1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2023 MediaTek Inc. 4 * Author: Balsam CHIHI <bchihi@baylibre.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/clk-provider.h> 9 #include <linux/delay.h> 10 #include <linux/debugfs.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/iopoll.h> 14 #include <linux/kernel.h> 15 #include <linux/nvmem-consumer.h> 16 #include <linux/of.h> 17 #include <linux/platform_device.h> 18 #include <linux/reset.h> 19 #include <linux/thermal.h> 20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h> 21 22 #include "../thermal_hwmon.h" 23 24 #define LVTS_MONCTL0(__base) (__base + 0x0000) 25 #define LVTS_MONCTL1(__base) (__base + 0x0004) 26 #define LVTS_MONCTL2(__base) (__base + 0x0008) 27 #define LVTS_MONINT(__base) (__base + 0x000C) 28 #define LVTS_MONINTSTS(__base) (__base + 0x0010) 29 #define LVTS_MONIDET0(__base) (__base + 0x0014) 30 #define LVTS_MONIDET1(__base) (__base + 0x0018) 31 #define LVTS_MONIDET2(__base) (__base + 0x001C) 32 #define LVTS_MONIDET3(__base) (__base + 0x0020) 33 #define LVTS_H2NTHRE(__base) (__base + 0x0024) 34 #define LVTS_HTHRE(__base) (__base + 0x0028) 35 #define LVTS_OFFSETH(__base) (__base + 0x0030) 36 #define LVTS_OFFSETL(__base) (__base + 0x0034) 37 #define LVTS_MSRCTL0(__base) (__base + 0x0038) 38 #define LVTS_MSRCTL1(__base) (__base + 0x003C) 39 #define LVTS_TSSEL(__base) (__base + 0x0040) 40 #define LVTS_CALSCALE(__base) (__base + 0x0048) 41 #define LVTS_ID(__base) (__base + 0x004C) 42 #define LVTS_CONFIG(__base) (__base + 0x0050) 43 #define LVTS_EDATA00(__base) (__base + 0x0054) 44 #define LVTS_EDATA01(__base) (__base + 0x0058) 45 #define LVTS_EDATA02(__base) (__base + 0x005C) 46 #define LVTS_EDATA03(__base) (__base + 0x0060) 47 #define LVTS_MSR0(__base) (__base + 0x0090) 48 #define LVTS_MSR1(__base) (__base + 0x0094) 49 #define LVTS_MSR2(__base) (__base + 0x0098) 50 #define LVTS_MSR3(__base) (__base + 0x009C) 51 #define LVTS_IMMD0(__base) (__base + 0x00A0) 52 #define LVTS_IMMD1(__base) (__base + 0x00A4) 53 #define LVTS_IMMD2(__base) (__base + 0x00A8) 54 #define LVTS_IMMD3(__base) (__base + 0x00AC) 55 #define LVTS_PROTCTL(__base) (__base + 0x00C0) 56 #define LVTS_PROTTA(__base) (__base + 0x00C4) 57 #define LVTS_PROTTB(__base) (__base + 0x00C8) 58 #define LVTS_PROTTC(__base) (__base + 0x00CC) 59 #define LVTS_CLKEN(__base) (__base + 0x00E4) 60 61 #define LVTS_PERIOD_UNIT 0 62 #define LVTS_GROUP_INTERVAL 0 63 #define LVTS_FILTER_INTERVAL 0 64 #define LVTS_SENSOR_INTERVAL 0 65 #define LVTS_HW_FILTER 0x0 66 #define LVTS_TSSEL_CONF 0x13121110 67 #define LVTS_CALSCALE_CONF 0x300 68 #define LVTS_MONINT_CONF 0x8300318C 69 70 #define LVTS_MONINT_OFFSET_SENSOR0 0xC 71 #define LVTS_MONINT_OFFSET_SENSOR1 0x180 72 #define LVTS_MONINT_OFFSET_SENSOR2 0x3000 73 #define LVTS_MONINT_OFFSET_SENSOR3 0x3000000 74 75 #define LVTS_INT_SENSOR0 0x0009001F 76 #define LVTS_INT_SENSOR1 0x001203E0 77 #define LVTS_INT_SENSOR2 0x00247C00 78 #define LVTS_INT_SENSOR3 0x1FC00000 79 80 #define LVTS_SENSOR_MAX 4 81 #define LVTS_GOLDEN_TEMP_MAX 62 82 #define LVTS_GOLDEN_TEMP_DEFAULT 50 83 #define LVTS_COEFF_A_MT8195 -250460 84 #define LVTS_COEFF_B_MT8195 250460 85 #define LVTS_COEFF_A_MT7988 -204650 86 #define LVTS_COEFF_B_MT7988 204650 87 88 #define LVTS_MSR_IMMEDIATE_MODE 0 89 #define LVTS_MSR_FILTERED_MODE 1 90 91 #define LVTS_MSR_READ_TIMEOUT_US 400 92 #define LVTS_MSR_READ_WAIT_US (LVTS_MSR_READ_TIMEOUT_US / 2) 93 94 #define LVTS_HW_SHUTDOWN_MT7988 105000 95 #define LVTS_HW_SHUTDOWN_MT8192 105000 96 #define LVTS_HW_SHUTDOWN_MT8195 105000 97 98 #define LVTS_MINIMUM_THRESHOLD 20000 99 100 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT; 101 static int golden_temp_offset; 102 103 