
465 	 *  3 : Interrupt high offset interrupt on sensor 0
466 	 *  2 : Interrupt low offset interrupt on sensor 0
467 	 *  1 : Interrupt hot threshold on sensor 0
468 	 *  0 : Interrupt cold threshold on sensor 0
469 	 *
470 	 * We are interested in the sensor(s) responsible of the
471 	 * interrupt event. We update the thermal framework with the
472 	 * thermal zone associated with the sensor. The framework will
473 	 * take care of the rest whatever the kind of interrupt, we
474 	 * are only interested in which sensor raised the interrupt.
475 	 *
476 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
477 	 *                  => 0x1FC00000
478 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
479 	 *                  => 0x00247C00
480 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
481 	 *                  => 0X001203E0
482 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
483 	 *                  => 0x0009001F
484 	 */
485 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
486 
487 	/*
488 	 * Let's figure out which sensors raised the interrupt
489 	 *
490 	 * NOTE: the masks array must be ordered with the index
491 	 * corresponding to the sensor id eg. index=0, mask for
492 	 * sensor0.
493 	 */
494 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
495 
496 		if (!(value & masks[i]))
497 			continue;
498 
499 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
500 					   THERMAL_TRIP_VIOLATED);
501 		iret = IRQ_HANDLED;
502 	}
503 
504 	/*
505 	 * Write back to clear the interrupt status (W1C)
506 	 */
507 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
508 
509 	return iret;
510 }
511 
512 /*
513  * Temperature interrupt handler. Even if the driver supports more
514  * interrupt modes, we use the interrupt when the temperature crosses
515  * the hot threshold the way up and the way down (modulo the
516  * hysteresis).
517  *
518  * Each thermal domain has a couple of interrupts, one for hardware
519  * reset and another one for all the thermal events happening on the
520  * different sensors.
521  *
522  * The interrupt is configured for thermal events when crossing the
523  * hot temperature limit. At each interrupt, we check in every
524  * controller if there is an interrupt pending.
525  */
526 static irqreturn_t lvts_irq_handler(int irq, void *data)
527 {
528 	struct lvts_domain *lvts_td = data;
529 	irqreturn_t aux, iret = IRQ_NONE;
530 	int i;
531 
532 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
533 
534 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
535 		if (aux != IRQ_HANDLED)
536 			continue;
537 
538 		iret = IRQ_HANDLED;
539 	}
540 
541 	return iret;
542 }
543 
544 static struct thermal_zone_device_ops lvts_ops = {
545 	.get_temp = lvts_get_temp,
546 	.set_trips = lvts_set_trips,
547 };
548 
549 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
550 					const struct lvts_ctrl_data *lvts_ctrl_data)
551 {
552 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
553 	void __iomem *msr_regs[] = {
554 		LVTS_MSR0(lvts_ctrl->base),
555 		LVTS_MSR1(lvts_ctrl->base),
556 		LVTS_MSR2(lvts_ctrl->base),
557 		LVTS_MSR3(lvts_ctrl->base)
558 	};
559 
560 	void __iomem *imm_regs[] = {
561 		LVTS_IMMD0(lvts_ctrl->base),
562 		LVTS_IMMD1(lvts_ctrl->base),
563 		LVTS_IMMD2(lvts_ctrl->base),
564 		LVTS_IMMD3(lvts_ctrl->base)
565 	};
566 
567 	int i;
568 
569 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
570 
571 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
572 
573 		/*
574 		 * At this point, we don't know which id matches which
575 		 * sensor. Let's set arbitrally the id from the index.
576 		 */
577 		lvts_sensor[i].id = i;
578 
579 		/*
580 		 * The thermal zone registration will set the trip
581 		 * point interrupt in the thermal controller
582 		 * register. But this one will be reset in the
583 		 * initialization after. So we need to post pone the
584 		 * thermal zone creation after the controller is
585 		 * setup. For this reason, we store the device tree
586 		 * node id from the data in the sensor structure
587 		 */
588 		lvts_sensor[i].dt_id = dt_id;
589 
590 		/*
591 		 * We assign the base address of the thermal
592 		 * controller as a back pointer. So it will be
593 		 * accessible from the different thermal framework ops
594 		 * as we pass the lvts_sensor pointer as thermal zone
595 		 * private data.
