xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 2cc0b1a2169b0f4af83cc5a52a1693c8ab2e2f1d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_TSHUT_TEMP		105000
95 
96 #define LVTS_MINIMUM_THRESHOLD		20000
97 
98 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
99 static int golden_temp_offset;
100 
101 struct lvts_sensor_data {
102 	int dt_id;
103 	u8 cal_offsets[3];
104 };
105 
106 struct lvts_ctrl_data {
107 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
108 	int cal_offset[LVTS_SENSOR_MAX];
109 	int num_lvts_sensor;
110 	int offset;
111 	int mode;
112 };
113 
114 struct lvts_data {
115 	const struct lvts_ctrl_data *lvts_ctrl;
116 	int num_lvts_ctrl;
117 	int temp_factor;
118 	int temp_offset;
119 };
120 
121 struct lvts_sensor {
122 	struct thermal_zone_device *tz;
123 	void __iomem *msr;
124 	void __iomem *base;
125 	int id;
126 	int dt_id;
127 	int low_thresh;
128 	int high_thresh;
129 };
130 
131 struct lvts_ctrl {
132 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
133 	const struct lvts_data *lvts_data;
134 	u32 calibration[LVTS_SENSOR_MAX];
135 	u32 hw_tshut_raw_temp;
136 	int num_lvts_sensor;
137 	int mode;
138 	void __iomem *base;
139 	int low_thresh;
140 	int high_thresh;
141 };
142 
143 struct lvts_domain {
144 	struct lvts_ctrl *lvts_ctrl;
145 	struct reset_control *reset;
146 	struct clk *clk;
147 	int num_lvts_ctrl;
148 	void __iomem *base;
149 	size_t calib_len;
150 	u8 *calib;
151 #ifdef CONFIG_DEBUG_FS
152 	struct dentry *dom_dentry;
153 #endif
154 };
155 
156 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
157 
158 #define LVTS_DEBUG_FS_REGS(__reg)		\
159 {						\
160 	.name = __stringify(__reg),		\
161 	.offset = __reg(0),			\
162 }
163 
164 static const struct debugfs_reg32 lvts_regs[] = {
165 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
166 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
167 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
169 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
170 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
171 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
172 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
173 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
174 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
175 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
176 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
177 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
178 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
179 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
180 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
181 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
182 	LVTS_DEBUG_FS_REGS(LVTS_ID),
183 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
184 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
185 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
186 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
187 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
188 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
189 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
192 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
193 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
194 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
195 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
196 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
197 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
198 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
199 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
200 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
201 };
202 
203 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
204 {
205 	struct debugfs_regset32 *regset;
206 	struct lvts_ctrl *lvts_ctrl;
207 	struct dentry *dentry;
208 	char name[64];
209 	int i;
210 
211 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
212 	if (IS_ERR(lvts_td->dom_dentry))
213 		return 0;
214 
215 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
216 
217 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
218 
219 		sprintf(name, "controller%d", i);
220 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
221 		if (IS_ERR(dentry))
222 			continue;
223 
224 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
225 		if (!regset)
226 			continue;
227 
228 		regset->base = lvts_ctrl->base;
229 		regset->regs = lvts_regs;
230 		regset->nregs = ARRAY_SIZE(lvts_regs);
231 
232 		debugfs_create_regset32("registers", 0400, dentry, regset);
233 	}
234 
235 	return 0;
236 }
237 
238 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
239 {
240 	debugfs_remove_recursive(lvts_td->dom_dentry);
241 }
242 
243 #else
244 
245 static inline int lvts_debugfs_init(struct device *dev,
246 				    struct lvts_domain *lvts_td)
247 {
248 	return 0;
249 }
250 
251 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
252 
253 #endif
254 
255 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
256 {
257 	int temperature;
258 
259 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
260 	temperature += golden_temp_offset;
261 
262 	return temperature;
263 }
264 
265 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
266 {
267 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
268 
269 	raw_temp = div_s64(raw_temp, -temp_factor);
270 
271 	return raw_temp;
272 }
273 
274 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
275 {
276 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
277 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
278 						   sensors[lvts_sensor->id]);
279 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
280 	void __iomem *msr = lvts_sensor->msr;
281 	u32 value;
282 	int rc;
283 
284 	/*
285 	 * Measurement registers:
286 	 *
287 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
288 	 *
289 	 * Bits:
290 	 *
291 	 * 32-17: Unused
292 	 * 16	: Valid temperature
293 	 * 15-0	: Raw temperature
294 	 */
295 	rc = readl_poll_timeout(msr, value, value & BIT(16),
296 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
297 
298 	/*
299 	 * As the thermal zone temperature will read before the
300 	 * hardware sensor is fully initialized, we have to check the
301 	 * validity of the temperature returned when reading the
302 	 * measurement register. The thermal controller will set the
303 	 * valid bit temperature only when it is totally initialized.
304 	 *
305 	 * Otherwise, we may end up with garbage values out of the
306 	 * functionning temperature and directly jump to a system
307 	 * shutdown.
