xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 684cbb49f9ceed6be0f33dac9d62089e7cd1c032)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	int cal_offset[LVTS_SENSOR_MAX];
109 	int num_lvts_sensor;
110 	int offset;
111 	int mode;
112 };
113 
114 struct lvts_data {
115 	const struct lvts_ctrl_data *lvts_ctrl;
116 	int num_lvts_ctrl;
117 	int temp_factor;
118 	int temp_offset;
119 	int gt_calib_bit_offset;
120 };
121 
122 struct lvts_sensor {
123 	struct thermal_zone_device *tz;
124 	void __iomem *msr;
125 	void __iomem *base;
126 	int id;
127 	int dt_id;
128 	int low_thresh;
129 	int high_thresh;
130 };
131 
132 struct lvts_ctrl {
133 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
134 	const struct lvts_data *lvts_data;
135 	u32 calibration[LVTS_SENSOR_MAX];
136 	u32 hw_tshut_raw_temp;
137 	int num_lvts_sensor;
138 	int mode;
139 	void __iomem *base;
140 	int low_thresh;
141 	int high_thresh;
142 };
143 
144 struct lvts_domain {
145 	struct lvts_ctrl *lvts_ctrl;
146 	struct reset_control *reset;
147 	struct clk *clk;
148 	int num_lvts_ctrl;
149 	void __iomem *base;
150 	size_t calib_len;
151 	u8 *calib;
152 #ifdef CONFIG_DEBUG_FS
153 	struct dentry *dom_dentry;
154 #endif
155 };
156 
157 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
158 
159 #define LVTS_DEBUG_FS_REGS(__reg)		\
160 {						\
161 	.name = __stringify(__reg),		\
162 	.offset = __reg(0),			\
163 }
164 
165 static const struct debugfs_reg32 lvts_regs[] = {
166 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
169 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
170 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
171 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
172 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
173 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
174 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
175 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
176 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
177 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
178 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
179 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
180 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
181 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
182 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
183 	LVTS_DEBUG_FS_REGS(LVTS_ID),
184 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
185 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
186 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
187 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
188 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
192 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
193 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
194 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
195 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
196 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
197 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
198 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
199 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
200 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
201 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
202 };
203 
204 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
205 {
206 	struct debugfs_regset32 *regset;
207 	struct lvts_ctrl *lvts_ctrl;
208 	struct dentry *dentry;
209 	char name[64];
210 	int i;
211 
212 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
213 	if (IS_ERR(lvts_td->dom_dentry))
214 		return 0;
215 
216 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
217 
218 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
219 
220 		sprintf(name, "controller%d", i);
221 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
222 		if (IS_ERR(dentry))
223 			continue;
224 
225 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
226 		if (!regset)
227 			continue;
228 
229 		regset->base = lvts_ctrl->base;
230 		regset->regs = lvts_regs;
231 		regset->nregs = ARRAY_SIZE(lvts_regs);
232 
233 		debugfs_create_regset32("registers", 0400, dentry, regset);
234 	}
235 
236 	return 0;
237 }
238 
239 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
240 {
241 	debugfs_remove_recursive(lvts_td->dom_dentry);
242 }
243 
244 #else
245 
246 static inline int lvts_debugfs_init(struct device *dev,
247 				    struct lvts_domain *lvts_td)
248 {
249 	return 0;
250 }
251 
252 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
253 
254 #endif
255 
256 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
257 {
258 	int temperature;
259 
260 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
261 	temperature += golden_temp_offset;
262 
263 	return temperature;
264 }
265 
266 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
267 {
268 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
269 
270 	raw_temp = div_s64(raw_temp, -temp_factor);
271 
272 	return raw_temp;
273 }
274 
275 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
276 {
277 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
278 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
279 						   sensors[lvts_sensor->id]);
280 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
281 	void __iomem *msr = lvts_sensor->msr;
282 	u32 value;
283 	int rc;
284 
285 	/*
286 	 * Measurement registers:
287 	 *
288 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
289 	 *
290 	 * Bits:
291 	 *
292 	 * 32-17: Unused
293 	 * 16	: Valid temperature
294 	 * 15-0	: Raw temperature
295 	 */
296 	rc = readl_poll_timeout(msr, value, value & BIT(16),
297 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
298 
299 	/*
300 	 * As the thermal zone temperature will read before the
301 	 * hardware sensor is fully initialized, we have to check the
302 	 * validity of the temperature returned when reading the
303 	 * measurement register. The thermal controller will set the
304 	 * valid bit temperature only when it is totally initialized.
305 	 *
306 	 * Otherwise, we may end up with garbage values out of the
307 	 * functionning temperature and directly jump to a system
308 	 * shutdown.
