xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 67f9c312b0a7f4bc869376d2a68308e673235954)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	u8 valid_sensor_mask;
109 	int offset;
110 	int mode;
111 };
112 
113 #define VALID_SENSOR_MAP(s0, s1, s2, s3) \
114 	.valid_sensor_mask = (((s0) ? BIT(0) : 0) | \
115 			      ((s1) ? BIT(1) : 0) | \
116 			      ((s2) ? BIT(2) : 0) | \
117 			      ((s3) ? BIT(3) : 0))
118 
119 #define lvts_for_each_valid_sensor(i, lvts_ctrl) \
120 	for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \
121 		if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \
122 			continue; \
123 		else
124 
125 struct lvts_data {
126 	const struct lvts_ctrl_data *lvts_ctrl;
127 	int num_lvts_ctrl;
128 	int temp_factor;
129 	int temp_offset;
130 	int gt_calib_bit_offset;
131 };
132 
133 struct lvts_sensor {
134 	struct thermal_zone_device *tz;
135 	void __iomem *msr;
136 	void __iomem *base;
137 	int id;
138 	int dt_id;
139 	int low_thresh;
140 	int high_thresh;
141 };
142 
143 struct lvts_ctrl {
144 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
145 	const struct lvts_data *lvts_data;
146 	u32 calibration[LVTS_SENSOR_MAX];
147 	u32 hw_tshut_raw_temp;
148 	u8 valid_sensor_mask;
149 	int mode;
150 	void __iomem *base;
151 	int low_thresh;
152 	int high_thresh;
153 };
154 
155 struct lvts_domain {
156 	struct lvts_ctrl *lvts_ctrl;
157 	struct reset_control *reset;
158 	struct clk *clk;
159 	int num_lvts_ctrl;
160 	void __iomem *base;
161 	size_t calib_len;
162 	u8 *calib;
163 #ifdef CONFIG_DEBUG_FS
164 	struct dentry *dom_dentry;
165 #endif
166 };
167 
168 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
169 
170 #define LVTS_DEBUG_FS_REGS(__reg)		\
171 {						\
172 	.name = __stringify(__reg),		\
173 	.offset = __reg(0),			\
174 }
175 
176 static const struct debugfs_reg32 lvts_regs[] = {
177 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
178 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
179 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
180 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
181 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
182 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
183 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
184 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
185 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
186 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
187 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
188 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
189 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
192 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
193 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
194 	LVTS_DEBUG_FS_REGS(LVTS_ID),
195 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
196 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
197 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
198 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
199 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
200 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
201 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
202 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
203 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
204 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
205 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
206 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
207 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
208 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
209 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
210 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
211 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
212 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
213 };
214 
215 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
216 {
217 	struct debugfs_regset32 *regset;
218 	struct lvts_ctrl *lvts_ctrl;
219 	struct dentry *dentry;
220 	char name[64];
221 	int i;
222 
223 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
224 	if (IS_ERR(lvts_td->dom_dentry))
225 		return 0;
226 
227 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
228 
229 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
230 
231 		sprintf(name, "controller%d", i);
232 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
233 		if (IS_ERR(dentry))
234 			continue;
235 
236 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
237 		if (!regset)
238 			continue;
239 
240 		regset->base = lvts_ctrl->base;
241 		regset->regs = lvts_regs;
242 		regset->nregs = ARRAY_SIZE(lvts_regs);
243 
244 		debugfs_create_regset32("registers", 0400, dentry, regset);
245 	}
246 
247 	return 0;
248 }
249 
250 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
251 {
252 	debugfs_remove_recursive(lvts_td->dom_dentry);
253 }
254 
255 #else
256 
257 static inline int lvts_debugfs_init(struct device *dev,
258 				    struct lvts_domain *lvts_td)
259 {
260 	return 0;
261 }
262 
263 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
264 
265 #endif
266 
267 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
268 {
269 	int temperature;
270 
271 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
272 	temperature += golden_temp_offset;
273 
274 	return temperature;
275 }
276 
277 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
278 {
279 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
280 
281 	raw_temp = div_s64(raw_temp, -temp_factor);
282 
283 	return raw_temp;
284 }
285 
286 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
287 {
288 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
289 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
290 						   sensors[lvts_sensor->id]);
291 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
292 	void __iomem *msr = lvts_sensor->msr;
293 	u32 value;
294 	int rc;
295 
296 	/*
297 	 * Measurement registers:
298 	 *
299 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
300 	 *
301 	 * Bits:
302 	 *
303 	 * 32-17: Unused
304 	 * 16	: Valid temperature
305 	 * 15-0	: Raw temperature
306 	 */
307 	rc = readl_poll_timeout(msr, value, value & BIT(16),
308 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
309 
310 	/*
311 	 * As the thermal zone temperature will read before the
312 	 * hardware sensor is fully initialized, we have to check the
313 	 * validity of the temperature returned when reading the
314 	 * measurement register. The thermal controller will set the
315 	 * valid bit temperature only when it is totally initialized.
316 	 *
317 	 * Otherwise, we may end up with garbage values out of the
318 	 * functionning temperature and directly jump to a system
319 	 * shutdown.