struct lvts_sensor_data { 104 int dt_id; 105 }; 106 107 struct lvts_ctrl_data { 108 struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX]; 109 int cal_offset[LVTS_SENSOR_MAX]; 110 int hw_tshut_temp; 111 int num_lvts_sensor; 112 int offset; 113 int mode; 114 }; 115 116 struct lvts_data { 117 const struct lvts_ctrl_data *lvts_ctrl; 118 int num_lvts_ctrl; 119 int temp_factor; 120 int temp_offset; 121 }; 122 123 struct lvts_sensor { 124 struct thermal_zone_device *tz; 125 void __iomem *msr; 126 void __iomem *base; 127 int id; 128 int dt_id; 129 int low_thresh; 130 int high_thresh; 131 }; 132 133 struct lvts_ctrl { 134 struct lvts_sensor sensors[LVTS_SENSOR_MAX]; 135 const struct lvts_data *lvts_data; 136 u32 calibration[LVTS_SENSOR_MAX]; 137 u32 hw_tshut_raw_temp; 138 int num_lvts_sensor; 139 int mode; 140 void __iomem *base; 141 int low_thresh; 142 int high_thresh; 143 }; 144 145 struct lvts_domain { 146 struct lvts_ctrl *lvts_ctrl; 147 struct reset_control *reset; 148 struct clk *clk; 149 int num_lvts_ctrl; 150 void __iomem *base; 151 size_t calib_len; 152 u8 *calib; 153 #ifdef CONFIG_DEBUG_FS 154 struct dentry *dom_dentry; 155 #endif 156 }; 157 158 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS 159 160 #define LVTS_DEBUG_FS_REGS(__reg) \ 161 { \ 162 .name = __stringify(__reg), \ 163 .offset = __reg(0), \ 164 } 165 166 static const struct debugfs_reg32 lvts_regs[] = { 167 LVTS_DEBUG_FS_REGS(LVTS_MONCTL0), 168 LVTS_DEBUG_FS_REGS(LVTS_MONCTL1), 169 LVTS_DEBUG_FS_REGS(LVTS_MONCTL2), 170 LVTS_DEBUG_FS_REGS(LVTS_MONINT), 171 LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS), 172 LVTS_DEBUG_FS_REGS(LVTS_MONIDET0), 173 LVTS_DEBUG_FS_REGS(LVTS_MONIDET1), 174 LVTS_DEBUG_FS_REGS(LVTS_MONIDET2), 175 LVTS_DEBUG_FS_REGS(LVTS_MONIDET3), 176 LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE), 177 LVTS_DEBUG_FS_REGS(LVTS_HTHRE), 178 LVTS_DEBUG_FS_REGS(LVTS_OFFSETH), 179 LVTS_DEBUG_FS_REGS(LVTS_OFFSETL), 180 LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0), 181 LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1), 182 LVTS_DEBUG_FS_REGS(LVTS_TSSEL), 183 LVTS_DEBUG_FS_REGS(LVTS_CALSCALE), 184 LVTS_DEBUG_FS_REGS(LVTS_ID), 185 LVTS_DEBUG_FS_REGS(LVTS_CONFIG), 186 LVTS_DEBUG_FS_REGS(LVTS_EDATA00), 187 LVTS_DEBUG_FS_REGS(LVTS_EDATA01), 188 LVTS_DEBUG_FS_REGS(LVTS_EDATA02), 189 LVTS_DEBUG_FS_REGS(LVTS_EDATA03), 190 LVTS_DEBUG_FS_REGS(LVTS_MSR0), 191 LVTS_DEBUG_FS_REGS(LVTS_MSR1), 192 LVTS_DEBUG_FS_REGS(LVTS_MSR2), 193 LVTS_DEBUG_FS_REGS(LVTS_MSR3), 194 LVTS_DEBUG_FS_REGS(LVTS_IMMD0), 195 LVTS_DEBUG_FS_REGS(LVTS_IMMD1), 196 LVTS_DEBUG_FS_REGS(LVTS_IMMD2), 197 LVTS_DEBUG_FS_REGS(LVTS_IMMD3), 198 LVTS_DEBUG_FS_REGS(LVTS_PROTCTL), 199 LVTS_DEBUG_FS_REGS(LVTS_PROTTA), 200 LVTS_DEBUG_FS_REGS(LVTS_PROTTB), 201 LVTS_DEBUG_FS_REGS(LVTS_PROTTC), 202 LVTS_DEBUG_FS_REGS(LVTS_CLKEN), 203 }; 204 205 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td) 206 { 207 struct debugfs_regset32 *regset; 208 struct lvts_ctrl *lvts_ctrl; 209 struct dentry *dentry; 210 char name[64]; 211 int i; 212 213 lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL); 214 if (IS_ERR(lvts_td->dom_dentry)) 215 return 0; 216 217 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { 218 219 lvts_ctrl = &lvts_td->lvts_ctrl[i]; 220 221 sprintf(name, "controller%d", i); 222 dentry = debugfs_create_dir(name, lvts_td->dom_dentry); 223 if (IS_ERR(dentry)) 224 continue; 225 226 regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); 227 if (!regset) 228 continue; 229 230 regset->base = lvts_ctrl->base; 231 regset->regs = lvts_regs; 232 regset->nregs = ARRAY_SIZE(lvts_regs); 233 234 debugfs_create_regset32("registers", 0400, dentry, regset); 235 } 236 237 