xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 5b3367e28a2c47d74bd566b96854ef0de3caa6d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	int cal_offset[LVTS_SENSOR_MAX];
109 	int num_lvts_sensor;
110 	int offset;
111 	int mode;
112 };
113 
114 struct lvts_data {
115 	const struct lvts_ctrl_data *lvts_ctrl;
116 	int num_lvts_ctrl;
117 	int temp_factor;
118 	int temp_offset;
119 };
120 
121 struct lvts_sensor {
122 	struct thermal_zone_device *tz;
123 	void __iomem *msr;
124 	void __iomem *base;
125 	int id;
126 	int dt_id;
127 	int low_thresh;
128 	int high_thresh;
129 };
130 
131 struct lvts_ctrl {
132 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
133 	const struct lvts_data *lvts_data;
134 	u32 calibration[LVTS_SENSOR_MAX];
135 	u32 hw_tshut_raw_temp;
136 	int num_lvts_sensor;
137 	int mode;
138 	void __iomem *base;
139 	int low_thresh;
140 	int high_thresh;
141 };
142 
143 struct lvts_domain {
144 	struct lvts_ctrl *lvts_ctrl;
145 	struct reset_control *reset;
146 	struct clk *clk;
147 	int num_lvts_ctrl;
148 	void __iomem *base;
149 	size_t calib_len;
150 	u8 *calib;
151 #ifdef CONFIG_DEBUG_FS
152 	struct dentry *dom_dentry;
153 #endif
154 };
155 
156 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
157 
158 #define LVTS_DEBUG_FS_REGS(__reg)		\
159 {						\
160 	.name = __stringify(__reg),		\
161 	.offset = __reg(0),			\
162 }
163 
164 static const struct debugfs_reg32 lvts_regs[] = {
165 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
166 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
169 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
170 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
171 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
172 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
173 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
174 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
175 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
176 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
177 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
178 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
179 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
180 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
181 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
182 	LVTS_DEBUG_FS_REGS(LVTS_ID),
183 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
184 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
185 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
186 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
187 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
188 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
192 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
193 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
194 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
195 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
196 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
197 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
198 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
199 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
200 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
201 };
202 
203 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
204 {
205 	struct debugfs_regset32 *regset;
206 	struct lvts_ctrl *lvts_ctrl;
207 	struct dentry *dentry;
208 	char name[64];
209 	int i;
210 
211 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
212 	if (IS_ERR(lvts_td->dom_dentry))
213 		return 0;
214 
215 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
216 
217 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
218 
219 		sprintf(name, "controller%d", i);
220 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
221 		if (IS_ERR(dentry))
222 			continue;
223 
224 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
225 		if (!regset)
226 			continue;
227 
228 		regset->base = lvts_ctrl->base;
229 		regset->regs = lvts_regs;
230 		regset->nregs = ARRAY_SIZE(lvts_regs);
231 
232 		debugfs_create_regset32("registers", 0400, dentry, regset);
233 	}
234 
235 	return 0;
236 }
237 
238 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
239 {
240 	debugfs_remove_recursive(lvts_td->dom_dentry);
241 }
242 
243 #else
244 
245 static inline int lvts_debugfs_init(struct device *dev,
246 				    struct lvts_domain *lvts_td)
247 {
248 	return 0;
249 }
250 
251 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
252 
253 #endif
254 
255 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
256 {
257 	int temperature;
258 
259 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
260 	temperature += golden_temp_offset;
261 
262 	return temperature;
263 }
264 
265 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
266 {
267 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
268 
269 	raw_temp = div_s64(raw_temp, -temp_factor);
270 
271 	return raw_temp;
272 }
273 
274 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
275 {
276 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
277 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
278 						   sensors[lvts_sensor->id]);
279 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
280 	void __iomem *msr = lvts_sensor->msr;
281 	u32 value;
282 	int rc;
283 
284 	/*
285 	 * Measurement registers:
286 	 *
287 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
288 	 *
289 	 * Bits:
290 	 *
291 	 * 32-17: Unused
292 	 * 16	: Valid temperature
293 	 * 15-0	: Raw temperature
294 	 */
295 	rc = readl_poll_timeout(msr, value, value & BIT(16),
296 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
297 
298 	/*
299 	 * As the thermal zone temperature will read before the
300 	 * hardware sensor is fully initialized, we have to check the
301 	 * validity of the temperature returned when reading the
302 	 * measurement register. The thermal controller will set the
303 	 * valid bit temperature only when it is totally initialized.
304 	 *
305 	 * Otherwise, we may end up with garbage values out of the
306 	 * functionning temperature and directly jump to a system
307 	 * shutdown.