308 	 */
309 	if (rc)
310 		return -EAGAIN;
311 
312 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
313 
314 	return 0;
315 }
316 
317 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
318 {
319 	u32 masks[] = {
320 		LVTS_MONINT_OFFSET_SENSOR0,
321 		LVTS_MONINT_OFFSET_SENSOR1,
322 		LVTS_MONINT_OFFSET_SENSOR2,
323 		LVTS_MONINT_OFFSET_SENSOR3,
324 	};
325 	u32 value = 0;
326 	int i;
327 
328 	value = readl(LVTS_MONINT(lvts_ctrl->base));
329 
330 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
331 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
332 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
333 			value |= masks[i];
334 		else
335 			value &= ~masks[i];
336 	}
337 
338 	writel(value, LVTS_MONINT(lvts_ctrl->base));
339 }
340 
341 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
342 {
343 	int i;
344 
345 	if (high > lvts_ctrl->high_thresh)
346 		return true;
347 
348 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
349 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
350 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
351 			return false;
352 
353 	return true;
354 }
355 
356 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
357 {
358 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
359 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
360 						   sensors[lvts_sensor->id]);
361 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
362 	void __iomem *base = lvts_sensor->base;
363 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
364 				       lvts_data->temp_factor);
365 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
366 	bool should_update_thresh;
367 
368 	lvts_sensor->low_thresh = low;
369 	lvts_sensor->high_thresh = high;
370 
371 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
372 	if (should_update_thresh) {
373 		lvts_ctrl->high_thresh = high;
374 		lvts_ctrl->low_thresh = low;
375 	}
376 	lvts_update_irq_mask(lvts_ctrl);
377 
378 	if (!should_update_thresh)
379 		return 0;
380 
381 	/*
382 	 * Low offset temperature threshold
383 	 *
384 	 * LVTS_OFFSETL
385 	 *
386 	 * Bits:
387 	 *
388 	 * 14-0 : Raw temperature for threshold
389 	 */
390 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
391 		 thermal_zone_device_type(tz), low);
392 	writel(raw_low, LVTS_OFFSETL(base));
393 
394 	/*
395 	 * High offset temperature threshold
396 	 *
397 	 * LVTS_OFFSETH
398 	 *
399 	 * Bits:
400 	 *
401 	 * 14-0 : Raw temperature for threshold
402 	 */
403 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
404 		 thermal_zone_device_type(tz), high);
405 	writel(raw_high, LVTS_OFFSETH(base));
406 
407 	return 0;
408 }
409 
410 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
411 {
412 	irqreturn_t iret = IRQ_NONE;
413 	u32 value;
414 	u32 masks[] = {
415 		LVTS_INT_SENSOR0,
416 		LVTS_INT_SENSOR1,
417 		LVTS_INT_SENSOR2,
418 		LVTS_INT_SENSOR3
419 	};
420 	int i;
421 
422 	/*
423 	 * Interrupt monitoring status
424 	 *
425 	 * LVTS_MONINTST
426 	 *
427 	 * Bits:
428 	 *
429 	 * 31 : Interrupt for stage 3
430 	 * 30 : Interrupt for stage 2
431 	 * 29 : Interrupt for state 1
432 	 * 28 : Interrupt using filter on sensor 3
433 	 *
434 	 * 27 : Interrupt using immediate on sensor 3
435 	 * 26 : Interrupt normal to hot on sensor 3
436 	 * 25 : Interrupt high offset on sensor 3
437 	 * 24 : Interrupt low offset on sensor 3
438 	 *
439 	 * 23 : Interrupt hot threshold on sensor 3
440 	 * 22 : Interrupt cold threshold on sensor 3
441 	 * 21 : Interrupt using filter on sensor 2
442 	 * 20 : Interrupt using filter on sensor 1
443 	 *
444 	 * 19 : Interrupt using filter on sensor 0
445 	 * 18 : Interrupt using immediate on sensor 2
446 	 * 17 : Interrupt using immediate on sensor 1
447 	 * 16 : Interrupt using immediate on sensor 0
448 	 *
449 	 * 15 : Interrupt device access timeout interrupt
450 	 * 14 : Interrupt normal to hot on sensor 2
451 	 * 13 : Interrupt high offset interrupt on sensor 2
452 	 * 12 : Interrupt low offset interrupt on sensor 2
453 	 *
454 	 * 11 : Interrupt hot threshold on sensor 2
455 	 * 10 : Interrupt cold threshold on sensor 2
456 	 *  9 : Interrupt normal to hot on sensor 1
457 	 *  8 : Interrupt high offset interrupt on sensor 1
458 	 *
459 	 *  7 : Interrupt low offset interrupt on sensor 1
460 	 *  6 : Interrupt hot threshold on sensor 1
461 	 *  5 : Interrupt cold threshold on sensor 1
462 	 *  4 : Interrupt normal to hot on sensor 0
463 	 *
464 	 *  3 : Interrupt high offset interrupt on sensor 0
465 	 *  2 : Interrupt low offset interrupt on sensor 0
466 	 *  1 : Interrupt hot threshold on sensor 0
467 	 *  0 : Interrupt cold threshold on sensor 0
468 	 *
469 	 * We are interested in the sensor(s) responsible of the
470 	 * interrupt event. We update the thermal framework with the
471 	 * thermal zone associated with the sensor. The framework will
472 	 * take care of the rest whatever the kind of interrupt, we
473 	 * are only interested in which sensor raised the interrupt.
474 	 *
475 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
476 	 *                  => 0x1FC00000
477 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
478 	 *                  => 0x00247C00
479 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
480 	 *                  => 0X001203E0
481 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
482 	 *                  => 0x0009001F
483 	 */
484 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
485 
486 	/*
487 	 * Let's figure out which sensors raised the interrupt
488 	 *
489 	 * NOTE: the masks array must be ordered with the index
490 	 * corresponding to the sensor id eg. index=0, mask for
491 	 * sensor0.