309 	 */
310 	if (rc)
311 		return -EAGAIN;
312 
313 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
314 
315 	return 0;
316 }
317 
318 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
319 {
320 	u32 masks[] = {
321 		LVTS_MONINT_OFFSET_SENSOR0,
322 		LVTS_MONINT_OFFSET_SENSOR1,
323 		LVTS_MONINT_OFFSET_SENSOR2,
324 		LVTS_MONINT_OFFSET_SENSOR3,
325 	};
326 	u32 value = 0;
327 	int i;
328 
329 	value = readl(LVTS_MONINT(lvts_ctrl->base));
330 
331 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
332 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
333 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
334 			value |= masks[i];
335 		else
336 			value &= ~masks[i];
337 	}
338 
339 	writel(value, LVTS_MONINT(lvts_ctrl->base));
340 }
341 
342 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
343 {
344 	int i;
345 
346 	if (high > lvts_ctrl->high_thresh)
347 		return true;
348 
349 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
350 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
351 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
352 			return false;
353 
354 	return true;
355 }
356 
357 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
358 {
359 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
360 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
361 						   sensors[lvts_sensor->id]);
362 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
363 	void __iomem *base = lvts_sensor->base;
364 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
365 				       lvts_data->temp_factor);
366 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
367 	bool should_update_thresh;
368 
369 	lvts_sensor->low_thresh = low;
370 	lvts_sensor->high_thresh = high;
371 
372 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
373 	if (should_update_thresh) {
374 		lvts_ctrl->high_thresh = high;
375 		lvts_ctrl->low_thresh = low;
376 	}
377 	lvts_update_irq_mask(lvts_ctrl);
378 
379 	if (!should_update_thresh)
380 		return 0;
381 
382 	/*
383 	 * Low offset temperature threshold
384 	 *
385 	 * LVTS_OFFSETL
386 	 *
387 	 * Bits:
388 	 *
389 	 * 14-0 : Raw temperature for threshold
390 	 */
391 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
392 		 thermal_zone_device_type(tz), low);
393 	writel(raw_low, LVTS_OFFSETL(base));
394 
395 	/*
396 	 * High offset temperature threshold
397 	 *
398 	 * LVTS_OFFSETH
399 	 *
400 	 * Bits:
401 	 *
402 	 * 14-0 : Raw temperature for threshold
403 	 */
404 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
405 		 thermal_zone_device_type(tz), high);
406 	writel(raw_high, LVTS_OFFSETH(base));
407 
408 	return 0;
409 }
410 
411 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
412 {
413 	irqreturn_t iret = IRQ_NONE;
414 	u32 value;
415 	u32 masks[] = {
416 		LVTS_INT_SENSOR0,
417 		LVTS_INT_SENSOR1,
418 		LVTS_INT_SENSOR2,
419 		LVTS_INT_SENSOR3
420 	};
421 	int i;
422 
423 	/*
424 	 * Interrupt monitoring status
425 	 *
426 	 * LVTS_MONINTST
427 	 *
428 	 * Bits:
429 	 *
430 	 * 31 : Interrupt for stage 3
431 	 * 30 : Interrupt for stage 2
432 	 * 29 : Interrupt for state 1
433 	 * 28 : Interrupt using filter on sensor 3
434 	 *
435 	 * 27 : Interrupt using immediate on sensor 3
436 	 * 26 : Interrupt normal to hot on sensor 3
437 	 * 25 : Interrupt high offset on sensor 3
438 	 * 24 : Interrupt low offset on sensor 3
439 	 *
440 	 * 23 : Interrupt hot threshold on sensor 3
441 	 * 22 : Interrupt cold threshold on sensor 3
442 	 * 21 : Interrupt using filter on sensor 2
443 	 * 20 : Interrupt using filter on sensor 1
444 	 *
445 	 * 19 : Interrupt using filter on sensor 0
446 	 * 18 : Interrupt using immediate on sensor 2
447 	 * 17 : Interrupt using immediate on sensor 1
448 	 * 16 : Interrupt using immediate on sensor 0
449 	 *
450 	 * 15 : Interrupt device access timeout interrupt
451 	 * 14 : Interrupt normal to hot on sensor 2
452 	 * 13 : Interrupt high offset interrupt on sensor 2
453 	 * 12 : Interrupt low offset interrupt on sensor 2
454 	 *
455 	 * 11 : Interrupt hot threshold on sensor 2
456 	 * 10 : Interrupt cold threshold on sensor 2
457 	 *  9 : Interrupt normal to hot on sensor 1
458 	 *  8 : Interrupt high offset interrupt on sensor 1
459 	 *
460 	 *  7 : Interrupt low offset interrupt on sensor 1
461 	 *  6 : Interrupt hot threshold on sensor 1
462 	 *  5 : Interrupt cold threshold on sensor 1
463 	 *  4 : Interrupt normal to hot on sensor 0
464 	 *
465 	 *  3 : Interrupt high offset interrupt on sensor 0
466 	 *  2 : Interrupt low offset interrupt on sensor 0
467 	 *  1 : Interrupt hot threshold on sensor 0
468 	 *  0 : Interrupt cold threshold on sensor 0
469 	 *
470 	 * We are interested in the sensor(s) responsible of the
471 	 * interrupt event. We update the thermal framework with the
472 	 * thermal zone associated with the sensor. The framework will
473 	 * take care of the rest whatever the kind of interrupt, we
474 	 * are only interested in which sensor raised the interrupt.
475 	 *
476 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
477 	 *                  => 0x1FC00000
478 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
479 	 *                  => 0x00247C00
480 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
481 	 *                  => 0X001203E0
482 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
483 	 *                  => 0x0009001F
484 	 */
485 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
486 
487 	/*
488 	 * Let's figure out which sensors raised the interrupt
489 	 *
490 	 * NOTE: the masks array must be ordered with the index
491 	 * corresponding to the sensor id eg. index=0, mask for
492 	 * sensor0.