596 		 */
597 		lvts_sensor[i].base = lvts_ctrl->base;
598 
599 		/*
600 		 * Each sensor has its own register address to read from.
601 		 */
602 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
603 			imm_regs[i] : msr_regs[i];
604 
605 		lvts_sensor[i].low_thresh = INT_MIN;
606 		lvts_sensor[i].high_thresh = INT_MIN;
607 	};
608 
609 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
610 
611 	return 0;
612 }
613 
614 /*
615  * The efuse blob values follows the sensor enumeration per thermal
616  * controller. The decoding of the stream is as follow:
617  *
618  * stream index map for MCU Domain :
619  *
620  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
621  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
622  *
623  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
624  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
625  *
626  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
627  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
628  *
629  * stream index map for AP Domain :
630  *
631  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
632  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
633  *
634  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
635  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
636  *
637  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
638  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
639  *
640  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
641  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
642  *
643  * The data description gives the offset of the calibration data in
644  * this bytes stream for each sensor.
645  */
646 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
647 					const struct lvts_ctrl_data *lvts_ctrl_data,
648 					u8 *efuse_calibration)
649 {
650 	int i;
651 
652 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
653 		memcpy(&lvts_ctrl->calibration[i],
654 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
655 
656 	return 0;
657 }
658 
659 /*
660  * The efuse bytes stream can be split into different chunk of
661  * nvmems. This function reads and concatenate those into a single
662  * buffer so it can be read sequentially when initializing the
663  * calibration data.
664  */
665 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
666 					const struct lvts_data *lvts_data)
667 {
668 	struct device_node *np = dev_of_node(dev);
669 	struct nvmem_cell *cell;
670 	struct property *prop;
671 	const char *cell_name;
672 
673 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
674 		size_t len;
675 		u8 *efuse;
676 
677 		cell = of_nvmem_cell_get(np, cell_name);
678 		if (IS_ERR(cell)) {
679 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
680 			return PTR_ERR(cell);
681 		}
682 
683 		efuse = nvmem_cell_read(cell, &len);
684 
685 		nvmem_cell_put(cell);
686 
687 		if (IS_ERR(efuse)) {
688 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
689 			return PTR_ERR(efuse);
690 		}
691 
692 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
693 					       lvts_td->calib_len + len, GFP_KERNEL);
694 		if (!lvts_td->calib)
695 			return -ENOMEM;
696 
697 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
698 
699 		lvts_td->calib_len += len;
700 
701 		kfree(efuse);
702 	}
703 
704 	return 0;
705 }
706 
707 static int lvts_golden_temp_init(struct device *dev, u32 *value, int temp_offset)
708 {
709 	u32 gt;
710 
711 	gt = (*value) >> 24;
712 
713 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
714 		golden_temp = gt;
715 
716 	golden_temp_offset = golden_temp * 500 + temp_offset;
717 
718 	return 0;
719 }
720 
721 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
722 					const struct lvts_data *lvts_data)
723 {
724 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
725 	struct lvts_ctrl *lvts_ctrl;
726 	int i, ret;
727 
728 	/*
729 	 * Create the calibration bytes stream from efuse data
730 	 */
731 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
732 	if (ret)
733 		return ret;
734 
735 	/*
736 	 * The golden temp information is contained in the first chunk
737 	 * of efuse data.