492 	 */
493 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
494 
495 		if (!(value & masks[i]))
496 			continue;
497 
498 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
499 					   THERMAL_TRIP_VIOLATED);
500 		iret = IRQ_HANDLED;
501 	}
502 
503 	/*
504 	 * Write back to clear the interrupt status (W1C)
505 	 */
506 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
507 
508 	return iret;
509 }
510 
511 /*
512  * Temperature interrupt handler. Even if the driver supports more
513  * interrupt modes, we use the interrupt when the temperature crosses
514  * the hot threshold the way up and the way down (modulo the
515  * hysteresis).
516  *
517  * Each thermal domain has a couple of interrupts, one for hardware
518  * reset and another one for all the thermal events happening on the
519  * different sensors.
520  *
521  * The interrupt is configured for thermal events when crossing the
522  * hot temperature limit. At each interrupt, we check in every
523  * controller if there is an interrupt pending.
524  */
525 static irqreturn_t lvts_irq_handler(int irq, void *data)
526 {
527 	struct lvts_domain *lvts_td = data;
528 	irqreturn_t aux, iret = IRQ_NONE;
529 	int i;
530 
531 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
532 
533 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
534 		if (aux != IRQ_HANDLED)
535 			continue;
536 
537 		iret = IRQ_HANDLED;
538 	}
539 
540 	return iret;
541 }
542 
543 static struct thermal_zone_device_ops lvts_ops = {
544 	.get_temp = lvts_get_temp,
545 	.set_trips = lvts_set_trips,
546 };
547 
548 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
549 					const struct lvts_ctrl_data *lvts_ctrl_data)
550 {
551 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
552 	void __iomem *msr_regs[] = {
553 		LVTS_MSR0(lvts_ctrl->base),
554 		LVTS_MSR1(lvts_ctrl->base),
555 		LVTS_MSR2(lvts_ctrl->base),
556 		LVTS_MSR3(lvts_ctrl->base)
557 	};
558 
559 	void __iomem *imm_regs[] = {
560 		LVTS_IMMD0(lvts_ctrl->base),
561 		LVTS_IMMD1(lvts_ctrl->base),
562 		LVTS_IMMD2(lvts_ctrl->base),
563 		LVTS_IMMD3(lvts_ctrl->base)
564 	};
565 
566 	int i;
567 
568 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
569 
570 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
571 
572 		/*
573 		 * At this point, we don't know which id matches which
574 		 * sensor. Let's set arbitrally the id from the index.
575 		 */
576 		lvts_sensor[i].id = i;
577 
578 		/*
579 		 * The thermal zone registration will set the trip
580 		 * point interrupt in the thermal controller
581 		 * register. But this one will be reset in the
582 		 * initialization after. So we need to post pone the
583 		 * thermal zone creation after the controller is
584 		 * setup. For this reason, we store the device tree
585 		 * node id from the data in the sensor structure
586 		 */
587 		lvts_sensor[i].dt_id = dt_id;
588 
589 		/*
590 		 * We assign the base address of the thermal
591 		 * controller as a back pointer. So it will be
592 		 * accessible from the different thermal framework ops
593 		 * as we pass the lvts_sensor pointer as thermal zone
594 		 * private data.
595 		 */
596 		lvts_sensor[i].base = lvts_ctrl->base;
597 
598 		/*
599 		 * Each sensor has its own register address to read from.
600 		 */
601 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
602 			imm_regs[i] : msr_regs[i];
603 
604 		lvts_sensor[i].low_thresh = INT_MIN;
605 		lvts_sensor[i].high_thresh = INT_MIN;
606 	};
607 
608 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
609 
610 	return 0;
611 }
612 
613 /*
614  * The efuse blob values follows the sensor enumeration per thermal
615  * controller. The decoding of the stream is as follow:
616  *
617  * MT8192 :
618  * Stream index map for MCU Domain mt8192 :
619  *
620  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
621  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
622  *
623  * <-----sensor#2----->        <-----sensor#3----->
624  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
625  *
626  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
627  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
628  *
629  * Stream index map for AP Domain mt8192 :
630  *
631  * <-----sensor#0----->        <-----sensor#1----->
632  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
633  *
634  * <-----sensor#2----->        <-----sensor#3----->
635  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
636  *
637  * <-----sensor#4----->        <-----sensor#5----->
638  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
639  *
640  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
641  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
642  *
643  * MT8195 :
644  * Stream index map for MCU Domain mt8195 :
645  *
646  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
647  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
648  *
649  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
650  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
651  *
652  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
653  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
654  *
655  * Stream index map for AP Domain mt8195 :
656  *
657  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
658  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
659  *
660  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
661  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
662  *
663  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
664  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
665  *
666  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
667  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
668  *
669  * Note: In some cases, values don't strictly follow a little endian ordering.
670  * The data description gives byte offsets constituting each calibration value
671  * for each sensor.
672  */
673 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
674 					const struct lvts_ctrl_data *lvts_ctrl_data,
675 					u8 *efuse_calibration,
676 					size_t calib_len)
677 {
678 	int i;
679 
680 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
681 		const struct lvts_sensor_data *sensor =
682 					&lvts_ctrl_data->lvts_sensor[i];
683 
684 		if (sensor->cal_offsets[0] >= calib_len ||
685 		    sensor->cal_offsets[1] >= calib_len ||
686 		    sensor->cal_offsets[2] >= calib_len)
687 			return -EINVAL;
688 
689 		lvts_ctrl->calibration[i] =
690 			(efuse_calibration[sensor->cal_offsets[0]] << 0) +
691 			(efuse_calibration[sensor->cal_offsets[1]] << 8) +
692 			(efuse_calibration[sensor->cal_offsets[2]] << 16);
693 	}
694 
695 	return 0;
696 }
697 
698 /*
699  * The efuse bytes stream can be split into different chunk of
700  * nvmems. This function reads and concatenate those into a single
701  * buffer so it can be read sequentially when initializing the
702  * calibration data.