return 0; 238 } 239 240 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) 241 { 242 debugfs_remove_recursive(lvts_td->dom_dentry); 243 } 244 245 #else 246 247 static inline int lvts_debugfs_init(struct device *dev, 248 struct lvts_domain *lvts_td) 249 { 250 return 0; 251 } 252 253 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { } 254 255 #endif 256 257 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor) 258 { 259 int temperature; 260 261 temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14; 262 temperature += golden_temp_offset; 263 264 return temperature; 265 } 266 267 static u32 lvts_temp_to_raw(int temperature, int temp_factor) 268 { 269 u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14; 270 271 raw_temp = div_s64(raw_temp, -temp_factor); 272 273 return raw_temp; 274 } 275 276 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp) 277 { 278 struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); 279 struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, 280 sensors[lvts_sensor->id]); 281 const struct lvts_data *lvts_data = lvts_ctrl->lvts_data; 282 void __iomem *msr = lvts_sensor->msr; 283 u32 value; 284 int rc; 285 286 /* 287 * Measurement registers: 288 * 289 * LVTS_MSR[0-3] / LVTS_IMMD[0-3] 290 * 291 * Bits: 292 * 293 * 32-17: Unused 294 * 16 : Valid temperature 295 * 15-0 : Raw temperature 296 */ 297 rc = readl_poll_timeout(msr, value, value & BIT(16), 298 LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US); 299 300 /* 301 * As the thermal zone temperature will read before the 302 * hardware sensor is fully initialized, we have to check the 303 * validity of the temperature returned when reading the 304 * measurement register. The thermal controller will set the 305 * valid bit temperature only when it is totally initialized. 306 * 307 * Otherwise, we may end up with garbage values out of the 308 * functionning temperature and directly jump to a system 309 * shutdown. 310 */ 311 if (rc) 312 return -EAGAIN; 313 314 *temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor); 315 316 return 0; 317 } 318 319 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl) 320 { 321 u32 masks[] = { 322 LVTS_MONINT_OFFSET_SENSOR0, 323 LVTS_MONINT_OFFSET_SENSOR1, 324 LVTS_MONINT_OFFSET_SENSOR2, 325 LVTS_MONINT_OFFSET_SENSOR3, 326 }; 327 u32 value = 0; 328 int i; 329 330 value = readl(LVTS_MONINT(lvts_ctrl->base)); 331 332 for (i = 0; i < ARRAY_SIZE(masks); i++) { 333 if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh 334 && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) 335 value |= masks[i]; 336 else 337 value &= ~masks[i]; 338 } 339 340 writel(value, LVTS_MONINT(lvts_ctrl->base)); 341 } 342 343 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high) 344 { 345 int i; 346 347 if (high > lvts_ctrl->high_thresh) 348 return true; 349 350 for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) 351 if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh 352 && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) 353 return false; 354 355 return true; 356 } 357 358 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high) 359 { 360 struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); 361 struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, 362 sensors[lvts_sensor->id]); 363 const struct lvts_data *lvts_data = lvts_ctrl->lvts_data; 364 void __iomem *base = lvts_sensor->base; 365 u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD, 366 lvts_data->temp_factor); 367 u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor); 368 bool should_update_thresh; 369 370 lvts_sensor->low_thresh = low; 371 lvts_sensor->high_thresh = high; 372 373 