308 	 */
309 	if (rc)
310 		return -EAGAIN;
311 
312 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
313 
314 	return 0;
315 }
316 
317 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
318 {
319 	u32 masks[] = {
320 		LVTS_MONINT_OFFSET_SENSOR0,
321 		LVTS_MONINT_OFFSET_SENSOR1,
322 		LVTS_MONINT_OFFSET_SENSOR2,
323 		LVTS_MONINT_OFFSET_SENSOR3,
324 	};
325 	u32 value = 0;
326 	int i;
327 
328 	value = readl(LVTS_MONINT(lvts_ctrl->base));
329 
330 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
331 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
332 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
333 			value |= masks[i];
334 		else
335 			value &= ~masks[i];
336 	}
337 
338 	writel(value, LVTS_MONINT(lvts_ctrl->base));
339 }
340 
341 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
342 {
343 	int i;
344 
345 	if (high > lvts_ctrl->high_thresh)
346 		return true;
347 
348 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
349 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
350 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
351 			return false;
352 
353 	return true;
354 }
355 
356 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
357 {
358 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
359 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
360 						   sensors[lvts_sensor->id]);
361 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
362 	void __iomem *base = lvts_sensor->base;
363 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
364 				       lvts_data->temp_factor);
365 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
366 	bool should_update_thresh;
367 
368 	lvts_sensor->low_thresh = low;
369 	lvts_sensor->high_thresh = high;
370 
371 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
372 	if (should_update_thresh) {
373 		lvts_ctrl->high_thresh = high;
374 		lvts_ctrl->low_thresh = low;
375 	}
376 	lvts_update_irq_mask(lvts_ctrl);
377 
378 	if (!should_update_thresh)
379 		return 0;
380 
381 	/*
382 	 * Low offset temperature threshold
383 	 *
384 	 * LVTS_OFFSETL
385 	 *
386 	 * Bits:
387 	 *
388 	 * 14-0 : Raw temperature for threshold
389 	 */
390 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
391 		 thermal_zone_device_type(tz), low);
392 	writel(raw_low, LVTS_OFFSETL(base));
393 
394 	/*
395 	 * High offset temperature threshold
396 	 *
397 	 * LVTS_OFFSETH
398 	 *
399 	 * Bits:
400 	 *
401 	 * 14-0 : Raw temperature for threshold
402 	 */
403 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
404 		 thermal_zone_device_type(tz), high);
405 	writel(raw_high, LVTS_OFFSETH(base));
406 
407 	return 0;
408 }
409 
410 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
411 {
412 	irqreturn_t iret = IRQ_NONE;
413 	u32 value;
414 	u32 masks[] = {
415 		LVTS_INT_SENSOR0,
416 		LVTS_INT_SENSOR1,
417 		LVTS_INT_SENSOR2,
418 		LVTS_INT_SENSOR3
419 	};
420 	int i;
421 
422 	/*
423 	 * Interrupt monitoring status
424 	 *
425 	 * LVTS_MONINTST
426 	 *
427 	 * Bits:
428 	 *
429 	 * 31 : Interrupt for stage 3
430 	 * 30 : Interrupt for stage 2
431 	 * 29 : Interrupt for state 1
432 	 * 28 : Interrupt using filter on sensor 3
433 	 *
434 	 * 27 : Interrupt using immediate on sensor 3
435 	 * 26 : Interrupt normal to hot on sensor 3
436 	 * 25 : Interrupt high offset on sensor 3
437 	 * 24 : Interrupt low offset on sensor 3
438 	 *
439 	 * 23 : Interrupt hot threshold on sensor 3
440 	 * 22 : Interrupt cold threshold on sensor 3
441 	 * 21 : Interrupt using filter on sensor 2
442 	 * 20 : Interrupt using filter on sensor 1
443 	 *
444 	 * 19 : Interrupt using filter on sensor 0
445 	 * 18 : Interrupt using immediate on sensor 2
446 	 * 17 : Interrupt using immediate on sensor 1
447 	 * 16 : Interrupt using immediate on sensor 0
448 	 *
449 	 * 15 : Interrupt device access timeout interrupt
450 	 * 14 : Interrupt normal to hot on sensor 2
451 	 * 13 : Interrupt high offset interrupt on sensor 2
452 	 * 12 : Interrupt low offset interrupt on sensor 2
453 	 *
454 	 * 11 : Interrupt hot threshold on sensor 2
455 	 * 10 : Interrupt cold threshold on sensor 2
456 	 *  9 : Interrupt normal to hot on sensor 1
457 	 *  8 : Interrupt high offset interrupt on sensor 1
458 	 *
459 	 *  7 : Interrupt low offset interrupt on sensor 1
460 	 *  6 : Interrupt hot threshold on sensor 1
461 	 *  5 : Interrupt cold threshold on sensor 1
462 	 *  4 : Interrupt normal to hot on sensor 0
463 	 *
464 	 *  3 : Interrupt high offset interrupt on sensor 0
465 	 *  2 : Interrupt low offset interrupt on sensor 0
466 	 *  1 : Interrupt hot threshold on sensor 0
467 	 *  0 : Interrupt cold threshold on sensor 0
468 	 *
469 	 * We are interested in the sensor(s) responsible of the
470 	 * interrupt event. We update the thermal framework with the
471 	 * thermal zone associated with the sensor. The framework will
472 	 * take care of the rest whatever the kind of interrupt, we
473 	 * are only interested in which sensor raised the interrupt.