703  */
704 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
705 					const struct lvts_data *lvts_data)
706 {
707 	struct device_node *np = dev_of_node(dev);
708 	struct nvmem_cell *cell;
709 	struct property *prop;
710 	const char *cell_name;
711 
712 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
713 		size_t len;
714 		u8 *efuse;
715 
716 		cell = of_nvmem_cell_get(np, cell_name);
717 		if (IS_ERR(cell)) {
718 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
719 			return PTR_ERR(cell);
720 		}
721 
722 		efuse = nvmem_cell_read(cell, &len);
723 
724 		nvmem_cell_put(cell);
725 
726 		if (IS_ERR(efuse)) {
727 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
728 			return PTR_ERR(efuse);
729 		}
730 
731 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
732 					       lvts_td->calib_len + len, GFP_KERNEL);
733 		if (!lvts_td->calib) {
734 			kfree(efuse);
735 			return -ENOMEM;
736 		}
737 
738 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
739 
740 		lvts_td->calib_len += len;
741 
742 		kfree(efuse);
743 	}
744 
745 	return 0;
746 }
747 
748 static int lvts_golden_temp_init(struct device *dev, u8 *calib, int temp_offset)
749 {
750 	u32 gt;
751 
752 	/*
753 	 * The golden temp information is contained in the 4th byte (index = 3)
754 	 * of efuse data.
755 	 */
756 	gt = calib[3];
757 
758 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
759 		golden_temp = gt;
760 
761 	golden_temp_offset = golden_temp * 500 + temp_offset;
762 
763 	return 0;
764 }
765 
766 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
767 					const struct lvts_data *lvts_data)
768 {
769 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
770 	struct lvts_ctrl *lvts_ctrl;
771 	int i, ret;
772 
773 	/*
774 	 * Create the calibration bytes stream from efuse data
775 	 */
776 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
777 	if (ret)
778 		return ret;
779 
780 	ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data->temp_offset);
781 	if (ret)
782 		return ret;
783 
784 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
785 	if (!lvts_ctrl)
786 		return -ENOMEM;
787 
788 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
789 
790 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
791 		lvts_ctrl[i].lvts_data = lvts_data;
792 
793 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
794 				       &lvts_data->lvts_ctrl[i]);
795 		if (ret)
796 			return ret;
797 
798 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
799 					    &lvts_data->lvts_ctrl[i],
800 					    lvts_td->calib,
801 					    lvts_td->calib_len);
802 		if (ret)
803 			return ret;
804 
805 		/*
806 		 * The mode the ctrl will use to read the temperature
807 		 * (filtered or immediate)
808 		 */
809 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
810 
811 		/*
812 		 * The temperature to raw temperature must be done
813 		 * after initializing the calibration.
814 		 */
815 		lvts_ctrl[i].hw_tshut_raw_temp =
816 			lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP,
817 					 lvts_data->temp_factor);
818 
819 		lvts_ctrl[i].low_thresh = INT_MIN;
820 		lvts_ctrl[i].high_thresh = INT_MIN;
821 	}
822 
823 	/*
824 	 * We no longer need the efuse bytes stream, let's free it
825 	 */
826 	devm_kfree(dev, lvts_td->calib);
827 
828 	lvts_td->lvts_ctrl = lvts_ctrl;
829 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
830 
831 	return 0;
832 }
833 
834 /*
835  * At this point the configuration register is the only place in the
836  * driver where we write multiple values. Per hardware constraint,
837  * each write in the configuration register must be separated by a
838  * delay of 2 us.
839  */
840 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
841 {
842 	int i;
843 
844 	/*
845 	 * Configuration register
846 	 */
847 	for (i = 0; i < nr_cmds; i++) {
848 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
849 		usleep_range(2, 4);
850 	}
851 }
852 
853 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
854 {
855 	/*
856 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
857 	 *
858 	 * Bits:
859 	 *
860 	 * 19-18 : Sensor to base the protection on
861 	 * 17-16 : Strategy:
862 	 *         00 : Average of 4 sensors
863 	 *         01 : Max of 4 sensors
864 	 *         10 : Selected sensor with bits 19-18
865 	 *         11 : Reserved
866 	 */
867 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
868 
869 	/*
870 	 * LVTS_PROTTA : Stage 1 temperature threshold
871 	 * LVTS_PROTTB : Stage 2 temperature threshold
872 	 * LVTS_PROTTC : Stage 3 temperature threshold
873 	 *
874 	 * Bits:
875 	 *
876 	 * 14-0: Raw temperature threshold
877 	 *
878 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
879 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
880 	 */
881 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
882 
883 	/*
884 	 * LVTS_MONINT : Interrupt configuration register
885 	 *
886 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
887 	 * register, except we set the bits to enable the interrupt.