should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high); 374 if (should_update_thresh) { 375 lvts_ctrl->high_thresh = high; 376 lvts_ctrl->low_thresh = low; 377 } 378 lvts_update_irq_mask(lvts_ctrl); 379 380 if (!should_update_thresh) 381 return 0; 382 383 /* 384 * Low offset temperature threshold 385 * 386 * LVTS_OFFSETL 387 * 388 * Bits: 389 * 390 * 14-0 : Raw temperature for threshold 391 */ 392 pr_debug("%s: Setting low limit temperature interrupt: %d\n", 393 thermal_zone_device_type(tz), low); 394 writel(raw_low, LVTS_OFFSETL(base)); 395 396 /* 397 * High offset temperature threshold 398 * 399 * LVTS_OFFSETH 400 * 401 * Bits: 402 * 403 * 14-0 : Raw temperature for threshold 404 */ 405 pr_debug("%s: Setting high limit temperature interrupt: %d\n", 406 thermal_zone_device_type(tz), high); 407 writel(raw_high, LVTS_OFFSETH(base)); 408 409 return 0; 410 } 411 412 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl) 413 { 414 irqreturn_t iret = IRQ_NONE; 415 u32 value; 416 u32 masks[] = { 417 LVTS_INT_SENSOR0, 418 LVTS_INT_SENSOR1, 419 LVTS_INT_SENSOR2, 420 LVTS_INT_SENSOR3 421 }; 422 int i; 423 424 /* 425 * Interrupt monitoring status 426 * 427 * LVTS_MONINTST 428 * 429 * Bits: 430 * 431 * 31 : Interrupt for stage 3 432 * 30 : Interrupt for stage 2 433 * 29 : Interrupt for state 1 434 * 28 : Interrupt using filter on sensor 3 435 * 436 * 27 : Interrupt using immediate on sensor 3 437 * 26 : Interrupt normal to hot on sensor 3 438 * 25 : Interrupt high offset on sensor 3 439 * 24 : Interrupt low offset on sensor 3 440 * 441 * 23 : Interrupt hot threshold on sensor 3 442 * 22 : Interrupt cold threshold on sensor 3 443 * 21 : Interrupt using filter on sensor 2 444 * 20 : Interrupt using filter on sensor 1 445 * 446 * 19 : Interrupt using filter on sensor 0 447 * 18 : Interrupt using immediate on sensor 2 448 * 17 : Interrupt using immediate on sensor 1 449 * 16 : Interrupt using immediate on sensor 0 450 * 451 * 15 : Interrupt device access timeout interrupt 452 * 14 : Interrupt normal to hot on sensor 2 453 * 13 : Interrupt high offset interrupt on sensor 2 454 * 12 : Interrupt low offset interrupt on sensor 2 455 * 456 * 11 : Interrupt hot threshold on sensor 2 457 * 10 : Interrupt cold threshold on sensor 2 458 * 9 : Interrupt normal to hot on sensor 1 459 * 8 : Interrupt high offset interrupt on sensor 1 460 * 461 * 7 : Interrupt low offset interrupt on sensor 1 462 * 6 : Interrupt hot threshold on sensor 1 463 * 5 : Interrupt cold threshold on sensor 1 464 * 4 : Interrupt normal to hot on sensor 0 465 * 466 * 3 : Interrupt high offset interrupt on sensor 0 467 * 2 : Interrupt low offset interrupt on sensor 0 468 * 1 : Interrupt hot threshold on sensor 0 469 * 0 : Interrupt cold threshold on sensor 0 470 * 471 * We are interested in the sensor(s) responsible of the 472 * interrupt event. We update the thermal framework with the 473 * thermal zone associated with the sensor. The framework will 474 * take care of the rest whatever the kind of interrupt, we 475 * are only interested in which sensor raised the interrupt. 476 * 477 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000 478 * => 0x1FC00000 479 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000 480 * => 0x00247C00 481 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000 482 * => 0X001203E0 483 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111 484 * => 0x0009001F 485 */ 486 value = readl(LVTS_MONINTSTS(lvts_ctrl->base)); 487 488 /* 489 * Let's figure out which sensors raised the interrupt 490 * 491 * NOTE: the masks array must be ordered with the index 492 * corresponding to the sensor id eg. index=0, mask for 493 * sensor0. 494 */ 495 for (i = 0; i < ARRAY_SIZE(masks); i++) { 496 497 if (!