738 	 */
739 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib, lvts_data->temp_offset);
740 	if (ret)
741 		return ret;
742 
743 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
744 	if (!lvts_ctrl)
745 		return -ENOMEM;
746 
747 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
748 
749 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
750 		lvts_ctrl[i].lvts_data = lvts_data;
751 
752 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
753 				       &lvts_data->lvts_ctrl[i]);
754 		if (ret)
755 			return ret;
756 
757 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
758 					    &lvts_data->lvts_ctrl[i],
759 					    lvts_td->calib);
760 		if (ret)
761 			return ret;
762 
763 		/*
764 		 * The mode the ctrl will use to read the temperature
765 		 * (filtered or immediate)
766 		 */
767 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
768 
769 		/*
770 		 * The temperature to raw temperature must be done
771 		 * after initializing the calibration.
772 		 */
773 		lvts_ctrl[i].hw_tshut_raw_temp =
774 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp,
775 					 lvts_data->temp_factor);
776 
777 		lvts_ctrl[i].low_thresh = INT_MIN;
778 		lvts_ctrl[i].high_thresh = INT_MIN;
779 	}
780 
781 	/*
782 	 * We no longer need the efuse bytes stream, let's free it
783 	 */
784 	devm_kfree(dev, lvts_td->calib);
785 
786 	lvts_td->lvts_ctrl = lvts_ctrl;
787 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
788 
789 	return 0;
790 }
791 
792 /*
793  * At this point the configuration register is the only place in the
794  * driver where we write multiple values. Per hardware constraint,
795  * each write in the configuration register must be separated by a
796  * delay of 2 us.
797  */
798 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
799 {
800 	int i;
801 
802 	/*
803 	 * Configuration register
804 	 */
805 	for (i = 0; i < nr_cmds; i++) {
806 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
807 		usleep_range(2, 4);
808 	}
809 }
810 
811 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
812 {
813 	/*
814 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
815 	 *
816 	 * Bits:
817 	 *
818 	 * 19-18 : Sensor to base the protection on
819 	 * 17-16 : Strategy:
820 	 *         00 : Average of 4 sensors
821 	 *         01 : Max of 4 sensors
822 	 *         10 : Selected sensor with bits 19-18
823 	 *         11 : Reserved
824 	 */
825 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
826 
827 	/*
828 	 * LVTS_PROTTA : Stage 1 temperature threshold
829 	 * LVTS_PROTTB : Stage 2 temperature threshold
830 	 * LVTS_PROTTC : Stage 3 temperature threshold
831 	 *
832 	 * Bits:
833 	 *
834 	 * 14-0: Raw temperature threshold
835 	 *
836 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
837 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
838 	 */
839 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
840 
841 	/*
842 	 * LVTS_MONINT : Interrupt configuration register
843 	 *
844 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
845 	 * register, except we set the bits to enable the interrupt.
846 	 */
847 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
848 
849 	return 0;
850 }
851 
852 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
853 {
854 	int ret;
855 
856 	ret = reset_control_assert(reset);
857 	if (ret)
858 		return ret;
859 
860 	return reset_control_deassert(reset);
861 }
862 
863 /*
864  * Enable or disable the clocks of a specified thermal controller
865  */
866 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
867 {
868 	/*
869 	 * LVTS_CLKEN : Internal LVTS clock
870 	 *
871 	 * Bits:
872 	 *
873 	 * 0 : enable / disable clock
874 	 */
875 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
876 
877 	return 0;
878 }
879 
880 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
881 {
882 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
883 
884 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
885 
886 	/*
887 	 * LVTS_ID : Get ID and status of the thermal controller
888 	 *
889 	 * Bits:
890 	 *
891 	 * 0-5	: thermal controller id
892 	 *   7	: thermal controller connection is valid
893 	 */
894 	id = readl(LVTS_ID(lvts_ctrl->base));
895 	if (!(id & BIT(7)))
896 		return -EIO;
897 
898 	return 0;
899 }
900 
901 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
902 {
903 	/*
904 	 * Write device mask: 0xC1030000
905 	 */
906 	u32 cmds[] = {
907 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
908 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
909 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
910 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
911 	};
912 
913 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
914 
915 	return 0;
916 }
917 
918 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
919 {
920 	int i;
921 	void __iomem *lvts_edata[] = {