474 	 *
475 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
476 	 *                  => 0x1FC00000
477 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
478 	 *                  => 0x00247C00
479 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
480 	 *                  => 0X001203E0
481 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
482 	 *                  => 0x0009001F
483 	 */
484 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
485 
486 	/*
487 	 * Let's figure out which sensors raised the interrupt
488 	 *
489 	 * NOTE: the masks array must be ordered with the index
490 	 * corresponding to the sensor id eg. index=0, mask for
491 	 * sensor0.
492 	 */
493 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
494 
495 		if (!(value & masks[i]))
496 			continue;
497 
498 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
499 					   THERMAL_TRIP_VIOLATED);
500 		iret = IRQ_HANDLED;
501 	}
502 
503 	/*
504 	 * Write back to clear the interrupt status (W1C)
505 	 */
506 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
507 
508 	return iret;
509 }
510 
511 /*
512  * Temperature interrupt handler. Even if the driver supports more
513  * interrupt modes, we use the interrupt when the temperature crosses
514  * the hot threshold the way up and the way down (modulo the
515  * hysteresis).
516  *
517  * Each thermal domain has a couple of interrupts, one for hardware
518  * reset and another one for all the thermal events happening on the
519  * different sensors.
520  *
521  * The interrupt is configured for thermal events when crossing the
522  * hot temperature limit. At each interrupt, we check in every
523  * controller if there is an interrupt pending.
524  */
525 static irqreturn_t lvts_irq_handler(int irq, void *data)
526 {
527 	struct lvts_domain *lvts_td = data;
528 	irqreturn_t aux, iret = IRQ_NONE;
529 	int i;
530 
531 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
532 
533 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
534 		if (aux != IRQ_HANDLED)
535 			continue;
536 
537 		iret = IRQ_HANDLED;
538 	}
539 
540 	return iret;
541 }
542 
543 static struct thermal_zone_device_ops lvts_ops = {
544 	.get_temp = lvts_get_temp,
545 	.set_trips = lvts_set_trips,
546 };
547 
548 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
549 					const struct lvts_ctrl_data *lvts_ctrl_data)
550 {
551 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
552 	void __iomem *msr_regs[] = {
553 		LVTS_MSR0(lvts_ctrl->base),
554 		LVTS_MSR1(lvts_ctrl->base),
555 		LVTS_MSR2(lvts_ctrl->base),
556 		LVTS_MSR3(lvts_ctrl->base)
557 	};
558 
559 	void __iomem *imm_regs[] = {
560 		LVTS_IMMD0(lvts_ctrl->base),
561 		LVTS_IMMD1(lvts_ctrl->base),
562 		LVTS_IMMD2(lvts_ctrl->base),
563 		LVTS_IMMD3(lvts_ctrl->base)
564 	};
565 
566 	int i;
567 
568 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
569 
570 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
571 
572 		/*
573 		 * At this point, we don't know which id matches which
574 		 * sensor. Let's set arbitrally the id from the index.
575 		 */
576 		lvts_sensor[i].id = i;
577 
578 		/*
579 		 * The thermal zone registration will set the trip
580 		 * point interrupt in the thermal controller
581 		 * register. But this one will be reset in the
582 		 * initialization after. So we need to post pone the
583 		 * thermal zone creation after the controller is
584 		 * setup. For this reason, we store the device tree
585 		 * node id from the data in the sensor structure
586 		 */
587 		lvts_sensor[i].dt_id = dt_id;
588 
589 		/*
590 		 * We assign the base address of the thermal
591 		 * controller as a back pointer. So it will be
592 		 * accessible from the different thermal framework ops
593 		 * as we pass the lvts_sensor pointer as thermal zone
594 		 * private data.
595 		 */
596 		lvts_sensor[i].base = lvts_ctrl->base;
597 
598 		/*
599 		 * Each sensor has its own register address to read from.
600 		 */
601 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
602 			imm_regs[i] : msr_regs[i];
603 
604 		lvts_sensor[i].low_thresh = INT_MIN;
605 		lvts_sensor[i].high_thresh = INT_MIN;
606 	};
607 
608 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
609 
610 	return 0;
611 }
612 
613 /*
614  * The efuse blob values follows the sensor enumeration per thermal
615  * controller. The decoding of the stream is as follow:
616  *
617  * MT8192 :
618  * Stream index map for MCU Domain mt8192 :
619  *
620  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
621  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
622  *
623  * <-----sensor#2----->        <-----sensor#3----->
624  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
625  *
626  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
627  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
628  *
629  * Stream index map for AP Domain mt8192 :
630  *
631  * <-----sensor#0----->        <-----sensor#1----->
632  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
633  *
634  * <-----sensor#2----->        <-----sensor#3----->
635  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
636  *
637  * <-----sensor#4----->        <-----sensor#5----->
638  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
639  *
640  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
641  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
642  *
643  * MT8195 :
644  * Stream index map for MCU Domain mt8195 :
645  *
646  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
647  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
648  *
649  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
650  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
651  *
652  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
653  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
654  *
655  * Stream index map for AP Domain mt8195 :
656  *
657  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
658  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
659  *
660  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
661  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
662  *
663  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
664  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
665  *
666  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
667  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
668  *
669  * Note: In some cases, values don't strictly follow a little endian ordering.