888 	 */
889 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
890 
891 	return 0;
892 }
893 
894 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
895 {
896 	int ret;
897 
898 	ret = reset_control_assert(reset);
899 	if (ret)
900 		return ret;
901 
902 	return reset_control_deassert(reset);
903 }
904 
905 /*
906  * Enable or disable the clocks of a specified thermal controller
907  */
908 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
909 {
910 	/*
911 	 * LVTS_CLKEN : Internal LVTS clock
912 	 *
913 	 * Bits:
914 	 *
915 	 * 0 : enable / disable clock
916 	 */
917 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
918 
919 	return 0;
920 }
921 
922 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
923 {
924 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
925 
926 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
927 
928 	/*
929 	 * LVTS_ID : Get ID and status of the thermal controller
930 	 *
931 	 * Bits:
932 	 *
933 	 * 0-5	: thermal controller id
934 	 *   7	: thermal controller connection is valid
935 	 */
936 	id = readl(LVTS_ID(lvts_ctrl->base));
937 	if (!(id & BIT(7)))
938 		return -EIO;
939 
940 	return 0;
941 }
942 
943 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
944 {
945 	/*
946 	 * Write device mask: 0xC1030000
947 	 */
948 	u32 cmds[] = {
949 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
950 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
951 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
952 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
953 	};
954 
955 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
956 
957 	return 0;
958 }
959 
960 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
961 {
962 	int i;
963 	void __iomem *lvts_edata[] = {
964 		LVTS_EDATA00(lvts_ctrl->base),
965 		LVTS_EDATA01(lvts_ctrl->base),
966 		LVTS_EDATA02(lvts_ctrl->base),
967 		LVTS_EDATA03(lvts_ctrl->base)
968 	};
969 
970 	/*
971 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
972 	 *
973 	 * Bits:
974 	 *
975 	 * 20-0 : Efuse value for normalization data
976 	 */
977 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
978 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
979 
980 	return 0;
981 }
982 
983 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
984 {
985 	u32 value;
986 
987 	/*
988 	 * LVTS_TSSEL : Sensing point index numbering
989 	 *
990 	 * Bits:
991 	 *
992 	 * 31-24: ADC Sense 3
993 	 * 23-16: ADC Sense 2
994 	 * 15-8	: ADC Sense 1
995 	 * 7-0	: ADC Sense 0
996 	 */
997 	value = LVTS_TSSEL_CONF;
998 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
999 
1000 	/*
1001 	 * LVTS_CALSCALE : ADC voltage round
1002 	 */
1003 	value = 0x300;
1004 	value = LVTS_CALSCALE_CONF;
1005 
1006 	/*
1007 	 * LVTS_MSRCTL0 : Sensor filtering strategy
1008 	 *
1009 	 * Filters:
1010 	 *
1011 	 * 000 : One sample
1012 	 * 001 : Avg 2 samples
1013 	 * 010 : 4 samples, drop min and max, avg 2 samples
1014 	 * 011 : 6 samples, drop min and max, avg 4 samples
1015 	 * 100 : 10 samples, drop min and max, avg 8 samples
1016 	 * 101 : 18 samples, drop min and max, avg 16 samples
1017 	 *
1018 	 * Bits:
1019 	 *
1020 	 * 0-2  : Sensor0 filter
1021 	 * 3-5  : Sensor1 filter
1022 	 * 6-8  : Sensor2 filter
1023 	 * 9-11 : Sensor3 filter
1024 	 */
1025 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1026 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1027 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1028 
1029 	/*
1030 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1031 	 *
1032 	 * The clock source of LVTS thermal controller is 26MHz.
1033 	 *
1034 	 * The period unit is a time base for all the interval delays
1035 	 * specified in the registers. By default we use 12. The time
1036 	 * conversion is done by multiplying by 256 and 1/26.10^6
1037 	 *
1038 	 * An interval delay multiplied by the period unit gives the
1039 	 * duration in seconds.
1040 	 *
1041 	 * - Filter interval delay is a delay between two samples of
1042 	 * the same sensor.
1043 	 *
1044 	 * - Sensor interval delay is a delay between two samples of
1045 	 * different sensors.
1046 	 *
1047 	 * - Group interval delay is a delay between different rounds.
1048 	 *
1049 	 * For example:
1050 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1051 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1052 	 *     and then
1053 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1054 	 *     Filter interval delay = 1 * Period unit = 118.149us
1055 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1056 	 *     Group interval delay = 1 * Period unit = 118.149us
1057 	 *
1058 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1059 	 *        <--> Filter interval delay
1060 	 *                       <--> Sensor interval delay
1061 	 *                                             <--> Group interval delay
1062 	 * Bits:
1063 	 *      29 - 20 : Group interval
1064 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1065 	 *                or an interrupt everytime the hot threshold is crossed (0)
1066 	 *       9 - 0  : Period unit
1067 	 *
1068 	 */
1069 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1070 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1071 
1072 	/*
1073 	 * LVTS_MONCTL2 : Filtering and sensor interval
1074 	 *
1075 	 * Bits:
1076 	 *
1077 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1078 	 *              the same sensor, filter interval
1079 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1080 	 *
1081 	 */
1082 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1083 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1084 
1085 	return lvts_irq_init(lvts_ctrl);
1086 }
1087 
1088 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1089 {
1090 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1091 	struct thermal_zone_device *tz;
1092 	u32 sensor_map = 0;
1093 	int i;
1094 	/*
1095 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1096 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1097 	 */
1098 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1099 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1100 
1101 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1102 			     sensor_imm_bitmap : sensor_filt_bitmap;
1103 
1104 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1105 
1106 		int dt_id = lvts_sensors[i].dt_id;
1107 
1108 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1109 						   &lvts_ops);
1110 		if (IS_ERR(tz)) {
1111 			/*
1112 			 * This thermal zone is not described in the
1113 			 * device tree. It is not an error from the
1114 			 * thermal OF code POV, we just continue.
1115 			 */
1116 			if (PTR_ERR(tz) == -ENODEV)
1117 				continue;
1118 
1119 			return PTR_ERR(tz);
1120 		}
1121 
1122 		devm_thermal_add_hwmon_sysfs(dev, tz);
1123 
1124 		/*
1125 		 * The thermal zone pointer will be needed in the
1126 		 * interrupt handler, we store it in the sensor
1127 		 * structure. The thermal domain structure will be
1128 		 * passed to the interrupt handler private data as the
1129 		 * interrupt is shared for all the controller
1130 		 * belonging to the thermal domain.