320 	 */
321 	if (rc)
322 		return -EAGAIN;
323 
324 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
325 
326 	return 0;
327 }
328 
329 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
330 {
331 	u32 masks[] = {
332 		LVTS_MONINT_OFFSET_SENSOR0,
333 		LVTS_MONINT_OFFSET_SENSOR1,
334 		LVTS_MONINT_OFFSET_SENSOR2,
335 		LVTS_MONINT_OFFSET_SENSOR3,
336 	};
337 	u32 value = 0;
338 	int i;
339 
340 	value = readl(LVTS_MONINT(lvts_ctrl->base));
341 
342 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
343 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
344 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
345 			value |= masks[i];
346 		else
347 			value &= ~masks[i];
348 	}
349 
350 	writel(value, LVTS_MONINT(lvts_ctrl->base));
351 }
352 
353 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
354 {
355 	int i;
356 
357 	if (high > lvts_ctrl->high_thresh)
358 		return true;
359 
360 	lvts_for_each_valid_sensor(i, lvts_ctrl)
361 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
362 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
363 			return false;
364 
365 	return true;
366 }
367 
368 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
369 {
370 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
371 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
372 						   sensors[lvts_sensor->id]);
373 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
374 	void __iomem *base = lvts_sensor->base;
375 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
376 				       lvts_data->temp_factor);
377 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
378 	bool should_update_thresh;
379 
380 	lvts_sensor->low_thresh = low;
381 	lvts_sensor->high_thresh = high;
382 
383 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
384 	if (should_update_thresh) {
385 		lvts_ctrl->high_thresh = high;
386 		lvts_ctrl->low_thresh = low;
387 	}
388 	lvts_update_irq_mask(lvts_ctrl);
389 
390 	if (!should_update_thresh)
391 		return 0;
392 
393 	/*
394 	 * Low offset temperature threshold
395 	 *
396 	 * LVTS_OFFSETL
397 	 *
398 	 * Bits:
399 	 *
400 	 * 14-0 : Raw temperature for threshold
401 	 */
402 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
403 		 thermal_zone_device_type(tz), low);
404 	writel(raw_low, LVTS_OFFSETL(base));
405 
406 	/*
407 	 * High offset temperature threshold
408 	 *
409 	 * LVTS_OFFSETH
410 	 *
411 	 * Bits:
412 	 *
413 	 * 14-0 : Raw temperature for threshold
414 	 */
415 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
416 		 thermal_zone_device_type(tz), high);
417 	writel(raw_high, LVTS_OFFSETH(base));
418 
419 	return 0;
420 }
421 
422 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
423 {
424 	irqreturn_t iret = IRQ_NONE;
425 	u32 value;
426 	u32 masks[] = {
427 		LVTS_INT_SENSOR0,
428 		LVTS_INT_SENSOR1,
429 		LVTS_INT_SENSOR2,
430 		LVTS_INT_SENSOR3
431 	};
432 	int i;
433 
434 	/*
435 	 * Interrupt monitoring status
436 	 *
437 	 * LVTS_MONINTST
438 	 *
439 	 * Bits:
440 	 *
441 	 * 31 : Interrupt for stage 3
442 	 * 30 : Interrupt for stage 2
443 	 * 29 : Interrupt for state 1
444 	 * 28 : Interrupt using filter on sensor 3
445 	 *
446 	 * 27 : Interrupt using immediate on sensor 3
447 	 * 26 : Interrupt normal to hot on sensor 3
448 	 * 25 : Interrupt high offset on sensor 3
449 	 * 24 : Interrupt low offset on sensor 3
450 	 *
451 	 * 23 : Interrupt hot threshold on sensor 3
452 	 * 22 : Interrupt cold threshold on sensor 3
453 	 * 21 : Interrupt using filter on sensor 2
454 	 * 20 : Interrupt using filter on sensor 1
455 	 *
456 	 * 19 : Interrupt using filter on sensor 0
457 	 * 18 : Interrupt using immediate on sensor 2
458 	 * 17 : Interrupt using immediate on sensor 1
459 	 * 16 : Interrupt using immediate on sensor 0
460 	 *
461 	 * 15 : Interrupt device access timeout interrupt
462 	 * 14 : Interrupt normal to hot on sensor 2
463 	 * 13 : Interrupt high offset interrupt on sensor 2
464 	 * 12 : Interrupt low offset interrupt on sensor 2
465 	 *
466 	 * 11 : Interrupt hot threshold on sensor 2
467 	 * 10 : Interrupt cold threshold on sensor 2
468 	 *  9 : Interrupt normal to hot on sensor 1
469 	 *  8 : Interrupt high offset interrupt on sensor 1
470 	 *
471 	 *  7 : Interrupt low offset interrupt on sensor 1
472 	 *  6 : Interrupt hot threshold on sensor 1
473 	 *  5 : Interrupt cold threshold on sensor 1
474 	 *  4 : Interrupt normal to hot on sensor 0
475 	 *
476 	 *  3 : Interrupt high offset interrupt on sensor 0
477 	 *  2 : Interrupt low offset interrupt on sensor 0
478 	 *  1 : Interrupt hot threshold on sensor 0
479 	 *  0 : Interrupt cold threshold on sensor 0
480 	 *
481 	 * We are interested in the sensor(s) responsible of the
482 	 * interrupt event. We update the thermal framework with the
483 	 * thermal zone associated with the sensor. The framework will
484 	 * take care of the rest whatever the kind of interrupt, we
485 	 * are only interested in which sensor raised the interrupt.
486 	 *
487 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
488 	 *                  => 0x1FC00000
489 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
490 	 *                  => 0x00247C00
491 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
492 	 *                  => 0X001203E0
493 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
494 	 *                  => 0x0009001F
495 	 */
496 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
497 
498 	/*
499 	 * Let's figure out which sensors raised the interrupt
500 	 *
501 	 * NOTE: the masks array must be ordered with the index
502 	 * corresponding to the sensor id eg. index=0, mask for
503 	 * sensor0.
504 	 */
505 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
506 
507 		if (!(value & masks[i]))
508 			continue;
509 
510 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
511 					   THERMAL_TRIP_VIOLATED);
512 		iret = IRQ_HANDLED;
513 	}
514 
515 	/*
516 	 * Write back to clear the interrupt status (W1C)
517 	 */
518 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
519 
520 	return iret;
521 }
522 
523 /*
524  * Temperature interrupt handler. Even if the driver supports more
525  * interrupt modes, we use the interrupt when the temperature crosses
526  * the hot threshold the way up and the way down (modulo the
527  * hysteresis).
528  *
529  * Each thermal domain has a couple of interrupts, one for hardware
530  * reset and another one for all the thermal events happening on the
531  * different sensors.
532  *
533  * The interrupt is configured for thermal events when crossing the
534  * hot temperature limit. At each interrupt, we check in every
535  * controller if there is an interrupt pending.