493 	 */
494 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
495 
496 		if (!(value & masks[i]))
497 			continue;
498 
499 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
500 					   THERMAL_TRIP_VIOLATED);
501 		iret = IRQ_HANDLED;
502 	}
503 
504 	/*
505 	 * Write back to clear the interrupt status (W1C)
506 	 */
507 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
508 
509 	return iret;
510 }
511 
512 /*
513  * Temperature interrupt handler. Even if the driver supports more
514  * interrupt modes, we use the interrupt when the temperature crosses
515  * the hot threshold the way up and the way down (modulo the
516  * hysteresis).
517  *
518  * Each thermal domain has a couple of interrupts, one for hardware
519  * reset and another one for all the thermal events happening on the
520  * different sensors.
521  *
522  * The interrupt is configured for thermal events when crossing the
523  * hot temperature limit. At each interrupt, we check in every
524  * controller if there is an interrupt pending.
525  */
526 static irqreturn_t lvts_irq_handler(int irq, void *data)
527 {
528 	struct lvts_domain *lvts_td = data;
529 	irqreturn_t aux, iret = IRQ_NONE;
530 	int i;
531 
532 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
533 
534 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
535 		if (aux != IRQ_HANDLED)
536 			continue;
537 
538 		iret = IRQ_HANDLED;
539 	}
540 
541 	return iret;
542 }
543 
544 static struct thermal_zone_device_ops lvts_ops = {
545 	.get_temp = lvts_get_temp,
546 	.set_trips = lvts_set_trips,
547 };
548 
549 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
550 					const struct lvts_ctrl_data *lvts_ctrl_data)
551 {
552 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
553 	void __iomem *msr_regs[] = {
554 		LVTS_MSR0(lvts_ctrl->base),
555 		LVTS_MSR1(lvts_ctrl->base),
556 		LVTS_MSR2(lvts_ctrl->base),
557 		LVTS_MSR3(lvts_ctrl->base)
558 	};
559 
560 	void __iomem *imm_regs[] = {
561 		LVTS_IMMD0(lvts_ctrl->base),
562 		LVTS_IMMD1(lvts_ctrl->base),
563 		LVTS_IMMD2(lvts_ctrl->base),
564 		LVTS_IMMD3(lvts_ctrl->base)
565 	};
566 
567 	int i;
568 
569 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
570 
571 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
572 
573 		/*
574 		 * At this point, we don't know which id matches which
575 		 * sensor. Let's set arbitrally the id from the index.
576 		 */
577 		lvts_sensor[i].id = i;
578 
579 		/*
580 		 * The thermal zone registration will set the trip
581 		 * point interrupt in the thermal controller
582 		 * register. But this one will be reset in the
583 		 * initialization after. So we need to post pone the
584 		 * thermal zone creation after the controller is
585 		 * setup. For this reason, we store the device tree
586 		 * node id from the data in the sensor structure
587 		 */
588 		lvts_sensor[i].dt_id = dt_id;
589 
590 		/*
591 		 * We assign the base address of the thermal
592 		 * controller as a back pointer. So it will be
593 		 * accessible from the different thermal framework ops
594 		 * as we pass the lvts_sensor pointer as thermal zone
595 		 * private data.
596 		 */
597 		lvts_sensor[i].base = lvts_ctrl->base;
598 
599 		/*
600 		 * Each sensor has its own register address to read from.
601 		 */
602 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
603 			imm_regs[i] : msr_regs[i];
604 
605 		lvts_sensor[i].low_thresh = INT_MIN;
606 		lvts_sensor[i].high_thresh = INT_MIN;
607 	};
608 
609 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
610 
611 	return 0;
612 }
613 
614 /*
615  * The efuse blob values follows the sensor enumeration per thermal
616  * controller. The decoding of the stream is as follow:
617  *
618  * MT8192 :
619  * Stream index map for MCU Domain mt8192 :
620  *
621  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
622  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
623  *
624  * <-----sensor#2----->        <-----sensor#3----->
625  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
626  *
627  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
628  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
629  *
630  * Stream index map for AP Domain mt8192 :
631  *
632  * <-----sensor#0----->        <-----sensor#1----->
633  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
634  *
635  * <-----sensor#2----->        <-----sensor#3----->
636  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
637  *
638  * <-----sensor#4----->        <-----sensor#5----->
639  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
640  *
641  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
642  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
643  *
644  * MT8195 :
645  * Stream index map for MCU Domain mt8195 :
646  *
647  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
648  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
649  *
650  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
651  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
652  *
653  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
654  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
655  *
656  * Stream index map for AP Domain mt8195 :
657  *
658  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
659  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
660  *
661  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
662  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
663  *
664  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
665  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
666  *
667  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
668  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
669  *
670  * Note: In some cases, values don't strictly follow a little endian ordering.
671  * The data description gives byte offsets constituting each calibration value
672  * for each sensor.
673  */
674 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
675 					const struct lvts_ctrl_data *lvts_ctrl_data,
676 					u8 *efuse_calibration,
677 					size_t calib_len)
678 {
679 	int i;
680 
681 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
682 		const struct lvts_sensor_data *sensor =
683 					&lvts_ctrl_data->lvts_sensor[i];
684 
685 		if (sensor->cal_offsets[0] >= calib_len ||
686 		    sensor->cal_offsets[1] >= calib_len ||
687 		    sensor->cal_offsets[2] >= calib_len)
688 			return -EINVAL;
689 
690 		lvts_ctrl->calibration[i] =
691 			(efuse_calibration[sensor->cal_offsets[0]] << 0) +
692 			(efuse_calibration[sensor->cal_offsets[1]] << 8) +
693 			(efuse_calibration[sensor->cal_offsets[2]] << 16);
694 	}
695 
696 	return 0;
697 }
698 
699 /*
700  * The efuse bytes stream can be split into different chunk of
701  * nvmems. This function reads and concatenate those into a single
702  * buffer so it can be read sequentially when initializing the
703  * calibration data.