670  * The data description gives byte offsets constituting each calibration value
671  * for each sensor.
672  */
673 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
674 					const struct lvts_ctrl_data *lvts_ctrl_data,
675 					u8 *efuse_calibration)
676 {
677 	int i;
678 
679 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
680 		const struct lvts_sensor_data *sensor =
681 					&lvts_ctrl_data->lvts_sensor[i];
682 
683 		lvts_ctrl->calibration[i] =
684 			(efuse_calibration[sensor->cal_offsets[0]] << 0) +
685 			(efuse_calibration[sensor->cal_offsets[1]] << 8) +
686 			(efuse_calibration[sensor->cal_offsets[2]] << 16);
687 	}
688 
689 	return 0;
690 }
691 
692 /*
693  * The efuse bytes stream can be split into different chunk of
694  * nvmems. This function reads and concatenate those into a single
695  * buffer so it can be read sequentially when initializing the
696  * calibration data.
697  */
698 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
699 					const struct lvts_data *lvts_data)
700 {
701 	struct device_node *np = dev_of_node(dev);
702 	struct nvmem_cell *cell;
703 	struct property *prop;
704 	const char *cell_name;
705 
706 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
707 		size_t len;
708 		u8 *efuse;
709 
710 		cell = of_nvmem_cell_get(np, cell_name);
711 		if (IS_ERR(cell)) {
712 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
713 			return PTR_ERR(cell);
714 		}
715 
716 		efuse = nvmem_cell_read(cell, &len);
717 
718 		nvmem_cell_put(cell);
719 
720 		if (IS_ERR(efuse)) {
721 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
722 			return PTR_ERR(efuse);
723 		}
724 
725 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
726 					       lvts_td->calib_len + len, GFP_KERNEL);
727 		if (!lvts_td->calib) {
728 			kfree(efuse);
729 			return -ENOMEM;
730 		}
731 
732 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
733 
734 		lvts_td->calib_len += len;
735 
736 		kfree(efuse);
737 	}
738 
739 	return 0;
740 }
741 
742 static int lvts_golden_temp_init(struct device *dev, u8 *calib, int temp_offset)
743 {
744 	u32 gt;
745 
746 	/*
747 	 * The golden temp information is contained in the 4th byte (index = 3)
748 	 * of efuse data.
749 	 */
750 	gt = calib[3];
751 
752 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
753 		golden_temp = gt;
754 
755 	golden_temp_offset = golden_temp * 500 + temp_offset;
756 
757 	return 0;
758 }
759 
760 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
761 					const struct lvts_data *lvts_data)
762 {
763 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
764 	struct lvts_ctrl *lvts_ctrl;
765 	int i, ret;
766 
767 	/*
768 	 * Create the calibration bytes stream from efuse data
769 	 */
770 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
771 	if (ret)
772 		return ret;
773 
774 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data->temp_offset);
775 	if (ret)
776 		return ret;
777 
778 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
779 	if (!lvts_ctrl)
780 		return -ENOMEM;
781 
782 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
783 
784 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
785 		lvts_ctrl[i].lvts_data = lvts_data;
786 
787 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
788 				       &lvts_data->lvts_ctrl[i]);
789 		if (ret)
790 			return ret;
791 
792 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
793 					    &lvts_data->lvts_ctrl[i],
794 					    lvts_td->calib);
795 		if (ret)
796 			return ret;
797 
798 		/*
799 		 * The mode the ctrl will use to read the temperature
800 		 * (filtered or immediate)
801 		 */
802 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
803 
804 		/*
805 		 * The temperature to raw temperature must be done
806 		 * after initializing the calibration.
807 		 */
808 		lvts_ctrl[i].hw_tshut_raw_temp =
809 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
810 					 lvts_data->temp_factor);
811 
812 		lvts_ctrl[i].low_thresh = INT_MIN;
813 		lvts_ctrl[i].high_thresh = INT_MIN;
814 	}
815 
816 	/*
817 	 * We no longer need the efuse bytes stream, let's free it
818 	 */
819 	devm_kfree(dev, lvts_td->calib);
820 
821 	lvts_td->lvts_ctrl = lvts_ctrl;
822 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
823 
824 	return 0;
825 }
826 
827 /*
828  * At this point the configuration register is the only place in the
829  * driver where we write multiple values. Per hardware constraint,
830  * each write in the configuration register must be separated by a
831  * delay of 2 us.