536  */
537 static irqreturn_t lvts_irq_handler(int irq, void *data)
538 {
539 	struct lvts_domain *lvts_td = data;
540 	irqreturn_t aux, iret = IRQ_NONE;
541 	int i;
542 
543 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
544 
545 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
546 		if (aux != IRQ_HANDLED)
547 			continue;
548 
549 		iret = IRQ_HANDLED;
550 	}
551 
552 	return iret;
553 }
554 
555 static struct thermal_zone_device_ops lvts_ops = {
556 	.get_temp = lvts_get_temp,
557 	.set_trips = lvts_set_trips,
558 };
559 
560 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
561 					const struct lvts_ctrl_data *lvts_ctrl_data)
562 {
563 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
564 
565 	void __iomem *msr_regs[] = {
566 		LVTS_MSR0(lvts_ctrl->base),
567 		LVTS_MSR1(lvts_ctrl->base),
568 		LVTS_MSR2(lvts_ctrl->base),
569 		LVTS_MSR3(lvts_ctrl->base)
570 	};
571 
572 	void __iomem *imm_regs[] = {
573 		LVTS_IMMD0(lvts_ctrl->base),
574 		LVTS_IMMD1(lvts_ctrl->base),
575 		LVTS_IMMD2(lvts_ctrl->base),
576 		LVTS_IMMD3(lvts_ctrl->base)
577 	};
578 
579 	int i;
580 
581 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
582 
583 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
584 
585 		/*
586 		 * At this point, we don't know which id matches which
587 		 * sensor. Let's set arbitrally the id from the index.
588 		 */
589 		lvts_sensor[i].id = i;
590 
591 		/*
592 		 * The thermal zone registration will set the trip
593 		 * point interrupt in the thermal controller
594 		 * register. But this one will be reset in the
595 		 * initialization after. So we need to post pone the
596 		 * thermal zone creation after the controller is
597 		 * setup. For this reason, we store the device tree
598 		 * node id from the data in the sensor structure
599 		 */
600 		lvts_sensor[i].dt_id = dt_id;
601 
602 		/*
603 		 * We assign the base address of the thermal
604 		 * controller as a back pointer. So it will be
605 		 * accessible from the different thermal framework ops
606 		 * as we pass the lvts_sensor pointer as thermal zone
607 		 * private data.
608 		 */
609 		lvts_sensor[i].base = lvts_ctrl->base;
610 
611 		/*
612 		 * Each sensor has its own register address to read from.
613 		 */
614 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
615 			imm_regs[i] : msr_regs[i];
616 
617 		lvts_sensor[i].low_thresh = INT_MIN;
618 		lvts_sensor[i].high_thresh = INT_MIN;
619 	};
620 
621 	lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask;
622 
623 	return 0;
624 }
625 
626 /*
627  * The efuse blob values follows the sensor enumeration per thermal
628  * controller. The decoding of the stream is as follow:
629  *
630  * MT8192 :
631  * Stream index map for MCU Domain mt8192 :
632  *
633  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
634  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
635  *
636  * <-----sensor#2----->        <-----sensor#3----->
637  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
638  *
639  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
640  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
641  *
642  * Stream index map for AP Domain mt8192 :
643  *
644  * <-----sensor#0----->        <-----sensor#1----->
645  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
646  *
647  * <-----sensor#2----->        <-----sensor#3----->
648  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
649  *
650  * <-----sensor#4----->        <-----sensor#5----->
651  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
652  *
653  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
654  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
655  *
656  * MT8195 :
657  * Stream index map for MCU Domain mt8195 :
658  *
659  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
660  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
661  *
662  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
663  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
664  *
665  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
666  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
667  *
668  * Stream index map for AP Domain mt8195 :
669  *
670  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
671  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
672  *
673  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
674  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
675  *
676  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
677  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
678  *
679  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
680  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
681  *
682  * Note: In some cases, values don't strictly follow a little endian ordering.
683  * The data description gives byte offsets constituting each calibration value
684  * for each sensor.
685  */
686 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
687 					const struct lvts_ctrl_data *lvts_ctrl_data,
688 					u8 *efuse_calibration,
689 					size_t calib_len)
690 {
691 	int i;
692 
693 	lvts_for_each_valid_sensor(i, lvts_ctrl_data) {
694 		const struct lvts_sensor_data *sensor =
695 					&lvts_ctrl_data->lvts_sensor[i];
696 
697 		if (sensor->cal_offsets[0] >= calib_len ||
698 		    sensor->cal_offsets[1] >= calib_len ||
699 		    sensor->cal_offsets[2] >= calib_len)
700 			return -EINVAL;
701 
702 		lvts_ctrl->calibration[i] =
703 			(efuse_calibration[sensor->cal_offsets[0]] << 0) +
704 			(efuse_calibration[sensor->cal_offsets[1]] << 8) +
705 			(efuse_calibration[sensor->cal_offsets[2]] << 16);
706 	}
707 
708 	return 0;
709 }
710 
711 /*
712  * The efuse bytes stream can be split into different chunk of
713  * nvmems. This function reads and concatenate those into a single
714  * buffer so it can be read sequentially when initializing the
715  * calibration data.
716  */
717 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
718 					const struct lvts_data *lvts_data)
719 {
720 	struct device_node *np = dev_of_node(dev);
721 	struct nvmem_cell *cell;
722 	struct property *prop;
723 	const char *cell_name;
724 
725 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
726 		size_t len;
727 		u8 *efuse;
728 
729 		cell = of_nvmem_cell_get(np, cell_name);
730 		if (IS_ERR(cell)) {
731 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
732 			return PTR_ERR(cell);
733 		}
734 
735 		efuse = nvmem_cell_read(cell, &len);
736 
737 		nvmem_cell_put(cell);
738 
739 		if (IS_ERR(efuse)) {
740 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
741 			return PTR_ERR(efuse);
742 		}
743 
744 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
745 					       lvts_td->calib_len + len, GFP_KERNEL);
746 		if (!lvts_td->calib) {
747 			kfree(efuse);
748 			return -ENOMEM;
749 		}
750 
751 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
752 
753 		lvts_td->calib_len += len;
754 
755 		kfree(efuse);
756 	}
757 
758 	return 0;
759 }
760 
761 static int lvts_golden_temp_init(struct device *dev, u8 *calib,
762 				 const struct lvts_data *lvts_data)
763 {
764 	u32 gt;
765 
766 	/*
767 	 * The golden temp information is contained in the first 32-bit
768 	 * word  of efuse data at a specific bit offset.