704  */
705 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
706 					const struct lvts_data *lvts_data)
707 {
708 	struct device_node *np = dev_of_node(dev);
709 	struct nvmem_cell *cell;
710 	struct property *prop;
711 	const char *cell_name;
712 
713 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
714 		size_t len;
715 		u8 *efuse;
716 
717 		cell = of_nvmem_cell_get(np, cell_name);
718 		if (IS_ERR(cell)) {
719 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
720 			return PTR_ERR(cell);
721 		}
722 
723 		efuse = nvmem_cell_read(cell, &len);
724 
725 		nvmem_cell_put(cell);
726 
727 		if (IS_ERR(efuse)) {
728 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
729 			return PTR_ERR(efuse);
730 		}
731 
732 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
733 					       lvts_td->calib_len + len, GFP_KERNEL);
734 		if (!lvts_td->calib) {
735 			kfree(efuse);
736 			return -ENOMEM;
737 		}
738 
739 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
740 
741 		lvts_td->calib_len += len;
742 
743 		kfree(efuse);
744 	}
745 
746 	return 0;
747 }
748 
749 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
750 				 const struct lvts_data *lvts_data)
751 {
752 	u32 gt;
753 
754 	/*
755 	 * The golden temp information is contained in the first 32-bit
756 	 * word  of efuse data at a specific bit offset.
757 	 */
758 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
759 
760 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
761 		golden_temp = gt;
762 
763 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
764 
765 	return 0;
766 }
767 
768 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
769 					const struct lvts_data *lvts_data)
770 {
771 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
772 	struct lvts_ctrl *lvts_ctrl;
773 	int i, ret;
774 
775 	/*
776 	 * Create the calibration bytes stream from efuse data
777 	 */
778 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
779 	if (ret)
780 		return ret;
781 
782 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
783 	if (ret)
784 		return ret;
785 
786 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
787 	if (!lvts_ctrl)
788 		return -ENOMEM;
789 
790 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
791 
792 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
793 		lvts_ctrl[i].lvts_data = lvts_data;
794 
795 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
796 				       &lvts_data->lvts_ctrl[i]);
797 		if (ret)
798 			return ret;
799 
800 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
801 					    &lvts_data->lvts_ctrl[i],
802 					    lvts_td->calib,
803 					    lvts_td->calib_len);
804 		if (ret)
805 			return ret;
806 
807 		/*
808 		 * The mode the ctrl will use to read the temperature
809 		 * (filtered or immediate)
810 		 */
811 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
812 
813 		/*
814 		 * The temperature to raw temperature must be done
815 		 * after initializing the calibration.
816 		 */
817 		lvts_ctrl[i].hw_tshut_raw_temp =
818 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
819 					 lvts_data->temp_factor);
820 
821 		lvts_ctrl[i].low_thresh = INT_MIN;
822 		lvts_ctrl[i].high_thresh = INT_MIN;
823 	}
824 
825 	/*
826 	 * We no longer need the efuse bytes stream, let's free it
827 	 */
828 	devm_kfree(dev, lvts_td->calib);
829 
830 	lvts_td->lvts_ctrl = lvts_ctrl;
831 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
832 
833 	return 0;
834 }
835 
836 /*
837  * At this point the configuration register is the only place in the
838  * driver where we write multiple values. Per hardware constraint,
839  * each write in the configuration register must be separated by a
840  * delay of 2 us.
841  */
842 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
843 {
844 	int i;
845 
846 	/*
847 	 * Configuration register
848 	 */
849 	for (i = 0; i < nr_cmds; i++) {
850 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
851 		usleep_range(2, 4);
852 	}
853 }
854 
855 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
856 {
857 	/*
858 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
859 	 *
860 	 * Bits:
861 	 *
862 	 * 19-18 : Sensor to base the protection on
863 	 * 17-16 : Strategy:
864 	 *         00 : Average of 4 sensors
865 	 *         01 : Max of 4 sensors
866 	 *         10 : Selected sensor with bits 19-18
867 	 *         11 : Reserved
868 	 */
869 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
870 
871 	/*
872 	 * LVTS_PROTTA : Stage 1 temperature threshold
873 	 * LVTS_PROTTB : Stage 2 temperature threshold
874 	 * LVTS_PROTTC : Stage 3 temperature threshold
875 	 *
876 	 * Bits:
877 	 *
878 	 * 14-0: Raw temperature threshold
879 	 *
880 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
881 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
882 	 */
883 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
884 
885 	/*
886 	 * LVTS_MONINT : Interrupt configuration register
887 	 *
888 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
889 	 * register, except we set the bits to enable the interrupt.