832  */
833 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
834 {
835 	int i;
836 
837 	/*
838 	 * Configuration register
839 	 */
840 	for (i = 0; i < nr_cmds; i++) {
841 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
842 		usleep_range(2, 4);
843 	}
844 }
845 
846 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
847 {
848 	/*
849 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
850 	 *
851 	 * Bits:
852 	 *
853 	 * 19-18 : Sensor to base the protection on
854 	 * 17-16 : Strategy:
855 	 *         00 : Average of 4 sensors
856 	 *         01 : Max of 4 sensors
857 	 *         10 : Selected sensor with bits 19-18
858 	 *         11 : Reserved
859 	 */
860 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
861 
862 	/*
863 	 * LVTS_PROTTA : Stage 1 temperature threshold
864 	 * LVTS_PROTTB : Stage 2 temperature threshold
865 	 * LVTS_PROTTC : Stage 3 temperature threshold
866 	 *
867 	 * Bits:
868 	 *
869 	 * 14-0: Raw temperature threshold
870 	 *
871 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
872 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
873 	 */
874 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
875 
876 	/*
877 	 * LVTS_MONINT : Interrupt configuration register
878 	 *
879 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
880 	 * register, except we set the bits to enable the interrupt.
881 	 */
882 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
883 
884 	return 0;
885 }
886 
887 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
888 {
889 	int ret;
890 
891 	ret = reset_control_assert(reset);
892 	if (ret)
893 		return ret;
894 
895 	return reset_control_deassert(reset);
896 }
897 
898 /*
899  * Enable or disable the clocks of a specified thermal controller
900  */
901 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
902 {
903 	/*
904 	 * LVTS_CLKEN : Internal LVTS clock
905 	 *
906 	 * Bits:
907 	 *
908 	 * 0 : enable / disable clock
909 	 */
910 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
911 
912 	return 0;
913 }
914 
915 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
916 {
917 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
918 
919 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
920 
921 	/*
922 	 * LVTS_ID : Get ID and status of the thermal controller
923 	 *
924 	 * Bits:
925 	 *
926 	 * 0-5	: thermal controller id
927 	 *   7	: thermal controller connection is valid
928 	 */
929 	id = readl(LVTS_ID(lvts_ctrl->base));
930 	if (!(id & BIT(7)))
931 		return -EIO;
932 
933 	return 0;
934 }
935 
936 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
937 {
938 	/*
939 	 * Write device mask: 0xC1030000
940 	 */
941 	u32 cmds[] = {
942 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
943 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
944 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
945 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
946 	};
947 
948 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
949 
950 	return 0;
951 }
952 
953 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
954 {
955 	int i;
956 	void __iomem *lvts_edata[] = {
957 		LVTS_EDATA00(lvts_ctrl->base),
958 		LVTS_EDATA01(lvts_ctrl->base),
959 		LVTS_EDATA02(lvts_ctrl->base),
960 		LVTS_EDATA03(lvts_ctrl->base)
961 	};
962 
963 	/*
964 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
965 	 *
966 	 * Bits:
967 	 *
968 	 * 20-0 : Efuse value for normalization data
969 	 */
970 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
971 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
972 
973 	return 0;
974 }
975 
976 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
977 {
978 	u32 value;
979 
980 	/*
981 	 * LVTS_TSSEL : Sensing point index numbering
982 	 *
983 	 * Bits:
984 	 *
985 	 * 31-24: ADC Sense 3
986 	 * 23-16: ADC Sense 2
987 	 * 15-8	: ADC Sense 1
988 	 * 7-0	: ADC Sense 0
989 	 */
990 	value = LVTS_TSSEL_CONF;
991 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
992 
993 	/*
994 	 * LVTS_CALSCALE : ADC voltage round
995 	 */
996 	value = 0x300;
997 	value = LVTS_CALSCALE_CONF;
998 
999 	/*
1000 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1001 	 *
1002 	 * Filters:
1003 	 *
1004 	 * 000 : One sample
1005 	 * 001 : Avg 2 samples
1006 	 * 010 : 4 samples, drop min and max, avg 2 samples
1007 	 * 011 : 6 samples, drop min and max, avg 4 samples
1008 	 * 100 : 10 samples, drop min and max, avg 8 samples
1009 	 * 101 : 18 samples, drop min and max, avg 16 samples
1010 	 *
1011 	 * Bits:
1012 	 *
1013 	 * 0-2  : Sensor0 filter
1014 	 * 3-5  : Sensor1 filter
1015 	 * 6-8  : Sensor2 filter
1016 	 * 9-11 : Sensor3 filter
1017 	 */
1018 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1019 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1020 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1021 
1022 	/*
1023 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1024 	 *
1025 	 * The clock source of LVTS thermal controller is 26MHz.
1026 	 *
1027 	 * The period unit is a time base for all the interval delays
1028 	 * specified in the registers. By default we use 12. The time
1029 	 * conversion is done by multiplying by 256 and 1/26.10^6
1030 	 *
1031 	 * An interval delay multiplied by the period unit gives the
1032 	 * duration in seconds.
1033 	 *
1034 	 * - Filter interval delay is a delay between two samples of
1035 	 * the same sensor.
1036 	 *
1037 	 * - Sensor interval delay is a delay between two samples of
1038 	 * different sensors.
1039 	 *
1040 	 * - Group interval delay is a delay between different rounds.