769 	 */
770 	gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff;
771 
772 	/* A zero value for gt means that device has invalid efuse data */
773 	if (!gt)
774 		return -ENODATA;
775 
776 	if (gt < LVTS_GOLDEN_TEMP_MAX)
777 		golden_temp = gt;
778 
779 	golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset;
780 
781 	return 0;
782 }
783 
784 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
785 					const struct lvts_data *lvts_data)
786 {
787 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
788 	struct lvts_ctrl *lvts_ctrl;
789 	int i, ret;
790 
791 	/*
792 	 * Create the calibration bytes stream from efuse data
793 	 */
794 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
795 	if (ret)
796 		return ret;
797 
798 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data);
799 	if (ret)
800 		return ret;
801 
802 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
803 	if (!lvts_ctrl)
804 		return -ENOMEM;
805 
806 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
807 
808 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
809 		lvts_ctrl[i].lvts_data = lvts_data;
810 
811 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
812 				       &lvts_data->lvts_ctrl[i]);
813 		if (ret)
814 			return ret;
815 
816 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
817 					    &lvts_data->lvts_ctrl[i],
818 					    lvts_td->calib,
819 					    lvts_td->calib_len);
820 		if (ret)
821 			return ret;
822 
823 		/*
824 		 * The mode the ctrl will use to read the temperature
825 		 * (filtered or immediate)
826 		 */
827 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
828 
829 		/*
830 		 * The temperature to raw temperature must be done
831 		 * after initializing the calibration.
832 		 */
833 		lvts_ctrl[i].hw_tshut_raw_temp =
834 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
835 					 lvts_data->temp_factor);
836 
837 		lvts_ctrl[i].low_thresh = INT_MIN;
838 		lvts_ctrl[i].high_thresh = INT_MIN;
839 	}
840 
841 	/*
842 	 * We no longer need the efuse bytes stream, let's free it
843 	 */
844 	devm_kfree(dev, lvts_td->calib);
845 
846 	lvts_td->lvts_ctrl = lvts_ctrl;
847 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
848 
849 	return 0;
850 }
851 
852 /*
853  * At this point the configuration register is the only place in the
854  * driver where we write multiple values. Per hardware constraint,
855  * each write in the configuration register must be separated by a
856  * delay of 2 us.
857  */
858 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
859 {
860 	int i;
861 
862 	/*
863 	 * Configuration register
864 	 */
865 	for (i = 0; i < nr_cmds; i++) {
866 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
867 		usleep_range(2, 4);
868 	}
869 }
870 
871 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
872 {
873 	/*
874 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
875 	 *
876 	 * Bits:
877 	 *
878 	 * 19-18 : Sensor to base the protection on
879 	 * 17-16 : Strategy:
880 	 *         00 : Average of 4 sensors
881 	 *         01 : Max of 4 sensors
882 	 *         10 : Selected sensor with bits 19-18
883 	 *         11 : Reserved
884 	 */
885 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
886 
887 	/*
888 	 * LVTS_PROTTA : Stage 1 temperature threshold
889 	 * LVTS_PROTTB : Stage 2 temperature threshold
890 	 * LVTS_PROTTC : Stage 3 temperature threshold
891 	 *
892 	 * Bits:
893 	 *
894 	 * 14-0: Raw temperature threshold
895 	 *
896 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
897 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
898 	 */
899 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
900 
901 	/*
902 	 * LVTS_MONINT : Interrupt configuration register
903 	 *
904 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
905 	 * register, except we set the bits to enable the interrupt.
906 	 */
907 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
908 
909 	return 0;
910 }
911 
912 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
913 {
914 	int ret;
915 
916 	ret = reset_control_assert(reset);
917 	if (ret)
918 		return ret;
919 
920 	return reset_control_deassert(reset);
921 }
922 
923 /*
924  * Enable or disable the clocks of a specified thermal controller
925  */
926 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
927 {
928 	/*
929 	 * LVTS_CLKEN : Internal LVTS clock
930 	 *
931 	 * Bits:
932 	 *
933 	 * 0 : enable / disable clock
934 	 */
935 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
936 
937 	return 0;
938 }
939 
940 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
941 {
942 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
943 
944 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
945 
946 	/*
947 	 * LVTS_ID : Get ID and status of the thermal controller
948 	 *
949 	 * Bits:
950 	 *
951 	 * 0-5	: thermal controller id
952 	 *   7	: thermal controller connection is valid
953 	 */
954 	id = readl(LVTS_ID(lvts_ctrl->base));
955 	if (!(id & BIT(7)))
956 		return -EIO;
957 
958 	return 0;
959 }
960 
961 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
962 {
963 	/*
964 	 * Write device mask: 0xC1030000
965 	 */
966 	u32 cmds[] = {
967 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
968 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
969 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
970 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
971 	};
972 
973 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
974 
975 	return 0;
976 }
977 
978 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
979 {
980 	int i;
981 	void __iomem *lvts_edata[] = {
982 		LVTS_EDATA00(lvts_ctrl->base),
983 		LVTS_EDATA01(lvts_ctrl->base),
984 		LVTS_EDATA02(lvts_ctrl->base),
985 		LVTS_EDATA03(lvts_ctrl->base)
986 	};
987 
988 	/*
989 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
990 	 *
991 	 * Bits:
992 	 *
993 	 * 20-0 : Efuse value for normalization data
994 	 */
995 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
996 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
997 
998 	return 0;
999 }
1000 
1001 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1002 {
1003 	u32 value;
1004 
1005 	/*
1006 	 * LVTS_TSSEL : Sensing point index numbering
1007 	 *
1008 	 * Bits:
1009 	 *
1010 	 * 31-24: ADC Sense 3
1011 	 * 23-16: ADC Sense 2
1012 	 * 15-8	: ADC Sense 1
1013 	 * 7-0	: ADC Sense 0
1014 	 */
1015 	value = LVTS_TSSEL_CONF;
1016 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
1017 
1018 	/*
1019 	 * LVTS_CALSCALE : ADC voltage round
1020 	 */
1021 	value = 0x300;
1022 	value = LVTS_CALSCALE_CONF;
1023 
1024 	/*
1025 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1026 	 *
1027 	 * Filters:
1028 	 *
1029 	 * 000 : One sample
1030 	 * 001 : Avg 2 samples
1031 	 * 010 : 4 samples, drop min and max, avg 2 samples
1032 	 * 011 : 6 samples, drop min and max, avg 4 samples
1033 	 * 100 : 10 samples, drop min and max, avg 8 samples
1034 	 * 101 : 18 samples, drop min and max, avg 16 samples
1035 	 *
1036 	 * Bits:
1037 	 *
1038 	 * 0-2  : Sensor0 filter
1039 	 * 3-5  : Sensor1 filter
1040 	 * 6-8  : Sensor2 filter
1041 	 * 9-11 : Sensor3 filter
1042 	 */
1043 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1044 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1045 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1046 
1047 	/*
1048 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1049 	 *
1050 	 * The clock source of LVTS thermal controller is 26MHz.