(value & masks[i])) 498 continue; 499 500 thermal_zone_device_update(lvts_ctrl->sensors[i].tz, 501 THERMAL_TRIP_VIOLATED); 502 iret = IRQ_HANDLED; 503 } 504 505 /* 506 * Write back to clear the interrupt status (W1C) 507 */ 508 writel(value, LVTS_MONINTSTS(lvts_ctrl->base)); 509 510 return iret; 511 } 512 513 /* 514 * Temperature interrupt handler. Even if the driver supports more 515 * interrupt modes, we use the interrupt when the temperature crosses 516 * the hot threshold the way up and the way down (modulo the 517 * hysteresis). 518 * 519 * Each thermal domain has a couple of interrupts, one for hardware 520 * reset and another one for all the thermal events happening on the 521 * different sensors. 522 * 523 * The interrupt is configured for thermal events when crossing the 524 * hot temperature limit. At each interrupt, we check in every 525 * controller if there is an interrupt pending. 526 */ 527 static irqreturn_t lvts_irq_handler(int irq, void *data) 528 { 529 struct lvts_domain *lvts_td = data; 530 irqreturn_t aux, iret = IRQ_NONE; 531 int i; 532 533 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { 534 535 aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]); 536 if (aux != IRQ_HANDLED) 537 continue; 538 539 iret = IRQ_HANDLED; 540 } 541 542 return iret; 543 } 544 545 static struct thermal_zone_device_ops lvts_ops = { 546 .get_temp = lvts_get_temp, 547 .set_trips = lvts_set_trips, 548 }; 549 550 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, 551 const struct lvts_ctrl_data *lvts_ctrl_data) 552 { 553 struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors; 554 void __iomem *msr_regs[] = { 555 LVTS_MSR0(lvts_ctrl->base), 556 LVTS_MSR1(lvts_ctrl->base), 557 LVTS_MSR2(lvts_ctrl->base), 558 LVTS_MSR3(lvts_ctrl->base) 559 }; 560 561 void __iomem *imm_regs[] = { 562 LVTS_IMMD0(lvts_ctrl->base), 563 LVTS_IMMD1(lvts_ctrl->base), 564 LVTS_IMMD2(lvts_ctrl->base), 565 LVTS_IMMD3(lvts_ctrl->base) 566 }; 567 568 int i; 569 570 for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) { 571 572 int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id; 573 574 /* 575 * At this point, we don't know which id matches which 576 * sensor. Let's set arbitrally the id from the index. 577 */ 578 lvts_sensor[i].id = i; 579 580 /* 581 * The thermal zone registration will set the trip 582 * point interrupt in the thermal controller 583 * register. But this one will be reset in the 584 * initialization after. So we need to post pone the 585 * thermal zone creation after the controller is 586 * setup. For this reason, we store the device tree 587 * node id from the data in the sensor structure 588 */ 589 lvts_sensor[i].dt_id = dt_id; 590 591 /* 592 * We assign the base address of the thermal 593 * controller as a back pointer. So it will be 594 * accessible from the different thermal framework ops 595 * as we pass the lvts_sensor pointer as thermal zone 596 * private data. 597 */ 598 lvts_sensor[i].base = lvts_ctrl->base; 599 600 /* 601 * Each sensor has its own register address to read from. 602 */ 603 lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ? 