922 		LVTS_EDATA00(lvts_ctrl->base),
923 		LVTS_EDATA01(lvts_ctrl->base),
924 		LVTS_EDATA02(lvts_ctrl->base),
925 		LVTS_EDATA03(lvts_ctrl->base)
926 	};
927 
928 	/*
929 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
930 	 *
931 	 * Bits:
932 	 *
933 	 * 20-0 : Efuse value for normalization data
934 	 */
935 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
936 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
937 
938 	return 0;
939 }
940 
941 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
942 {
943 	u32 value;
944 
945 	/*
946 	 * LVTS_TSSEL : Sensing point index numbering
947 	 *
948 	 * Bits:
949 	 *
950 	 * 31-24: ADC Sense 3
951 	 * 23-16: ADC Sense 2
952 	 * 15-8	: ADC Sense 1
953 	 * 7-0	: ADC Sense 0
954 	 */
955 	value = LVTS_TSSEL_CONF;
956 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
957 
958 	/*
959 	 * LVTS_CALSCALE : ADC voltage round
960 	 */
961 	value = 0x300;
962 	value = LVTS_CALSCALE_CONF;
963 
964 	/*
965 	 * LVTS_MSRCTL0 : Sensor filtering strategy
966 	 *
967 	 * Filters:
968 	 *
969 	 * 000 : One sample
970 	 * 001 : Avg 2 samples
971 	 * 010 : 4 samples, drop min and max, avg 2 samples
972 	 * 011 : 6 samples, drop min and max, avg 4 samples
973 	 * 100 : 10 samples, drop min and max, avg 8 samples
974 	 * 101 : 18 samples, drop min and max, avg 16 samples
975 	 *
976 	 * Bits:
977 	 *
978 	 * 0-2  : Sensor0 filter
979 	 * 3-5  : Sensor1 filter
980 	 * 6-8  : Sensor2 filter
981 	 * 9-11 : Sensor3 filter
982 	 */
983 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
984 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
985 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
986 
987 	/*
988 	 * LVTS_MONCTL1 : Period unit and group interval configuration
989 	 *
990 	 * The clock source of LVTS thermal controller is 26MHz.
991 	 *
992 	 * The period unit is a time base for all the interval delays
993 	 * specified in the registers. By default we use 12. The time
994 	 * conversion is done by multiplying by 256 and 1/26.10^6
995 	 *
996 	 * An interval delay multiplied by the period unit gives the
997 	 * duration in seconds.
998 	 *
999 	 * - Filter interval delay is a delay between two samples of
1000 	 * the same sensor.
1001 	 *
1002 	 * - Sensor interval delay is a delay between two samples of
1003 	 * different sensors.
1004 	 *
1005 	 * - Group interval delay is a delay between different rounds.
1006 	 *
1007 	 * For example:
1008 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1009 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1010 	 *     and then
1011 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1012 	 *     Filter interval delay = 1 * Period unit = 118.149us
1013 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1014 	 *     Group interval delay = 1 * Period unit = 118.149us
1015 	 *
1016 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1017 	 *        <--> Filter interval delay
1018 	 *                       <--> Sensor interval delay
1019 	 *                                             <--> Group interval delay
1020 	 * Bits:
1021 	 *      29 - 20 : Group interval
1022 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1023 	 *                or an interrupt everytime the hot threshold is crossed (0)
1024 	 *       9 - 0  : Period unit
1025 	 *
1026 	 */
1027 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1028 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1029 
1030 	/*
1031 	 * LVTS_MONCTL2 : Filtering and sensor interval
1032 	 *
1033 	 * Bits:
1034 	 *
1035 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1036 	 *              the same sensor, filter interval
1037 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1038 	 *
1039 	 */
1040 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1041 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1042 
1043 	return lvts_irq_init(lvts_ctrl);
1044 }
1045 
1046 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1047 {
1048 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1049 	struct thermal_zone_device *tz;
1050 	u32 sensor_map = 0;
1051 	int i;
1052 	/*
1053 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1054 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1055 	 */
1056 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1057 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1058 
1059 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1060 			     sensor_imm_bitmap : sensor_filt_bitmap;
1061 
1062 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1063 
1064 		int dt_id = lvts_sensors[i].dt_id;
1065 
1066 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1067 						   &lvts_ops);
1068 		if (IS_ERR(tz)) {
1069 			/*
1070 			 * This thermal zone is not described in the
1071 			 * device tree. It is not an error from the
1072 			 * thermal OF code POV, we just continue.