1131 		 */
1132 		lvts_sensors[i].tz = tz;
1133 
1134 		/*
1135 		 * This sensor was correctly associated with a thermal
1136 		 * zone, let's set the corresponding bit in the sensor
1137 		 * map, so we can enable the temperature monitoring in
1138 		 * the hardware thermal controller.
1139 		 */
1140 		sensor_map |= sensor_bitmap[i];
1141 	}
1142 
1143 	/*
1144 	 * The initialization of the thermal zones give us
1145 	 * which sensor point to enable. If any thermal zone
1146 	 * was not described in the device tree, it won't be
1147 	 * enabled here in the sensor map.
1148 	 */
1149 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1150 		/*
1151 		 * LVTS_MSRCTL1 : Measurement control
1152 		 *
1153 		 * Bits:
1154 		 *
1155 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1156 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1157 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1158 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1159 		 *
1160 		 * That configuration will ignore the filtering and the delays
1161 		 * introduced in MONCTL1 and MONCTL2
1162 		 */
1163 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1164 	} else {
1165 		/*
1166 		 * Bits:
1167 		 *      9: Single point access flow
1168 		 *    0-3: Enable sensing point 0-3
1169 		 */
1170 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1177 					const struct lvts_data *lvts_data)
1178 {
1179 	struct lvts_ctrl *lvts_ctrl;
1180 	int i, ret;
1181 
1182 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1183 	if (ret)
1184 		return ret;
1185 
1186 	ret = lvts_domain_reset(dev, lvts_td->reset);
1187 	if (ret) {
1188 		dev_dbg(dev, "Failed to reset domain");
1189 		return ret;
1190 	}
1191 
1192 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1193 
1194 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1195 
1196 		/*
1197 		 * Initialization steps:
1198 		 *
1199 		 * - Enable the clock
1200 		 * - Connect to the LVTS
1201 		 * - Initialize the LVTS
1202 		 * - Prepare the calibration data
1203 		 * - Select monitored sensors
1204 		 * [ Configure sampling ]
1205 		 * [ Configure the interrupt ]
1206 		 * - Start measurement
1207 		 */
1208 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1209 		if (ret) {
1210 			dev_dbg(dev, "Failed to enable LVTS clock");
1211 			return ret;
1212 		}
1213 
1214 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1215 		if (ret) {
1216 			dev_dbg(dev, "Failed to connect to LVTS controller");
1217 			return ret;
1218 		}
1219 
1220 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1221 		if (ret) {
1222 			dev_dbg(dev, "Failed to initialize controller");
1223 			return ret;
1224 		}
1225 
1226 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1227 		if (ret) {
1228 			dev_dbg(dev, "Failed to calibrate controller");
1229 			return ret;
1230 		}
1231 
1232 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1233 		if (ret) {
1234 			dev_dbg(dev, "Failed to configure controller");
1235 			return ret;
1236 		}
1237 
1238 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1239 		if (ret) {
1240 			dev_dbg(dev, "Failed to start controller");
1241 			return ret;
1242 		}
1243 	}
1244 
1245 	return lvts_debugfs_init(dev, lvts_td);
1246 }
1247 
1248 static int lvts_probe(struct platform_device *pdev)
1249 {
1250 	const struct lvts_data *lvts_data;
1251 	struct lvts_domain *lvts_td;
1252 	struct device *dev = &pdev->dev;
1253 	struct resource *res;
1254 	int irq, ret;
1255 
1256 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1257 	if (!lvts_td)
1258 		return -ENOMEM;
1259 
1260 	lvts_data = of_device_get_match_data(dev);
1261 
1262 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1263 	if (IS_ERR(lvts_td->clk))
1264 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1265 
1266 	res = platform_get_mem_or_io(pdev, 0);
1267 	if (!res)
1268 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1269 
1270 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1271 	if (IS_ERR(lvts_td->base))
1272 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1273 
1274 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1275 	if (IS_ERR(lvts_td->reset))
1276 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1277 
1278 	irq = platform_get_irq(pdev, 0);
1279 	if (irq < 0)
1280 		return irq;
1281 
1282 	golden_temp_offset = lvts_data->temp_offset;
1283 
1284 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1285 	if (ret)
1286 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1287 
1288 	/*
1289 	 * At this point the LVTS is initialized and enabled. We can
1290 	 * safely enable the interrupt.