1041 	 *
1042 	 * For example:
1043 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1044 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1045 	 *     and then
1046 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1047 	 *     Filter interval delay = 1 * Period unit = 118.149us
1048 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1049 	 *     Group interval delay = 1 * Period unit = 118.149us
1050 	 *
1051 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1052 	 *        <--> Filter interval delay
1053 	 *                       <--> Sensor interval delay
1054 	 *                                             <--> Group interval delay
1055 	 * Bits:
1056 	 *      29 - 20 : Group interval
1057 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1058 	 *                or an interrupt everytime the hot threshold is crossed (0)
1059 	 *       9 - 0  : Period unit
1060 	 *
1061 	 */
1062 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1063 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1064 
1065 	/*
1066 	 * LVTS_MONCTL2 : Filtering and sensor interval
1067 	 *
1068 	 * Bits:
1069 	 *
1070 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1071 	 *              the same sensor, filter interval
1072 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1073 	 *
1074 	 */
1075 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1076 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1077 
1078 	return lvts_irq_init(lvts_ctrl);
1079 }
1080 
1081 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1082 {
1083 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1084 	struct thermal_zone_device *tz;
1085 	u32 sensor_map = 0;
1086 	int i;
1087 	/*
1088 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1089 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1090 	 */
1091 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1092 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1093 
1094 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1095 			     sensor_imm_bitmap : sensor_filt_bitmap;
1096 
1097 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1098 
1099 		int dt_id = lvts_sensors[i].dt_id;
1100 
1101 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1102 						   &lvts_ops);
1103 		if (IS_ERR(tz)) {
1104 			/*
1105 			 * This thermal zone is not described in the
1106 			 * device tree. It is not an error from the
1107 			 * thermal OF code POV, we just continue.
1108 			 */
1109 			if (PTR_ERR(tz) == -ENODEV)
1110 				continue;
1111 
1112 			return PTR_ERR(tz);
1113 		}
1114 
1115 		devm_thermal_add_hwmon_sysfs(dev, tz);
1116 
1117 		/*
1118 		 * The thermal zone pointer will be needed in the
1119 		 * interrupt handler, we store it in the sensor
1120 		 * structure. The thermal domain structure will be
1121 		 * passed to the interrupt handler private data as the
1122 		 * interrupt is shared for all the controller
1123 		 * belonging to the thermal domain.
1124 		 */
1125 		lvts_sensors[i].tz = tz;
1126 
1127 		/*
1128 		 * This sensor was correctly associated with a thermal
1129 		 * zone, let's set the corresponding bit in the sensor
1130 		 * map, so we can enable the temperature monitoring in
1131 		 * the hardware thermal controller.
1132 		 */
1133 		sensor_map |= sensor_bitmap[i];
1134 	}
1135 
1136 	/*
1137 	 * The initialization of the thermal zones give us
1138 	 * which sensor point to enable. If any thermal zone
1139 	 * was not described in the device tree, it won't be
1140 	 * enabled here in the sensor map.
1141 	 */
1142 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1143 		/*
1144 		 * LVTS_MSRCTL1 : Measurement control
1145 		 *
1146 		 * Bits:
1147 		 *
1148 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1149 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1150 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1151 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1152 		 *
1153 		 * That configuration will ignore the filtering and the delays
1154 		 * introduced in MONCTL1 and MONCTL2
1155 		 */
1156 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1157 	} else {
1158 		/*
1159 		 * Bits:
1160 		 *      9: Single point access flow
1161 		 *    0-3: Enable sensing point 0-3
1162 		 */
1163 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1170 					const struct lvts_data *lvts_data)
1171 {
1172 	struct lvts_ctrl *lvts_ctrl;
1173 	int i, ret;
1174 
1175 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1176 	if (ret)
1177 		return ret;
1178 
1179 	ret = lvts_domain_reset(dev, lvts_td->reset);
1180 	if (ret) {
1181 		dev_dbg(dev, "Failed to reset domain");
1182 		return ret;
1183 	}
1184 
1185 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1186 
1187 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1188 
1189 		/*
1190 		 * Initialization steps:
1191 		 *
1192 		 * - Enable the clock
1193 		 * - Connect to the LVTS
1194 		 * - Initialize the LVTS
1195 		 * - Prepare the calibration data
1196 		 * - Select monitored sensors
1197 		 * [ Configure sampling ]
1198 		 * [ Configure the interrupt ]
1199 		 * - Start measurement
1200 		 */
1201 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1202 		if (ret) {
1203 			dev_dbg(dev, "Failed to enable LVTS clock");
1204 			return ret;
1205 		}
1206 
1207 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1208 		if (ret) {
1209 			dev_dbg(dev, "Failed to connect to LVTS controller");
1210 			return ret;
1211 		}
1212 
1213 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1214 		if (ret) {
1215 			dev_dbg(dev, "Failed to initialize controller");
1216 			return ret;
1217 		}
1218 
1219 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1220 		if (ret) {
1221 			dev_dbg(dev, "Failed to calibrate controller");
1222 			return ret;
1223 		}
1224 
1225 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1226 		if (ret) {
1227 			dev_dbg(dev, "Failed to configure controller");
1228 			return ret;
1229 		}
1230 
1231 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1232 		if (ret) {
1233 			dev_dbg(dev, "Failed to start controller");
1234 			return ret;
1235 		}
1236 	}
1237 
1238 	return lvts_debugfs_init(dev, lvts_td);
1239 }
1240 
1241 static int lvts_probe(struct platform_device *pdev)
1242 {
1243 	const struct lvts_data *lvts_data;
1244 	struct lvts_domain *lvts_td;
1245 	struct device *dev = &pdev->dev;
1246 	struct resource *res;
1247 	int irq, ret;
1248 
1249 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1250 	if (!lvts_td)
1251 		return -ENOMEM;
1252 
1253 	lvts_data = of_device_get_match_data(dev);
1254 
1255 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1256 	if (IS_ERR(lvts_td->clk))
1257 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1258 
1259 	res = platform_get_mem_or_io(pdev, 0);
1260 	if (!res)
1261 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1262 
1263 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1264 	if (IS_ERR(lvts_td->base))
1265 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1266 
1267 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1268 	if (IS_ERR(lvts_td->reset))
1269 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1270 
1271 	irq = platform_get_irq(pdev, 0);
1272 	if (irq < 0)
1273 		return irq;
1274 
1275 	golden_temp_offset = lvts_data->temp_offset;
1276 
1277 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1278 	if (ret)
1279 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1280 
1281 	/*
1282 	 * At this point the LVTS is initialized and enabled. We can
1283 	 * safely enable the interrupt.