890 	 */
891 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
892 
893 	return 0;
894 }
895 
896 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
897 {
898 	int ret;
899 
900 	ret = reset_control_assert(reset);
901 	if (ret)
902 		return ret;
903 
904 	return reset_control_deassert(reset);
905 }
906 
907 /*
908  * Enable or disable the clocks of a specified thermal controller
909  */
910 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
911 {
912 	/*
913 	 * LVTS_CLKEN : Internal LVTS clock
914 	 *
915 	 * Bits:
916 	 *
917 	 * 0 : enable / disable clock
918 	 */
919 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
920 
921 	return 0;
922 }
923 
924 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
925 {
926 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
927 
928 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
929 
930 	/*
931 	 * LVTS_ID : Get ID and status of the thermal controller
932 	 *
933 	 * Bits:
934 	 *
935 	 * 0-5	: thermal controller id
936 	 *   7	: thermal controller connection is valid
937 	 */
938 	id = readl(LVTS_ID(lvts_ctrl->base));
939 	if (!(id & BIT(7)))
940 		return -EIO;
941 
942 	return 0;
943 }
944 
945 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
946 {
947 	/*
948 	 * Write device mask: 0xC1030000
949 	 */
950 	u32 cmds[] = {
951 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
952 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
953 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
954 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
955 	};
956 
957 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
958 
959 	return 0;
960 }
961 
962 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
963 {
964 	int i;
965 	void __iomem *lvts_edata[] = {
966 		LVTS_EDATA00(lvts_ctrl->base),
967 		LVTS_EDATA01(lvts_ctrl->base),
968 		LVTS_EDATA02(lvts_ctrl->base),
969 		LVTS_EDATA03(lvts_ctrl->base)
970 	};
971 
972 	/*
973 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
974 	 *
975 	 * Bits:
976 	 *
977 	 * 20-0 : Efuse value for normalization data
978 	 */
979 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
980 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
981 
982 	return 0;
983 }
984 
985 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
986 {
987 	u32 value;
988 
989 	/*
990 	 * LVTS_TSSEL : Sensing point index numbering
991 	 *
992 	 * Bits:
993 	 *
994 	 * 31-24: ADC Sense 3
995 	 * 23-16: ADC Sense 2
996 	 * 15-8	: ADC Sense 1
997 	 * 7-0	: ADC Sense 0
998 	 */
999 	value = LVTS_TSSEL_CONF;
1000 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1001 
1002 	/*
1003 	 * LVTS_CALSCALE : ADC voltage round
1004 	 */
1005 	value = 0x300;
1006 	value = LVTS_CALSCALE_CONF;
1007 
1008 	/*
1009 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1010 	 *
1011 	 * Filters:
1012 	 *
1013 	 * 000 : One sample
1014 	 * 001 : Avg 2 samples
1015 	 * 010 : 4 samples, drop min and max, avg 2 samples
1016 	 * 011 : 6 samples, drop min and max, avg 4 samples
1017 	 * 100 : 10 samples, drop min and max, avg 8 samples
1018 	 * 101 : 18 samples, drop min and max, avg 16 samples
1019 	 *
1020 	 * Bits:
1021 	 *
1022 	 * 0-2  : Sensor0 filter
1023 	 * 3-5  : Sensor1 filter
1024 	 * 6-8  : Sensor2 filter
1025 	 * 9-11 : Sensor3 filter
1026 	 */
1027 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1028 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1029 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1030 
1031 	/*
1032 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1033 	 *
1034 	 * The clock source of LVTS thermal controller is 26MHz.
1035 	 *
1036 	 * The period unit is a time base for all the interval delays
1037 	 * specified in the registers. By default we use 12. The time
1038 	 * conversion is done by multiplying by 256 and 1/26.10^6
1039 	 *
1040 	 * An interval delay multiplied by the period unit gives the
1041 	 * duration in seconds.
1042 	 *
1043 	 * - Filter interval delay is a delay between two samples of
1044 	 * the same sensor.
1045 	 *
1046 	 * - Sensor interval delay is a delay between two samples of
1047 	 * different sensors.
1048 	 *
1049 	 * - Group interval delay is a delay between different rounds.
1050 	 *
1051 	 * For example:
1052 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1053 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1054 	 *     and then
1055 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1056 	 *     Filter interval delay = 1 * Period unit = 118.149us
1057 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1058 	 *     Group interval delay = 1 * Period unit = 118.149us
1059 	 *
1060 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1061 	 *        <--> Filter interval delay
1062 	 *                       <--> Sensor interval delay
1063 	 *                                             <--> Group interval delay
1064 	 * Bits:
1065 	 *      29 - 20 : Group interval
1066 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1067 	 *                or an interrupt everytime the hot threshold is crossed (0)
1068 	 *       9 - 0  : Period unit
1069 	 *
1070 	 */
1071 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1072 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1073 
1074 	/*
1075 	 * LVTS_MONCTL2 : Filtering and sensor interval
1076 	 *
1077 	 * Bits:
1078 	 *
1079 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1080 	 *              the same sensor, filter interval
1081 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1082 	 *
1083 	 */
1084 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1085 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1086 
1087 	return lvts_irq_init(lvts_ctrl);
1088 }
1089 
1090 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1091 {
1092 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1093 	struct thermal_zone_device *tz;
1094 	u32 sensor_map = 0;
1095 	int i;
1096 	/*
1097 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1098 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1099 	 */
1100 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1101 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1102 
1103 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1104 			     sensor_imm_bitmap : sensor_filt_bitmap;
1105 
1106 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1107 
1108 		int dt_id = lvts_sensors[i].dt_id;
1109 
1110 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1111 						   &lvts_ops);
1112 		if (IS_ERR(tz)) {
1113 			/*
1114 			 * This thermal zone is not described in the
1115 			 * device tree. It is not an error from the
1116 			 * thermal OF code POV, we just continue.