1051 	 *
1052 	 * The period unit is a time base for all the interval delays
1053 	 * specified in the registers. By default we use 12. The time
1054 	 * conversion is done by multiplying by 256 and 1/26.10^6
1055 	 *
1056 	 * An interval delay multiplied by the period unit gives the
1057 	 * duration in seconds.
1058 	 *
1059 	 * - Filter interval delay is a delay between two samples of
1060 	 * the same sensor.
1061 	 *
1062 	 * - Sensor interval delay is a delay between two samples of
1063 	 * different sensors.
1064 	 *
1065 	 * - Group interval delay is a delay between different rounds.
1066 	 *
1067 	 * For example:
1068 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1069 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1070 	 *     and then
1071 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1072 	 *     Filter interval delay = 1 * Period unit = 118.149us
1073 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1074 	 *     Group interval delay = 1 * Period unit = 118.149us
1075 	 *
1076 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1077 	 *        <--> Filter interval delay
1078 	 *                       <--> Sensor interval delay
1079 	 *                                             <--> Group interval delay
1080 	 * Bits:
1081 	 *      29 - 20 : Group interval
1082 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1083 	 *                or an interrupt everytime the hot threshold is crossed (0)
1084 	 *       9 - 0  : Period unit
1085 	 *
1086 	 */
1087 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1088 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1089 
1090 	/*
1091 	 * LVTS_MONCTL2 : Filtering and sensor interval
1092 	 *
1093 	 * Bits:
1094 	 *
1095 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1096 	 *              the same sensor, filter interval
1097 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1098 	 *
1099 	 */
1100 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1101 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1102 
1103 	return lvts_irq_init(lvts_ctrl);
1104 }
1105 
1106 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1107 {
1108 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1109 	struct thermal_zone_device *tz;
1110 	u32 sensor_map = 0;
1111 	int i;
1112 	/*
1113 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1114 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1115 	 */
1116 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1117 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1118 
1119 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1120 			     sensor_imm_bitmap : sensor_filt_bitmap;
1121 
1122 	lvts_for_each_valid_sensor(i, lvts_ctrl) {
1123 
1124 		int dt_id = lvts_sensors[i].dt_id;
1125 
1126 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1127 						   &lvts_ops);
1128 		if (IS_ERR(tz)) {
1129 			/*
1130 			 * This thermal zone is not described in the
1131 			 * device tree. It is not an error from the
1132 			 * thermal OF code POV, we just continue.
1133 			 */
1134 			if (PTR_ERR(tz) == -ENODEV)
1135 				continue;
1136 
1137 			return PTR_ERR(tz);
1138 		}
1139 
1140 		devm_thermal_add_hwmon_sysfs(dev, tz);
1141 
1142 		/*
1143 		 * The thermal zone pointer will be needed in the
1144 		 * interrupt handler, we store it in the sensor
1145 		 * structure. The thermal domain structure will be
1146 		 * passed to the interrupt handler private data as the
1147 		 * interrupt is shared for all the controller
1148 		 * belonging to the thermal domain.
1149 		 */
1150 		lvts_sensors[i].tz = tz;
1151 
1152 		/*
1153 		 * This sensor was correctly associated with a thermal
1154 		 * zone, let's set the corresponding bit in the sensor
1155 		 * map, so we can enable the temperature monitoring in
1156 		 * the hardware thermal controller.
1157 		 */
1158 		sensor_map |= sensor_bitmap[i];
1159 	}
1160 
1161 	/*
1162 	 * The initialization of the thermal zones give us
1163 	 * which sensor point to enable. If any thermal zone
1164 	 * was not described in the device tree, it won't be
1165 	 * enabled here in the sensor map.