1284 	 */
1285 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1286 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1287 	if (ret)
1288 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1289 
1290 	platform_set_drvdata(pdev, lvts_td);
1291 
1292 	return 0;
1293 }
1294 
1295 static void lvts_remove(struct platform_device *pdev)
1296 {
1297 	struct lvts_domain *lvts_td;
1298 	int i;
1299 
1300 	lvts_td = platform_get_drvdata(pdev);
1301 
1302 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1303 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1304 
1305 	lvts_debugfs_exit(lvts_td);
1306 }
1307 
1308 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1309 	{
1310 		.lvts_sensor = {
1311 			{ .dt_id = MT7988_CPU_0,
1312 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1313 			{ .dt_id = MT7988_CPU_1,
1314 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1315 			{ .dt_id = MT7988_ETH2P5G_0,
1316 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1317 			{ .dt_id = MT7988_ETH2P5G_1,
1318 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1319 		},
1320 		.num_lvts_sensor = 4,
1321 		.offset = 0x0,
1322 	},
1323 	{
1324 		.lvts_sensor = {
1325 			{ .dt_id = MT7988_TOPS_0,
1326 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1327 			{ .dt_id = MT7988_TOPS_1,
1328 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1329 			{ .dt_id = MT7988_ETHWARP_0,
1330 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1331 			{ .dt_id = MT7988_ETHWARP_1,
1332 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1333 		},
1334 		.num_lvts_sensor = 4,
1335 		.offset = 0x100,
1336 	}
1337 };
1338 
1339 static int lvts_suspend(struct device *dev)
1340 {
1341 	struct lvts_domain *lvts_td;
1342 	int i;
1343 
1344 	lvts_td = dev_get_drvdata(dev);
1345 
1346 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1347 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1348 
1349 	clk_disable_unprepare(lvts_td->clk);
1350 
1351 	return 0;
1352 }
1353 
1354 static int lvts_resume(struct device *dev)
1355 {
1356 	struct lvts_domain *lvts_td;
1357 	int i, ret;
1358 
1359 	lvts_td = dev_get_drvdata(dev);
1360 
1361 	ret = clk_prepare_enable(lvts_td->clk);
1362 	if (ret)
1363 		return ret;
1364 
1365 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1366 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1367 
1368 	return 0;
1369 }
1370 
1371 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1372 	{
1373 		.lvts_sensor = {
1374 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1375 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1376 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1377 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1378 		},
1379 		.num_lvts_sensor = 2,
1380 		.offset = 0x0,
1381 		.mode = LVTS_MSR_FILTERED_MODE,
1382 	},
1383 	{
1384 		.lvts_sensor = {
1385 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1386 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1387 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1388 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1389 		},
1390 		.num_lvts_sensor = 2,
1391 		.offset = 0x100,
1392 		.mode = LVTS_MSR_FILTERED_MODE,
1393 	},
1394 	{
1395 		.lvts_sensor = {
1396 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1397 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1398 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1399 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1400 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1401 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1402 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1403 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1404 		},
1405 		.num_lvts_sensor = 4,
1406 		.offset = 0x200,
1407 		.mode = LVTS_MSR_FILTERED_MODE,
1408 	}
1409 };
1410 
1411 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1412 	{
1413 		.lvts_sensor = {
1414 			{ .dt_id = MT8192_AP_VPU0,
1415 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1416 			{ .dt_id = MT8192_AP_VPU1,
1417 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1418 		},
1419 		.num_lvts_sensor = 2,
1420 		.offset = 0x0,
1421 	},
1422 	{
1423 		.lvts_sensor = {
1424 			{ .dt_id = MT8192_AP_GPU0,
1425 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1426 			{ .dt_id = MT8192_AP_GPU1,
1427 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1428 		},
1429 		.num_lvts_sensor = 2,
1430 		.offset = 0x100,
1431 	},
1432 	{
1433 		.lvts_sensor = {
1434 			{ .dt_id = MT8192_AP_INFRA,
1435 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1436 			{ .dt_id = MT8192_AP_CAM,
1437 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1438 		},
1439 		.num_lvts_sensor = 2,
1440 		.offset = 0x200,
1441 	},
1442 	{
1443 		.lvts_sensor = {
1444 			{ .dt_id = MT8192_AP_MD0,
1445 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1446 			{ .dt_id = MT8192_AP_MD1,
1447 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1448 			{ .dt_id = MT8192_AP_MD2,
1449 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1450 		},