1073 			 */
1074 			if (PTR_ERR(tz) == -ENODEV)
1075 				continue;
1076 
1077 			return PTR_ERR(tz);
1078 		}
1079 
1080 		devm_thermal_add_hwmon_sysfs(dev, tz);
1081 
1082 		/*
1083 		 * The thermal zone pointer will be needed in the
1084 		 * interrupt handler, we store it in the sensor
1085 		 * structure. The thermal domain structure will be
1086 		 * passed to the interrupt handler private data as the
1087 		 * interrupt is shared for all the controller
1088 		 * belonging to the thermal domain.
1089 		 */
1090 		lvts_sensors[i].tz = tz;
1091 
1092 		/*
1093 		 * This sensor was correctly associated with a thermal
1094 		 * zone, let's set the corresponding bit in the sensor
1095 		 * map, so we can enable the temperature monitoring in
1096 		 * the hardware thermal controller.
1097 		 */
1098 		sensor_map |= sensor_bitmap[i];
1099 	}
1100 
1101 	/*
1102 	 * The initialization of the thermal zones give us
1103 	 * which sensor point to enable. If any thermal zone
1104 	 * was not described in the device tree, it won't be
1105 	 * enabled here in the sensor map.
1106 	 */
1107 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1108 		/*
1109 		 * LVTS_MSRCTL1 : Measurement control
1110 		 *
1111 		 * Bits:
1112 		 *
1113 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1114 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1115 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1116 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1117 		 *
1118 		 * That configuration will ignore the filtering and the delays
1119 		 * introduced in MONCTL1 and MONCTL2
1120 		 */
1121 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1122 	} else {
1123 		/*
1124 		 * Bits:
1125 		 *      9: Single point access flow
1126 		 *    0-3: Enable sensing point 0-3
1127 		 */
1128 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1135 					const struct lvts_data *lvts_data)
1136 {
1137 	struct lvts_ctrl *lvts_ctrl;
1138 	int i, ret;
1139 
1140 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1141 	if (ret)
1142 		return ret;
1143 
1144 	ret = lvts_domain_reset(dev, lvts_td->reset);
1145 	if (ret) {
1146 		dev_dbg(dev, "Failed to reset domain");
1147 		return ret;
1148 	}
1149 
1150 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1151 
1152 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1153 
1154 		/*
1155 		 * Initialization steps:
1156 		 *
1157 		 * - Enable the clock
1158 		 * - Connect to the LVTS
1159 		 * - Initialize the LVTS
1160 		 * - Prepare the calibration data
1161 		 * - Select monitored sensors
1162 		 * [ Configure sampling ]
1163 		 * [ Configure the interrupt ]
1164 		 * - Start measurement
1165 		 */
1166 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1167 		if (ret) {
1168 			dev_dbg(dev, "Failed to enable LVTS clock");
1169 			return ret;
1170 		}
1171 
1172 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1173 		if (ret) {
1174 			dev_dbg(dev, "Failed to connect to LVTS controller");
1175 			return ret;
1176 		}
1177 
1178 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1179 		if (ret) {
1180 			dev_dbg(dev, "Failed to initialize controller");
1181 			return ret;
1182 		}
1183 
1184 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1185 		if (ret) {
1186 			dev_dbg(dev, "Failed to calibrate controller");
1187 			return ret;
1188 		}
1189 
1190 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1191 		if (ret) {
1192 			dev_dbg(dev, "Failed to configure controller");
1193 			return ret;
1194 		}
1195 
1196 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1197 		if (ret) {
1198 			dev_dbg(dev, "Failed to start controller");
1199 			return ret;
1200 		}
1201 	}
1202 
1203 	return lvts_debugfs_init(dev, lvts_td);
1204 }
1205 