1166 	 */
1167 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1168 		/*
1169 		 * LVTS_MSRCTL1 : Measurement control
1170 		 *
1171 		 * Bits:
1172 		 *
1173 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1174 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1175 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1176 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1177 		 *
1178 		 * That configuration will ignore the filtering and the delays
1179 		 * introduced in MONCTL1 and MONCTL2
1180 		 */
1181 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1182 	} else {
1183 		/*
1184 		 * Bits:
1185 		 *      9: Single point access flow
1186 		 *    0-3: Enable sensing point 0-3
1187 		 */
1188 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1195 					const struct lvts_data *lvts_data)
1196 {
1197 	struct lvts_ctrl *lvts_ctrl;
1198 	int i, ret;
1199 
1200 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1201 	if (ret)
1202 		return ret;
1203 
1204 	ret = lvts_domain_reset(dev, lvts_td->reset);
1205 	if (ret) {
1206 		dev_dbg(dev, "Failed to reset domain");
1207 		return ret;
1208 	}
1209 
1210 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1211 
1212 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1213 
1214 		/*
1215 		 * Initialization steps:
1216 		 *
1217 		 * - Enable the clock
1218 		 * - Connect to the LVTS
1219 		 * - Initialize the LVTS
1220 		 * - Prepare the calibration data
1221 		 * - Select monitored sensors
1222 		 * [ Configure sampling ]
1223 		 * [ Configure the interrupt ]
1224 		 * - Start measurement
1225 		 */
1226 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1227 		if (ret) {
1228 			dev_dbg(dev, "Failed to enable LVTS clock");
1229 			return ret;
1230 		}
1231 
1232 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1233 		if (ret) {
1234 			dev_dbg(dev, "Failed to connect to LVTS controller");
1235 			return ret;
1236 		}
1237 
1238 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1239 		if (ret) {
1240 			dev_dbg(dev, "Failed to initialize controller");
1241 			return ret;
1242 		}
1243 
1244 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1245 		if (ret) {
1246 			dev_dbg(dev, "Failed to calibrate controller");
1247 			return ret;
1248 		}
1249 
1250 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1251 		if (ret) {
1252 			dev_dbg(dev, "Failed to configure controller");
1253 			return ret;
1254 		}
1255 
1256 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1257 		if (ret) {
1258 			dev_dbg(dev, "Failed to start controller");
1259 			return ret;
1260 		}
1261 	}
1262 
1263 	return lvts_debugfs_init(dev, lvts_td);
1264 }
1265 
1266 static int lvts_probe(struct platform_device *pdev)
1267 {
1268 	const struct lvts_data *lvts_data;
1269 	struct lvts_domain *lvts_td;
1270 	struct device *dev = &pdev->dev;
1271 	struct resource *res;
1272 	int irq, ret;
1273 
1274 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1275 	if (!lvts_td)
1276 		return -ENOMEM;
1277 
1278 	lvts_data = of_device_get_match_data(dev);
1279 	if (!lvts_data)
1280 		return -ENODEV;
1281 
1282 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1283 	if (IS_ERR(lvts_td->clk))
1284 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1285 
1286 	res = platform_get_mem_or_io(pdev, 0);
1287 	if (!res)
1288 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1289 
1290 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1291 	if (IS_ERR(lvts_td->base))
1292 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1293 
1294 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1295 	if (IS_ERR(lvts_td->reset))
1296 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1297 
1298 	irq = platform_get_irq(pdev, 0);
1299 	if (irq < 0)
1300 		return irq;
1301 
1302 	golden_temp_offset = lvts_data->temp_offset;
1303 
1304 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1305 	if (ret)
1306 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1307 
1308 	/*
1309 	 * At this point the LVTS is initialized and enabled. We can
1310 	 * safely enable the interrupt.
1311 	 */
1312 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1313 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1314 	if (ret)
1315 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1316 
1317 	platform_set_drvdata(pdev, lvts_td);
1318 
1319 	return 0;
1320 }
1321 
1322 static void lvts_remove(struct platform_device *pdev)
1323 {
1324 	struct lvts_domain *lvts_td;
1325 	int i;
1326 
1327 	lvts_td = platform_get_drvdata(pdev);
1328 
1329 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1330 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1331 
1332 	lvts_debugfs_exit(lvts_td);
1333 }
1334 
1335 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1336 	{
1337 		.lvts_sensor = {
1338 			{ .dt_id = MT7988_CPU_0,
1339 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1340 			{ .dt_id = MT7988_CPU_1,
1341 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1342 			{ .dt_id = MT7988_ETH2P5G_0,
1343 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1344 			{ .dt_id = MT7988_ETH2P5G_1,
1345 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1346 		},
1347 		VALID_SENSOR_MAP(1, 1, 1, 1),
1348 		.offset = 0x0,
1349 	},
1350 	{
1351 		.lvts_sensor = {
1352 			{ .dt_id = MT7988_TOPS_0,
1353 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1354 			{ .dt_id = MT7988_TOPS_1,
1355 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1356 			{ .dt_id = MT7988_ETHWARP_0,
1357 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1358 			{ .dt_id = MT7988_ETHWARP_1,
1359 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1360 		},
1361 		VALID_SENSOR_MAP(1, 1, 1, 1),
1362 		.offset = 0x100,
1363 	}
1364 };
1365 
1366 static int lvts_suspend(struct device *dev)
1367 {
1368 	struct lvts_domain *lvts_td;
1369 	int i;
1370 
1371 	lvts_td = dev_get_drvdata(dev);
1372 
1373 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1374 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1375 
1376 	clk_disable_unprepare(lvts_td->clk);
1377 
1378 	return 0;
1379 }
1380 
1381 static int lvts_resume(struct device *dev)
1382 {
1383 	struct lvts_domain *lvts_td;
1384 	int i, ret;
1385 
1386 	lvts_td = dev_get_drvdata(dev);
1387 
1388 	ret = clk_prepare_enable(lvts_td->clk);
1389 	if (ret)
1390 		return ret;
1391 
1392 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1393 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * The MT8186 calibration data is stored as packed 3-byte little-endian
1400  * values using a weird layout that makes sense only when viewed as a 32-bit
1401  * hexadecimal word dump. Let's suppose SxBy where x = sensor number and
1402  * y = byte number where the LSB is y=0. We then have:
1403  *
1404  *   [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0]
1405  *
1406  * However, when considering a byte stream, those appear as follows:
1407  *
1408  *   [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0]
1409  *
1410  * Hence the rather confusing offsets provided below.