1451 		.num_lvts_sensor = 3,
1452 		.offset = 0x300,
1453 	}
1454 };
1455 
1456 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1457 	{
1458 		.lvts_sensor = {
1459 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1460 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1461 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1462 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1463 		},
1464 		.num_lvts_sensor = 2,
1465 		.offset = 0x0,
1466 	},
1467 	{
1468 		.lvts_sensor = {
1469 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1470 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1471 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1472 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1473 		},
1474 		.num_lvts_sensor = 2,
1475 		.offset = 0x100,
1476 	},
1477 	{
1478 		.lvts_sensor = {
1479 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1480 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1481 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1482 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1483 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1484 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1485 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1486 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1487 		},
1488 		.num_lvts_sensor = 4,
1489 		.offset = 0x200,
1490 	}
1491 };
1492 
1493 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1494 	{
1495 		.lvts_sensor = {
1496 			{ .dt_id = MT8195_AP_VPU0,
1497 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1498 			{ .dt_id = MT8195_AP_VPU1,
1499 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1500 		},
1501 		.num_lvts_sensor = 2,
1502 		.offset = 0x0,
1503 	},
1504 	{
1505 		.lvts_sensor = {
1506 			{ .dt_id = MT8195_AP_GPU0,
1507 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1508 			{ .dt_id = MT8195_AP_GPU1,
1509 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1510 		},
1511 		.num_lvts_sensor = 2,
1512 		.offset = 0x100,
1513 	},
1514 	{
1515 		.lvts_sensor = {
1516 			{ .dt_id = MT8195_AP_VDEC,
1517 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1518 			{ .dt_id = MT8195_AP_IMG,
1519 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1520 			{ .dt_id = MT8195_AP_INFRA,
1521 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1522 		},
1523 		.num_lvts_sensor = 3,
1524 		.offset = 0x200,
1525 	},
1526 	{
1527 		.lvts_sensor = {
1528 			{ .dt_id = MT8195_AP_CAM0,
1529 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1530 			{ .dt_id = MT8195_AP_CAM1,
1531 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1532 		},
1533 		.num_lvts_sensor = 2,
1534 		.offset = 0x300,
1535 	}
1536 };
1537 
1538 static const struct lvts_data mt7988_lvts_ap_data = {
1539 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1540 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1541 	.temp_factor	= LVTS_COEFF_A_MT7988,
1542 	.temp_offset	= LVTS_COEFF_B_MT7988,
1543 };
1544 
1545 static const struct lvts_data mt8192_lvts_mcu_data = {
1546 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1547 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1548 	.temp_factor	= LVTS_COEFF_A_MT8195,
1549 	.temp_offset	= LVTS_COEFF_B_MT8195,
1550 };
1551 
1552 static const struct lvts_data mt8192_lvts_ap_data = {
1553 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1554 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1555 	.temp_factor	= LVTS_COEFF_A_MT8195,
1556 	.temp_offset	= LVTS_COEFF_B_MT8195,
1557 };
1558 
1559 static const struct lvts_data mt8195_lvts_mcu_data = {
1560 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1561 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1562 	.temp_factor	= LVTS_COEFF_A_MT8195,
1563 	.temp_offset	= LVTS_COEFF_B_MT8195,
1564 };
1565 
1566 static const struct lvts_data mt8195_lvts_ap_data = {
1567 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1568 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1569 	.temp_factor	= LVTS_COEFF_A_MT8195,
1570 	.temp_offset	= LVTS_COEFF_B_MT8195,
1571 };
1572 
1573 static const struct of_device_id lvts_of_match[] = {
1574 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1575 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1576 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1577 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1578 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1579 	{},
1580 };
1581 MODULE_DEVICE_TABLE(of, lvts_of_match);
1582 
1583 static const struct dev_pm_ops lvts_pm_ops = {
1584 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1585 };
1586 
1587 static struct platform_driver lvts_driver = {
1588 	.probe = lvts_probe,
1589 	.remove_new = lvts_remove,
1590 	.driver = {
1591 		.name = "mtk-lvts-thermal",
1592 		.of_match_table = lvts_of_match,
1593 		.pm = &lvts_pm_ops,
1594 	},
1595 };
1596 module_platform_driver(lvts_driver);
1597 
1598 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1599 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1600 MODULE_LICENSE("GPL");
1601