1206 static int lvts_probe(struct platform_device *pdev)
1207 {
1208 	const struct lvts_data *lvts_data;
1209 	struct lvts_domain *lvts_td;
1210 	struct device *dev = &pdev->dev;
1211 	struct resource *res;
1212 	int irq, ret;
1213 
1214 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1215 	if (!lvts_td)
1216 		return -ENOMEM;
1217 
1218 	lvts_data = of_device_get_match_data(dev);
1219 
1220 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1221 	if (IS_ERR(lvts_td->clk))
1222 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1223 
1224 	res = platform_get_mem_or_io(pdev, 0);
1225 	if (!res)
1226 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1227 
1228 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1229 	if (IS_ERR(lvts_td->base))
1230 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1231 
1232 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1233 	if (IS_ERR(lvts_td->reset))
1234 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1235 
1236 	irq = platform_get_irq(pdev, 0);
1237 	if (irq < 0)
1238 		return irq;
1239 
1240 	golden_temp_offset = lvts_data->temp_offset;
1241 
1242 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1243 	if (ret)
1244 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1245 
1246 	/*
1247 	 * At this point the LVTS is initialized and enabled. We can
1248 	 * safely enable the interrupt.
1249 	 */
1250 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1251 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1252 	if (ret)
1253 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1254 
1255 	platform_set_drvdata(pdev, lvts_td);
1256 
1257 	return 0;
1258 }
1259 
1260 static void lvts_remove(struct platform_device *pdev)
1261 {
1262 	struct lvts_domain *lvts_td;
1263 	int i;
1264 
1265 	lvts_td = platform_get_drvdata(pdev);
1266 
1267 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1268 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1269 
1270 	lvts_debugfs_exit(lvts_td);
1271 }
1272 
1273 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1274 	{
1275 		.cal_offset = { 0x00, 0x04, 0x08, 0x0c },
1276 		.lvts_sensor = {
1277 			{ .dt_id = MT7988_CPU_0 },
1278 			{ .dt_id = MT7988_CPU_1 },
1279 			{ .dt_id = MT7988_ETH2P5G_0 },
1280 			{ .dt_id = MT7988_ETH2P5G_1 }
1281 		},
1282 		.num_lvts_sensor = 4,
1283 		.offset = 0x0,
1284 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988,
1285 	},
1286 	{
1287 		.cal_offset = { 0x14, 0x18, 0x1c, 0x20 },
1288 		.lvts_sensor = {
1289 			{ .dt_id = MT7988_TOPS_0},
1290 			{ .dt_id = MT7988_TOPS_1},
1291 			{ .dt_id = MT7988_ETHWARP_0},
1292 			{ .dt_id = MT7988_ETHWARP_1}
1293 		},
1294 		.num_lvts_sensor = 4,
1295 		.offset = 0x100,
1296 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988,
1297 	}
1298 };
1299 
1300 static int lvts_suspend(struct device *dev)
1301 {
1302 	struct lvts_domain *lvts_td;
1303 	int i;
1304 
1305 	lvts_td = dev_get_drvdata(dev);
1306 
1307 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1308 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1309 
1310 	clk_disable_unprepare(lvts_td->clk);
1311 
1312 	return 0;
1313 }
1314 
1315 static int lvts_resume(struct device *dev)
1316 {
1317 	struct lvts_domain *lvts_td;
1318 	int i, ret;
1319 
1320 	lvts_td = dev_get_drvdata(dev);
1321 
1322 	ret = clk_prepare_enable(lvts_td->clk);
1323 	if (ret)
1324 		return ret;
1325 
1326 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1327 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1328 
1329 	return 0;
1330 }
1331 
1332 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1333 	{
1334 		.cal_offset = { 0x04, 0x07 },
1335 		.lvts_sensor = {
1336 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1337 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1338 		},