1411  */
1412 static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = {
1413 	{
1414 		.lvts_sensor = {
1415 			{ .dt_id = MT8186_LITTLE_CPU0,
1416 			  .cal_offsets = { 5, 6, 7 } },
1417 			{ .dt_id = MT8186_LITTLE_CPU1,
1418 			  .cal_offsets = { 10, 11, 4 } },
1419 			{ .dt_id = MT8186_LITTLE_CPU2,
1420 			  .cal_offsets = { 15, 8, 9 } },
1421 			{ .dt_id = MT8186_CAM,
1422 			  .cal_offsets = { 12, 13, 14 } }
1423 		},
1424 		VALID_SENSOR_MAP(1, 1, 1, 1),
1425 		.offset = 0x0,
1426 	},
1427 	{
1428 		.lvts_sensor = {
1429 			{ .dt_id = MT8186_BIG_CPU0,
1430 			  .cal_offsets = { 22, 23, 16 } },
1431 			{ .dt_id = MT8186_BIG_CPU1,
1432 			  .cal_offsets = { 27, 20, 21 } }
1433 		},
1434 		VALID_SENSOR_MAP(1, 1, 0, 0),
1435 		.offset = 0x100,
1436 	},
1437 	{
1438 		.lvts_sensor = {
1439 			{ .dt_id = MT8186_NNA,
1440 			  .cal_offsets = { 29, 30, 31 } },
1441 			{ .dt_id = MT8186_ADSP,
1442 			  .cal_offsets = { 34, 35, 28 } },
1443 			{ .dt_id = MT8186_MFG,
1444 			  .cal_offsets = { 39, 32, 33 } }
1445 		},
1446 		VALID_SENSOR_MAP(1, 1, 1, 0),
1447 		.offset = 0x200,
1448 	}
1449 };
1450 
1451 static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = {
1452 	{
1453 		.lvts_sensor = {
1454 			{ .dt_id = MT8188_MCU_LITTLE_CPU0,
1455 			  .cal_offsets = { 22, 23, 24 } },
1456 			{ .dt_id = MT8188_MCU_LITTLE_CPU1,
1457 			  .cal_offsets = { 25, 26, 27 } },
1458 			{ .dt_id = MT8188_MCU_LITTLE_CPU2,
1459 			  .cal_offsets = { 28, 29, 30 } },
1460 			{ .dt_id = MT8188_MCU_LITTLE_CPU3,
1461 			  .cal_offsets = { 31, 32, 33 } },
1462 		},
1463 		VALID_SENSOR_MAP(1, 1, 1, 1),
1464 		.offset = 0x0,
1465 	},
1466 	{
1467 		.lvts_sensor = {
1468 			{ .dt_id = MT8188_MCU_BIG_CPU0,
1469 			  .cal_offsets = { 34, 35, 36 } },
1470 			{ .dt_id = MT8188_MCU_BIG_CPU1,
1471 			  .cal_offsets = { 37, 38, 39 } },
1472 		},
1473 		VALID_SENSOR_MAP(1, 1, 0, 0),
1474 		.offset = 0x100,
1475 	}
1476 };
1477 
1478 static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = {
1479 	{
1480 		.lvts_sensor = {
1481 
1482 			{ /* unused */ },
1483 			{ .dt_id = MT8188_AP_APU,
1484 			  .cal_offsets = { 40, 41, 42 } },
1485 		},
1486 		VALID_SENSOR_MAP(0, 1, 0, 0),
1487 		.offset = 0x0,
1488 	},
1489 	{
1490 		.lvts_sensor = {
1491 			{ .dt_id = MT8188_AP_GPU1,
1492 			  .cal_offsets = { 43, 44, 45 } },
1493 			{ .dt_id = MT8188_AP_GPU2,
1494 			  .cal_offsets = { 46, 47, 48 } },
1495 			{ .dt_id = MT8188_AP_SOC1,
1496 			  .cal_offsets = { 49, 50, 51 } },
1497 		},
1498 		VALID_SENSOR_MAP(1, 1, 1, 0),
1499 		.offset = 0x100,
1500 	},
1501 	{
1502 		.lvts_sensor = {
1503 			{ .dt_id = MT8188_AP_SOC2,
1504 			  .cal_offsets = { 52, 53, 54 } },
1505 			{ .dt_id = MT8188_AP_SOC3,
1506 			  .cal_offsets = { 55, 56, 57 } },
1507 		},
1508 		VALID_SENSOR_MAP(1, 1, 0, 0),
1509 		.offset = 0x200,
1510 	},
1511 	{
1512 		.lvts_sensor = {
1513 			{ .dt_id = MT8188_AP_CAM1,
1514 			  .cal_offsets = { 58, 59, 60 } },
1515 			{ .dt_id = MT8188_AP_CAM2,
1516 			  .cal_offsets = { 61, 62, 63 } },
1517 		},
1518 		VALID_SENSOR_MAP(1, 1, 0, 0),
1519 		.offset = 0x300,
1520 	}
1521 };
1522 
1523 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1524 	{
1525 		.lvts_sensor = {
1526 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1527 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1528 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1529 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1530 		},
1531 		VALID_SENSOR_MAP(1, 1, 0, 0),
1532 		.offset = 0x0,
1533 		.mode = LVTS_MSR_FILTERED_MODE,
1534 	},
1535 	{
1536 		.lvts_sensor = {
1537 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1538 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1539 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1540 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1541 		},
1542 		VALID_SENSOR_MAP(1, 1, 0, 0),
1543 		.offset = 0x100,
1544 		.mode = LVTS_MSR_FILTERED_MODE,
1545 	},
1546 	{
1547 		.lvts_sensor = {
1548 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1549 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1550 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1551 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1552 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1553 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1554 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1555 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1556 		},
1557 		VALID_SENSOR_MAP(1, 1, 1, 1),
1558 		.offset = 0x200,
1559 		.mode = LVTS_MSR_FILTERED_MODE,
1560 	}
1561 };
1562 
1563 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1564 	{
1565 		.lvts_sensor = {
1566 			{ .dt_id = MT8192_AP_VPU0,
1567 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1568 			{ .dt_id = MT8192_AP_VPU1,
1569 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1570 		},
1571 		VALID_SENSOR_MAP(1, 1, 0, 0),
1572 		.offset = 0x0,
1573 	},
1574 	{
1575 		.lvts_sensor = {
1576 			{ .dt_id = MT8192_AP_GPU0,
1577 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1578 			{ .dt_id = MT8192_AP_GPU1,
1579 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1580 		},
1581 		VALID_SENSOR_MAP(1, 1, 0, 0),
1582 		.offset = 0x100,
1583 	},
1584 	{
1585 		.lvts_sensor = {
1586 			{ .dt_id = MT8192_AP_INFRA,
1587 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1588 			{ .dt_id = MT8192_AP_CAM,
1589 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1590 		},
1591 		VALID_SENSOR_MAP(1, 1, 0, 0),
1592 		.offset = 0x200,
1593 	},
1594 	{
1595 		.lvts_sensor = {
1596 			{ .dt_id = MT8192_AP_MD0,
1597 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1598 			{ .dt_id = MT8192_AP_MD1,
1599 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1600 			{ .dt_id = MT8192_AP_MD2,
1601 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1602 		},
1603 		VALID_SENSOR_MAP(1, 1, 1, 0),
1604 		.offset = 0x300,
1605 	}
1606 };
1607 
1608 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1609 	{
1610 		.lvts_sensor = {