1117 			 */
1118 			if (PTR_ERR(tz) == -ENODEV)
1119 				continue;
1120 
1121 			return PTR_ERR(tz);
1122 		}
1123 
1124 		devm_thermal_add_hwmon_sysfs(dev, tz);
1125 
1126 		/*
1127 		 * The thermal zone pointer will be needed in the
1128 		 * interrupt handler, we store it in the sensor
1129 		 * structure. The thermal domain structure will be
1130 		 * passed to the interrupt handler private data as the
1131 		 * interrupt is shared for all the controller
1132 		 * belonging to the thermal domain.
1133 		 */
1134 		lvts_sensors[i].tz = tz;
1135 
1136 		/*
1137 		 * This sensor was correctly associated with a thermal
1138 		 * zone, let's set the corresponding bit in the sensor
1139 		 * map, so we can enable the temperature monitoring in
1140 		 * the hardware thermal controller.
1141 		 */
1142 		sensor_map |= sensor_bitmap[i];
1143 	}
1144 
1145 	/*
1146 	 * The initialization of the thermal zones give us
1147 	 * which sensor point to enable. If any thermal zone
1148 	 * was not described in the device tree, it won't be
1149 	 * enabled here in the sensor map.
1150 	 */
1151 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1152 		/*
1153 		 * LVTS_MSRCTL1 : Measurement control
1154 		 *
1155 		 * Bits:
1156 		 *
1157 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1158 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1159 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1160 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1161 		 *
1162 		 * That configuration will ignore the filtering and the delays
1163 		 * introduced in MONCTL1 and MONCTL2
1164 		 */
1165 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1166 	} else {
1167 		/*
1168 		 * Bits:
1169 		 *      9: Single point access flow
1170 		 *    0-3: Enable sensing point 0-3
1171 		 */
1172 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1179 					const struct lvts_data *lvts_data)
1180 {
1181 	struct lvts_ctrl *lvts_ctrl;
1182 	int i, ret;
1183 
1184 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1185 	if (ret)
1186 		return ret;
1187 
1188 	ret = lvts_domain_reset(dev, lvts_td->reset);
1189 	if (ret) {
1190 		dev_dbg(dev, "Failed to reset domain");
1191 		return ret;
1192 	}
1193 
1194 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1195 
1196 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1197 
1198 		/*
1199 		 * Initialization steps:
1200 		 *
1201 		 * - Enable the clock
1202 		 * - Connect to the LVTS
1203 		 * - Initialize the LVTS
1204 		 * - Prepare the calibration data
1205 		 * - Select monitored sensors
1206 		 * [ Configure sampling ]
1207 		 * [ Configure the interrupt ]
1208 		 * - Start measurement
1209 		 */
1210 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1211 		if (ret) {
1212 			dev_dbg(dev, "Failed to enable LVTS clock");
1213 			return ret;
1214 		}
1215 
1216 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1217 		if (ret) {
1218 			dev_dbg(dev, "Failed to connect to LVTS controller");
1219 			return ret;
1220 		}
1221 
1222 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1223 		if (ret) {
1224 			dev_dbg(dev, "Failed to initialize controller");
1225 			return ret;
1226 		}
1227 
1228 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1229 		if (ret) {
1230 			dev_dbg(dev, "Failed to calibrate controller");
1231 			return ret;
1232 		}
1233 
1234 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1235 		if (ret) {
1236 			dev_dbg(dev, "Failed to configure controller");
1237 			return ret;
1238 		}
1239 
1240 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1241 		if (ret) {
1242 			dev_dbg(dev, "Failed to start controller");
1243 			return ret;
1244 		}
1245 	}
1246 
1247 	return lvts_debugfs_init(dev, lvts_td);
1248 }
1249 
1250 static int lvts_probe(struct platform_device *pdev)
1251 {
1252 	const struct lvts_data *lvts_data;
1253 	struct lvts_domain *lvts_td;
1254 	struct device *dev = &pdev->dev;
1255 	struct resource *res;
1256 	int irq, ret;
1257 
1258 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1259 	if (!lvts_td)
1260 		return -ENOMEM;
1261 
1262 	lvts_data = of_device_get_match_data(dev);
1263 
1264 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1265 	if (IS_ERR(lvts_td->clk))
1266 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1267 
1268 	res = platform_get_mem_or_io(pdev, 0);
1269 	if (!res)
1270 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1271 
1272 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1273 	if (IS_ERR(lvts_td->base))
1274 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1275 
1276 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1277 	if (IS_ERR(lvts_td->reset))
1278 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1279 
1280 	irq = platform_get_irq(pdev, 0);
1281 	if (irq < 0)
1282 		return irq;
1283 
1284 	golden_temp_offset = lvts_data->temp_offset;
1285 
1286 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1287 	if (ret)
1288 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1289 
1290 	/*
1291 	 * At this point the LVTS is initialized and enabled. We can
1292 	 * safely enable the interrupt.