1291 	 */
1292 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1293 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1294 	if (ret)
1295 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1296 
1297 	platform_set_drvdata(pdev, lvts_td);
1298 
1299 	return 0;
1300 }
1301 
1302 static void lvts_remove(struct platform_device *pdev)
1303 {
1304 	struct lvts_domain *lvts_td;
1305 	int i;
1306 
1307 	lvts_td = platform_get_drvdata(pdev);
1308 
1309 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1310 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1311 
1312 	lvts_debugfs_exit(lvts_td);
1313 }
1314 
1315 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1316 	{
1317 		.lvts_sensor = {
1318 			{ .dt_id = MT7988_CPU_0,
1319 			  .cal_offsets = { 0x00, 0x01, 0x02 } },
1320 			{ .dt_id = MT7988_CPU_1,
1321 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1322 			{ .dt_id = MT7988_ETH2P5G_0,
1323 			  .cal_offsets = { 0x08, 0x09, 0x0a } },
1324 			{ .dt_id = MT7988_ETH2P5G_1,
1325 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } }
1326 		},
1327 		.num_lvts_sensor = 4,
1328 		.offset = 0x0,
1329 	},
1330 	{
1331 		.lvts_sensor = {
1332 			{ .dt_id = MT7988_TOPS_0,
1333 			   .cal_offsets = { 0x14, 0x15, 0x16 } },
1334 			{ .dt_id = MT7988_TOPS_1,
1335 			   .cal_offsets = { 0x18, 0x19, 0x1a } },
1336 			{ .dt_id = MT7988_ETHWARP_0,
1337 			   .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1338 			{ .dt_id = MT7988_ETHWARP_1,
1339 			   .cal_offsets = { 0x20, 0x21, 0x22 } }
1340 		},
1341 		.num_lvts_sensor = 4,
1342 		.offset = 0x100,
1343 	}
1344 };
1345 
1346 static int lvts_suspend(struct device *dev)
1347 {
1348 	struct lvts_domain *lvts_td;
1349 	int i;
1350 
1351 	lvts_td = dev_get_drvdata(dev);
1352 
1353 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1354 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1355 
1356 	clk_disable_unprepare(lvts_td->clk);
1357 
1358 	return 0;
1359 }
1360 
1361 static int lvts_resume(struct device *dev)
1362 {
1363 	struct lvts_domain *lvts_td;
1364 	int i, ret;
1365 
1366 	lvts_td = dev_get_drvdata(dev);
1367 
1368 	ret = clk_prepare_enable(lvts_td->clk);
1369 	if (ret)
1370 		return ret;
1371 
1372 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1373 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1374 
1375 	return 0;
1376 }
1377 
1378 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1379 	{
1380 		.lvts_sensor = {
1381 			{ .dt_id = MT8192_MCU_BIG_CPU0,
1382 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1383 			{ .dt_id = MT8192_MCU_BIG_CPU1,
1384 			  .cal_offsets = { 0x08, 0x09, 0x0a } }
1385 		},
1386 		.num_lvts_sensor = 2,
1387 		.offset = 0x0,
1388 		.mode = LVTS_MSR_FILTERED_MODE,
1389 	},
1390 	{
1391 		.lvts_sensor = {
1392 			{ .dt_id = MT8192_MCU_BIG_CPU2,
1393 			  .cal_offsets = { 0x0c, 0x0d, 0x0e } },
1394 			{ .dt_id = MT8192_MCU_BIG_CPU3,
1395 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1396 		},
1397 		.num_lvts_sensor = 2,
1398 		.offset = 0x100,
1399 		.mode = LVTS_MSR_FILTERED_MODE,
1400 	},
1401 	{
1402 		.lvts_sensor = {
1403 			{ .dt_id = MT8192_MCU_LITTLE_CPU0,
1404 			  .cal_offsets = { 0x14, 0x15, 0x16 } },
1405 			{ .dt_id = MT8192_MCU_LITTLE_CPU1,
1406 			  .cal_offsets = { 0x18, 0x19, 0x1a } },
1407 			{ .dt_id = MT8192_MCU_LITTLE_CPU2,
1408 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1409 			{ .dt_id = MT8192_MCU_LITTLE_CPU3,
1410 			  .cal_offsets = { 0x20, 0x21, 0x22 } }
1411 		},
1412 		.num_lvts_sensor = 4,
1413 		.offset = 0x200,
1414 		.mode = LVTS_MSR_FILTERED_MODE,
1415 	}
1416 };
1417 
1418 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1419 	{
1420 		.lvts_sensor = {
1421 			{ .dt_id = MT8192_AP_VPU0,
1422 			  .cal_offsets = { 0x24, 0x25, 0x26 } },
1423 			{ .dt_id = MT8192_AP_VPU1,
1424 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1425 		},
1426 		.num_lvts_sensor = 2,
1427 		.offset = 0x0,
1428 	},
1429 	{
1430 		.lvts_sensor = {
1431 			{ .dt_id = MT8192_AP_GPU0,
1432 			  .cal_offsets = { 0x2c, 0x2d, 0x2e } },
1433 			{ .dt_id = MT8192_AP_GPU1,
1434 			  .cal_offsets = { 0x30, 0x31, 0x32 } }
1435 		},
1436 		.num_lvts_sensor = 2,
1437 		.offset = 0x100,
1438 	},
1439 	{
1440 		.lvts_sensor = {
1441 			{ .dt_id = MT8192_AP_INFRA,
1442 			  .cal_offsets = { 0x34, 0x35, 0x36 } },
1443 			{ .dt_id = MT8192_AP_CAM,
1444 			  .cal_offsets = { 0x38, 0x39, 0x3a } },
1445 		},
1446 		.num_lvts_sensor = 2,
1447 		.offset = 0x200,
1448 	},
1449 	{
1450 		.lvts_sensor = {
1451 			{ .dt_id = MT8192_AP_MD0,
1452 			  .cal_offsets = { 0x3c, 0x3d, 0x3e } },
1453 			{ .dt_id = MT8192_AP_MD1,
1454 			  .cal_offsets = { 0x40, 0x41, 0x42 } },
1455 			{ .dt_id = MT8192_AP_MD2,
1456 			  .cal_offsets = { 0x44, 0x45, 0x46 } }