1611 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1612 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1613 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1614 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1615 		},
1616 		VALID_SENSOR_MAP(1, 1, 0, 0),
1617 		.offset = 0x0,
1618 	},
1619 	{
1620 		.lvts_sensor = {
1621 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1622 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1623 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1624 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1625 		},
1626 		VALID_SENSOR_MAP(1, 1, 0, 0),
1627 		.offset = 0x100,
1628 	},
1629 	{
1630 		.lvts_sensor = {
1631 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1632 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1633 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1634 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1635 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1636 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1637 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1638 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1639 		},
1640 		VALID_SENSOR_MAP(1, 1, 1, 1),
1641 		.offset = 0x200,
1642 	}
1643 };
1644 
1645 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1646 	{
1647 		.lvts_sensor = {
1648 			{ .dt_id = MT8195_AP_VPU0,
1649 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1650 			{ .dt_id = MT8195_AP_VPU1,
1651 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1652 		},
1653 		VALID_SENSOR_MAP(1, 1, 0, 0),
1654 		.offset = 0x0,
1655 	},
1656 	{
1657 		.lvts_sensor = {
1658 			{ .dt_id = MT8195_AP_GPU0,
1659 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1660 			{ .dt_id = MT8195_AP_GPU1,
1661 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1662 		},
1663 		VALID_SENSOR_MAP(1, 1, 0, 0),
1664 		.offset = 0x100,
1665 	},
1666 	{
1667 		.lvts_sensor = {
1668 			{ .dt_id = MT8195_AP_VDEC,
1669 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1670 			{ .dt_id = MT8195_AP_IMG,
1671 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1672 			{ .dt_id = MT8195_AP_INFRA,
1673 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1674 		},
1675 		VALID_SENSOR_MAP(1, 1, 1, 0),
1676 		.offset = 0x200,
1677 	},
1678 	{
1679 		.lvts_sensor = {
1680 			{ .dt_id = MT8195_AP_CAM0,
1681 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1682 			{ .dt_id = MT8195_AP_CAM1,
1683 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1684 		},
1685 		VALID_SENSOR_MAP(1, 1, 0, 0),
1686 		.offset = 0x300,
1687 	}
1688 };
1689 
1690 static const struct lvts_data mt7988_lvts_ap_data = {
1691 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1692 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1693 	.temp_factor	= LVTS_COEFF_A_MT7988,
1694 	.temp_offset	= LVTS_COEFF_B_MT7988,
1695 	.gt_calib_bit_offset = 24,
1696 };
1697 
1698 static const struct lvts_data mt8186_lvts_data = {
1699 	.lvts_ctrl	= mt8186_lvts_data_ctrl,
1700 	.num_lvts_ctrl	= ARRAY_SIZE(mt8186_lvts_data_ctrl),
1701 	.temp_factor	= LVTS_COEFF_A_MT7988,
1702 	.temp_offset	= LVTS_COEFF_B_MT7988,
1703 	.gt_calib_bit_offset = 24,
1704 };
1705 
1706 static const struct lvts_data mt8188_lvts_mcu_data = {
1707 	.lvts_ctrl	= mt8188_lvts_mcu_data_ctrl,
1708 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl),
1709 	.temp_factor	= LVTS_COEFF_A_MT8195,
1710 	.temp_offset	= LVTS_COEFF_B_MT8195,
1711 	.gt_calib_bit_offset = 20,
1712 };
1713 
1714 static const struct lvts_data mt8188_lvts_ap_data = {
1715 	.lvts_ctrl	= mt8188_lvts_ap_data_ctrl,
1716 	.num_lvts_ctrl	= ARRAY_SIZE(mt8188_lvts_ap_data_ctrl),
1717 	.temp_factor	= LVTS_COEFF_A_MT8195,
1718 	.temp_offset	= LVTS_COEFF_B_MT8195,
1719 	.gt_calib_bit_offset = 20,
1720 };
1721 
1722 static const struct lvts_data mt8192_lvts_mcu_data = {
1723 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1724 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1725 	.temp_factor	= LVTS_COEFF_A_MT8195,
1726 	.temp_offset	= LVTS_COEFF_B_MT8195,
1727 	.gt_calib_bit_offset = 24,
1728 };
1729 
1730 static const struct lvts_data mt8192_lvts_ap_data = {
1731 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1732 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1733 	.temp_factor	= LVTS_COEFF_A_MT8195,
1734 	.temp_offset	= LVTS_COEFF_B_MT8195,
1735 	.gt_calib_bit_offset = 24,
1736 };
1737 
1738 static const struct lvts_data mt8195_lvts_mcu_data = {
1739 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1740 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1741 	.temp_factor	= LVTS_COEFF_A_MT8195,
1742 	.temp_offset	= LVTS_COEFF_B_MT8195,
1743 	.gt_calib_bit_offset = 24,
1744 };
1745 
1746 static const struct lvts_data mt8195_lvts_ap_data = {
1747 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1748 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1749 	.temp_factor	= LVTS_COEFF_A_MT8195,
1750 	.temp_offset	= LVTS_COEFF_B_MT8195,
1751 	.gt_calib_bit_offset = 24,
1752 };
1753 
1754 static const struct of_device_id lvts_of_match[] = {
1755 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1756 	{ .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data },
1757 	{ .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data },
1758 	{ .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data },
1759 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1760 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1761 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1762 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1763 	{},
1764 };
1765 MODULE_DEVICE_TABLE(of, lvts_of_match);
1766 
1767 static const struct dev_pm_ops lvts_pm_ops = {
1768 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1769 };
1770 
1771 static struct platform_driver lvts_driver = {
1772 	.probe = lvts_probe,
1773 	.remove_new = lvts_remove,
1774 	.driver = {
1775 		.name = "mtk-lvts-thermal",
1776 		.of_match_table = lvts_of_match,
1777 		.pm = &lvts_pm_ops,
1778 	},
1779 };
1780 module_platform_driver(lvts_driver);
1781 
1782 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1783 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1784 MODULE_LICENSE("GPL");
1785