1293 	 */
1294 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1295 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1296 	if (ret)
1297 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1298 
1299 	platform_set_drvdata(pdev, lvts_td);
1300 
1301 	return 0;
1302 }
1303 
1304 static void lvts_remove(struct platform_device *pdev)
1305 {
1306 	struct lvts_domain *lvts_td;
1307 	int i;
1308 
1309 	lvts_td = platform_get_drvdata(pdev);
1310 
1311 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1312 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1313 
1314 	lvts_debugfs_exit(lvts_td);
1315 }
1316 
1317 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1318 	{
1319 		.lvts_sensor = {
1320 			{ .dt_id = MT7988_CPU_0,
1321 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1322 			{ .dt_id = MT7988_CPU_1,
1323 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1324 			{ .dt_id = MT7988_ETH2P5G_0,
1325 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1326 			{ .dt_id = MT7988_ETH2P5G_1,
1327 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1328 		},
1329 		.num_lvts_sensor = 4,
1330 		.offset = 0x0,
1331 	},
1332 	{
1333 		.lvts_sensor = {
1334 			{ .dt_id = MT7988_TOPS_0,
1335 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1336 			{ .dt_id = MT7988_TOPS_1,
1337 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1338 			{ .dt_id = MT7988_ETHWARP_0,
1339 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1340 			{ .dt_id = MT7988_ETHWARP_1,
1341 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1342 		},
1343 		.num_lvts_sensor = 4,
1344 		.offset = 0x100,
1345 	}
1346 };
1347 
1348 static int lvts_suspend(struct device *dev)
1349 {
1350 	struct lvts_domain *lvts_td;
1351 	int i;
1352 
1353 	lvts_td = dev_get_drvdata(dev);
1354 
1355 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1356 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1357 
1358 	clk_disable_unprepare(lvts_td->clk);
1359 
1360 	return 0;
1361 }
1362 
1363 static int lvts_resume(struct device *dev)
1364 {
1365 	struct lvts_domain *lvts_td;
1366 	int i, ret;
1367 
1368 	lvts_td = dev_get_drvdata(dev);
1369 
1370 	ret = clk_prepare_enable(lvts_td->clk);
1371 	if (ret)
1372 		return ret;
1373 
1374 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1375 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1376 
1377 	return 0;
1378 }
1379 
1380 /*
1381  * The MT8186 calibration data is stored as packed 3-byte little-endian
1382  * values using a weird layout that makes sense only when viewed as a 32-bit
1383  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1384  * y = byte number where the LSB is y=0. We then have:
1385  *
1386  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1387  *
1388  * However, when considering a byte stream, those appear as follows:
1389  *
1390  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1391  *
1392  * Hence the rather confusing offsets provided below.
1393  */
1394 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1395 	{
1396 		.lvts_sensor = {
1397 			{ .dt_id = MT8186_LITTLE_CPU0,
1398 			  .cal_offsets = { 5, 6, 7 } },
1399 			{ .dt_id = MT8186_LITTLE_CPU1,
1400 			  .cal_offsets = { 10, 11, 4 } },
1401 			{ .dt_id = MT8186_LITTLE_CPU2,
1402 			  .cal_offsets = { 15, 8, 9 } },
1403 			{ .dt_id = MT8186_CAM,
1404 			  .cal_offsets = { 12, 13, 14 } }
1405 		},
1406 		.num_lvts_sensor = 4,
1407 		.offset = 0x0,
1408 	},
1409 	{
1410 		.lvts_sensor = {
1411 			{ .dt_id = MT8186_BIG_CPU0,
1412 			  .cal_offsets = { 22, 23, 16 } },
1413 			{ .dt_id = MT8186_BIG_CPU1,
1414 			  .cal_offsets = { 27, 20, 21 } }
1415 		},
1416 		.num_lvts_sensor = 2,
1417 		.offset = 0x100,
1418 	},
1419 	{
1420 		.lvts_sensor = {
1421 			{ .dt_id = MT8186_NNA,
1422 			  .cal_offsets = { 29, 30, 31 } },
1423 			{ .dt_id = MT8186_ADSP,
1424 			  .cal_offsets = { 34, 35, 28 } },
1425 			{ .dt_id = MT8186_MFG,
1426 			  .cal_offsets = { 39, 32, 33 } }
1427 		},
1428 		.num_lvts_sensor = 3,
1429 		.offset = 0x200,
1430 	}
1431 };
1432 
1433 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1434 	{
1435 		.lvts_sensor = {
1436 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1437 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1438 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1439 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1440 		},
1441 		.num_lvts_sensor = 2,
1442 		.offset = 0x0,
1443 		.mode = LVTS_MSR_FILTERED_MODE,
1444 	},
1445 	{
1446 		.lvts_sensor = {
1447 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1448 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1449 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1450 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1451 		},
1452 		.num_lvts_sensor = 2,
1453 		.offset = 0x100,
1454 		.mode = LVTS_MSR_FILTERED_MODE,
1455 	},
1456 	{
1457 		.lvts_sensor = {
1458 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1459 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1460 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1461 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1462 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1463 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1464 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1465 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1466 		},
1467 		.num_lvts_sensor = 4,
1468 		.offset = 0x200,
1469 		.mode = LVTS_MSR_FILTERED_MODE,
1470 	}
1471 };
1472 
1473 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1474 	{
1475 		.lvts_sensor = {
1476 			{ .dt_id = MT8192_AP_VPU0,
1477 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1478 			{ .dt_id = MT8192_AP_VPU1,
1479 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1480 		},
1481 		.num_lvts_sensor = 2,
1482 		.offset = 0x0,
1483 	},
1484 	{
1485 		.lvts_sensor = {
1486 			{ .dt_id = MT8192_AP_GPU0,
1487 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1488 			{ .dt_id = MT8192_AP_GPU1,
1489 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1490 		},
1491 		.num_lvts_sensor = 2,
1492 		.offset = 0x100,
1493 	},
1494 	{
1495 		.lvts_sensor = {