1339 		.num_lvts_sensor = 2,
1340 		.offset = 0x0,
1341 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1342 	},
1343 	{
1344 		.cal_offset = { 0x0d, 0x10 },
1345 		.lvts_sensor = {
1346 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1347 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1348 		},
1349 		.num_lvts_sensor = 2,
1350 		.offset = 0x100,
1351 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1352 	},
1353 	{
1354 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1355 		.lvts_sensor = {
1356 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1357 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1358 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1359 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1360 		},
1361 		.num_lvts_sensor = 4,
1362 		.offset = 0x200,
1363 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1364 	}
1365 };
1366 
1367 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1368 		{
1369 		.cal_offset = { 0x25, 0x28 },
1370 		.lvts_sensor = {
1371 			{ .dt_id = MT8195_AP_VPU0 },
1372 			{ .dt_id = MT8195_AP_VPU1 }
1373 		},
1374 		.num_lvts_sensor = 2,
1375 		.offset = 0x0,
1376 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1377 	},
1378 	{
1379 		.cal_offset = { 0x2e, 0x31 },
1380 		.lvts_sensor = {
1381 			{ .dt_id = MT8195_AP_GPU0 },
1382 			{ .dt_id = MT8195_AP_GPU1 }
1383 		},
1384 		.num_lvts_sensor = 2,
1385 		.offset = 0x100,
1386 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1387 	},
1388 	{
1389 		.cal_offset = { 0x37, 0x3a, 0x3d },
1390 		.lvts_sensor = {
1391 			{ .dt_id = MT8195_AP_VDEC },
1392 			{ .dt_id = MT8195_AP_IMG },
1393 			{ .dt_id = MT8195_AP_INFRA },
1394 		},
1395 		.num_lvts_sensor = 3,
1396 		.offset = 0x200,
1397 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1398 	},
1399 	{
1400 		.cal_offset = { 0x43, 0x46 },
1401 		.lvts_sensor = {
1402 			{ .dt_id = MT8195_AP_CAM0 },
1403 			{ .dt_id = MT8195_AP_CAM1 }
1404 		},
1405 		.num_lvts_sensor = 2,
1406 		.offset = 0x300,
1407 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1408 	}
1409 };
1410 
1411 static const struct lvts_data mt7988_lvts_ap_data = {
1412 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1413 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1414 	.temp_factor	= LVTS_COEFF_A_MT7988,
1415 	.temp_offset	= LVTS_COEFF_B_MT7988,
1416 };
1417 
1418 static const struct lvts_data mt8195_lvts_mcu_data = {
1419 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1420 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1421 	.temp_factor	= LVTS_COEFF_A_MT8195,
1422 	.temp_offset	= LVTS_COEFF_B_MT8195,
1423 };
1424 
1425 static const struct lvts_data mt8195_lvts_ap_data = {
1426 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1427 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1428 	.temp_factor	= LVTS_COEFF_A_MT8195,
1429 	.temp_offset	= LVTS_COEFF_B_MT8195,
1430 };
1431 
1432 static const struct of_device_id lvts_of_match[] = {
1433 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1434 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1435 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1436 	{},
1437 };
1438 MODULE_DEVICE_TABLE(of, lvts_of_match);
1439 
1440 static const struct dev_pm_ops lvts_pm_ops = {
1441 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1442 };
1443 
1444 static struct platform_driver lvts_driver = {
1445 	.probe = lvts_probe,
1446 	.remove_new = lvts_remove,
1447 	.driver = {
1448 		.name = "mtk-lvts-thermal",
1449 		.of_match_table = lvts_of_match,
1450 		.pm = &lvts_pm_ops,
1451 	},
1452 };
1453 module_platform_driver(lvts_driver);
1454 
1455 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1456 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1457 MODULE_LICENSE("GPL");
1458