1457 		},
1458 		.num_lvts_sensor = 3,
1459 		.offset = 0x300,
1460 	}
1461 };
1462 
1463 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1464 	{
1465 		.lvts_sensor = {
1466 			{ .dt_id = MT8195_MCU_BIG_CPU0,
1467 			  .cal_offsets = { 0x04, 0x05, 0x06 } },
1468 			{ .dt_id = MT8195_MCU_BIG_CPU1,
1469 			  .cal_offsets = { 0x07, 0x08, 0x09 } }
1470 		},
1471 		.num_lvts_sensor = 2,
1472 		.offset = 0x0,
1473 	},
1474 	{
1475 		.lvts_sensor = {
1476 			{ .dt_id = MT8195_MCU_BIG_CPU2,
1477 			  .cal_offsets = { 0x0d, 0x0e, 0x0f } },
1478 			{ .dt_id = MT8195_MCU_BIG_CPU3,
1479 			  .cal_offsets = { 0x10, 0x11, 0x12 } }
1480 		},
1481 		.num_lvts_sensor = 2,
1482 		.offset = 0x100,
1483 	},
1484 	{
1485 		.lvts_sensor = {
1486 			{ .dt_id = MT8195_MCU_LITTLE_CPU0,
1487 			  .cal_offsets = { 0x16, 0x17, 0x18 } },
1488 			{ .dt_id = MT8195_MCU_LITTLE_CPU1,
1489 			  .cal_offsets = { 0x19, 0x1a, 0x1b } },
1490 			{ .dt_id = MT8195_MCU_LITTLE_CPU2,
1491 			  .cal_offsets = { 0x1c, 0x1d, 0x1e } },
1492 			{ .dt_id = MT8195_MCU_LITTLE_CPU3,
1493 			  .cal_offsets = { 0x1f, 0x20, 0x21 } }
1494 		},
1495 		.num_lvts_sensor = 4,
1496 		.offset = 0x200,
1497 	}
1498 };
1499 
1500 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1501 	{
1502 		.lvts_sensor = {
1503 			{ .dt_id = MT8195_AP_VPU0,
1504 			  .cal_offsets = { 0x25, 0x26, 0x27 } },
1505 			{ .dt_id = MT8195_AP_VPU1,
1506 			  .cal_offsets = { 0x28, 0x29, 0x2a } }
1507 		},
1508 		.num_lvts_sensor = 2,
1509 		.offset = 0x0,
1510 	},
1511 	{
1512 		.lvts_sensor = {
1513 			{ .dt_id = MT8195_AP_GPU0,
1514 			  .cal_offsets = { 0x2e, 0x2f, 0x30 } },
1515 			{ .dt_id = MT8195_AP_GPU1,
1516 			  .cal_offsets = { 0x31, 0x32, 0x33 } }
1517 		},
1518 		.num_lvts_sensor = 2,
1519 		.offset = 0x100,
1520 	},
1521 	{
1522 		.lvts_sensor = {
1523 			{ .dt_id = MT8195_AP_VDEC,
1524 			  .cal_offsets = { 0x37, 0x38, 0x39 } },
1525 			{ .dt_id = MT8195_AP_IMG,
1526 			  .cal_offsets = { 0x3a, 0x3b, 0x3c } },
1527 			{ .dt_id = MT8195_AP_INFRA,
1528 			  .cal_offsets = { 0x3d, 0x3e, 0x3f } }
1529 		},
1530 		.num_lvts_sensor = 3,
1531 		.offset = 0x200,
1532 	},
1533 	{
1534 		.lvts_sensor = {
1535 			{ .dt_id = MT8195_AP_CAM0,
1536 			  .cal_offsets = { 0x43, 0x44, 0x45 } },
1537 			{ .dt_id = MT8195_AP_CAM1,
1538 			  .cal_offsets = { 0x46, 0x47, 0x48 } }
1539 		},
1540 		.num_lvts_sensor = 2,
1541 		.offset = 0x300,
1542 	}
1543 };
1544 
1545 static const struct lvts_data mt7988_lvts_ap_data = {
1546 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1547 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1548 	.temp_factor	= LVTS_COEFF_A_MT7988,
1549 	.temp_offset	= LVTS_COEFF_B_MT7988,
1550 };
1551 
1552 static const struct lvts_data mt8192_lvts_mcu_data = {
1553 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1554 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1555 	.temp_factor	= LVTS_COEFF_A_MT8195,
1556 	.temp_offset	= LVTS_COEFF_B_MT8195,
1557 };
1558 
1559 static const struct lvts_data mt8192_lvts_ap_data = {
1560 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1561 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1562 	.temp_factor	= LVTS_COEFF_A_MT8195,
1563 	.temp_offset	= LVTS_COEFF_B_MT8195,
1564 };
1565 
1566 static const struct lvts_data mt8195_lvts_mcu_data = {
1567 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1568 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1569 	.temp_factor	= LVTS_COEFF_A_MT8195,
1570 	.temp_offset	= LVTS_COEFF_B_MT8195,
1571 };
1572 
1573 static const struct lvts_data mt8195_lvts_ap_data = {
1574 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1575 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1576 	.temp_factor	= LVTS_COEFF_A_MT8195,
1577 	.temp_offset	= LVTS_COEFF_B_MT8195,
1578 };
1579 
1580 static const struct of_device_id lvts_of_match[] = {
1581 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1582 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1583 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1584 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1585 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1586 	{},
1587 };
1588 MODULE_DEVICE_TABLE(of, lvts_of_match);
1589 
1590 static const struct dev_pm_ops lvts_pm_ops = {
1591 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1592 };
1593 
1594 static struct platform_driver lvts_driver = {
1595 	.probe = lvts_probe,
1596 	.remove_new = lvts_remove,
1597 	.driver = {
1598 		.name = "mtk-lvts-thermal",
1599 		.of_match_table = lvts_of_match,
1600 		.pm = &lvts_pm_ops,
1601 	},
1602 };
1603 module_platform_driver(lvts_driver);
1604 
1605 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1606 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1607 MODULE_LICENSE("GPL");
1608