1496 			{ .dt_id = MT8192_AP_INFRA,
1497 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1498 			{ .dt_id = MT8192_AP_CAM,
1499 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1500 		},
1501 		.num_lvts_sensor = 2,
1502 		.offset = 0x200,
1503 	},
1504 	{
1505 		.lvts_sensor = {
1506 			{ .dt_id = MT8192_AP_MD0,
1507 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1508 			{ .dt_id = MT8192_AP_MD1,
1509 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1510 			{ .dt_id = MT8192_AP_MD2,
1511 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1512 		},
1513 		.num_lvts_sensor = 3,
1514 		.offset = 0x300,
1515 	}
1516 };
1517 
1518 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1519 	{
1520 		.lvts_sensor = {
1521 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1522 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1523 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1524 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1525 		},
1526 		.num_lvts_sensor = 2,
1527 		.offset = 0x0,
1528 	},
1529 	{
1530 		.lvts_sensor = {
1531 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1532 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1533 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1534 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1535 		},
1536 		.num_lvts_sensor = 2,
1537 		.offset = 0x100,
1538 	},
1539 	{
1540 		.lvts_sensor = {
1541 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1542 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1543 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1544 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1545 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1546 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1547 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1548 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1549 		},
1550 		.num_lvts_sensor = 4,
1551 		.offset = 0x200,
1552 	}
1553 };
1554 
1555 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1556 	{
1557 		.lvts_sensor = {
1558 			{ .dt_id = MT8195_AP_VPU0,
1559 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1560 			{ .dt_id = MT8195_AP_VPU1,
1561 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1562 		},
1563 		.num_lvts_sensor = 2,
1564 		.offset = 0x0,
1565 	},
1566 	{
1567 		.lvts_sensor = {
1568 			{ .dt_id = MT8195_AP_GPU0,
1569 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1570 			{ .dt_id = MT8195_AP_GPU1,
1571 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1572 		},
1573 		.num_lvts_sensor = 2,
1574 		.offset = 0x100,
1575 	},
1576 	{
1577 		.lvts_sensor = {
1578 			{ .dt_id = MT8195_AP_VDEC,
1579 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1580 			{ .dt_id = MT8195_AP_IMG,
1581 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1582 			{ .dt_id = MT8195_AP_INFRA,
1583 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1584 		},
1585 		.num_lvts_sensor = 3,
1586 		.offset = 0x200,
1587 	},
1588 	{
1589 		.lvts_sensor = {
1590 			{ .dt_id = MT8195_AP_CAM0,
1591 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1592 			{ .dt_id = MT8195_AP_CAM1,
1593 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1594 		},
1595 		.num_lvts_sensor = 2,
1596 		.offset = 0x300,
1597 	}
1598 };
1599 
1600 static const struct lvts_data mt7988_lvts_ap_data = {
1601 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1602 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1603 	.temp_factor	= LVTS_COEFF_A_MT7988,
1604 	.temp_offset	= LVTS_COEFF_B_MT7988,
1605 	.gt_calib_bit_offset = 24,
1606 };
1607 
1608 static const struct lvts_data mt8186_lvts_data = {
1609 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1610 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1611 	.temp_factor	= LVTS_COEFF_A_MT7988,
1612 	.temp_offset	= LVTS_COEFF_B_MT7988,
1613 	.gt_calib_bit_offset = 24,
1614 };
1615 
1616 static const struct lvts_data mt8192_lvts_mcu_data = {
1617 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1618 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1619 	.temp_factor	= LVTS_COEFF_A_MT8195,
1620 	.temp_offset	= LVTS_COEFF_B_MT8195,
1621 	.gt_calib_bit_offset = 24,
1622 };
1623 
1624 static const struct lvts_data mt8192_lvts_ap_data = {
1625 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1626 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1627 	.temp_factor	= LVTS_COEFF_A_MT8195,
1628 	.temp_offset	= LVTS_COEFF_B_MT8195,
1629 	.gt_calib_bit_offset = 24,
1630 };
1631 
1632 static const struct lvts_data mt8195_lvts_mcu_data = {
1633 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1634 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1635 	.temp_factor	= LVTS_COEFF_A_MT8195,
1636 	.temp_offset	= LVTS_COEFF_B_MT8195,
1637 	.gt_calib_bit_offset = 24,
1638 };
1639 
1640 static const struct lvts_data mt8195_lvts_ap_data = {
1641 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1642 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1643 	.temp_factor	= LVTS_COEFF_A_MT8195,
1644 	.temp_offset	= LVTS_COEFF_B_MT8195,
1645 	.gt_calib_bit_offset = 24,
1646 };
1647 
1648 static const struct of_device_id lvts_of_match[] = {
1649 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1650 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1651 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1652 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1653 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1654 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1655 	{},
1656 };
1657 MODULE_DEVICE_TABLE(of, lvts_of_match);
1658 
1659 static const struct dev_pm_ops lvts_pm_ops = {
1660 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1661 };
1662 
1663 static struct platform_driver lvts_driver = {
1664 	.probe = lvts_probe,
1665 	.remove_new = lvts_remove,
1666 	.driver = {
1667 		.name = "mtk-lvts-thermal",
1668 		.of_match_table = lvts_of_match,
1669 		.pm = &lvts_pm_ops,
1670 	},
1671 };
1672 module_platform_driver(lvts_driver);
1673 
1674 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1675 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1676 MODULE_LICENSE("GPL");
1677