604 imm_regs[i] : msr_regs[i]; 605 606 lvts_sensor[i].low_thresh = INT_MIN; 607 lvts_sensor[i].high_thresh = INT_MIN; 608 }; 609 610 lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor; 611 612 return 0; 613 } 614 615 /* 616 * The efuse blob values follows the sensor enumeration per thermal 617 * controller. The decoding of the stream is as follow: 618 * 619 * stream index map for MCU Domain : 620 * 621 * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1-----> 622 * 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 623 * 624 * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3-----> 625 * 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 626 * 627 * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7-----> 628 * 0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 629 * 630 * stream index map for AP Domain : 631 * 632 * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1-----> 633 * 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A 634 * 635 * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3-----> 636 * 0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33 637 * 638 * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> 639 * 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F 640 * 641 * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8-----> 642 * 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48 643 * 644 * The data description gives the offset of the calibration data in 645 * this bytes stream for each sensor. 646 */ 647 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, 648 const struct lvts_ctrl_data *lvts_ctrl_data, 649 u8 *efuse_calibration) 650 { 651 int i; 652 653 for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) 654 memcpy(&lvts_ctrl->calibration[i], 655 efuse_calibration + lvts_ctrl_data->cal_offset[i], 2); 656 657 return 0; 658 } 659 660 /* 661 * The efuse bytes stream can be split into different chunk of 662 * nvmems. This function reads and concatenate those into a single 663 * buffer so it can be read sequentially when initializing the 664 * calibration data. 665 */ 666 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td, 667 const struct lvts_data *lvts_data) 668 { 669 struct device_node *np = dev_of_node(dev); 670 struct nvmem_cell *cell; 671 struct property *prop; 672 const char *cell_name; 673 674 of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) { 675 size_t len; 676 u8 *efuse; 677 678 cell = of_nvmem_cell_get(np, cell_name); 679 if (IS_ERR(cell)) { 680 dev_err(dev, "Failed to get cell '%s'\n", cell_name); 681 return PTR_ERR(cell); 682 } 683 684 efuse = nvmem_cell_read(cell, &len); 685 686 nvmem_cell_put(cell); 687 688 if (IS_ERR(efuse)) { 689 dev_err(dev, "Failed to read cell '%s'\n", cell_name); 690 return PTR_ERR(efuse); 691 } 692 693 lvts_td->calib = devm_krealloc(dev, lvts_td->calib, 694 lvts_td->calib_len + len, GFP_KERNEL); 695 if (!lvts_td->calib) 696 return -ENOMEM; 697 698 memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len); 699 700 lvts_td->calib_len += len; 701 702 kfree(efuse); 703 } 704 705 return 0; 706 } 707 708 static int lvts_golden_temp_init(struct device *dev, u32 *value, int temp_offset) 709 { 710 u32 gt; 711 712 gt = (*value) >> 24; 713 714 if (gt && gt < LVTS_GOLDEN_TEMP_MAX) 715 golden_temp = gt; 716 717 golden_temp_offset = golden_temp * 500 + temp_offset; 718 719 return 0; 720 } 721 722 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td, 723 const struct lvts_data *lvts_data) 724 { 725 size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl; 726 struct lvts_ctrl *lvts_ctrl; 727 int i, ret; 728 729 /* 730 * Create the calibration bytes stream from efuse data 731 */ 732 ret = lvts_calibration_read(dev, lvts_td, lvts_data); 733 if (ret) 734 return ret; 735 736 /* 737 * The golden temp information is contained in the first chunk 738 * of efuse data. 739 */ 740 ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib, lvts_data->temp_offset); 741 if (ret) 742 return ret; 743 744 lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL); 745 if (!lvts_ctrl) 746 return -ENOMEM; 747 748 for (i = 0; i < lvts_data->num_lvts_ctrl; i++) { 749 750 lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset; 751 lvts_ctrl[i].lvts_data = lvts_data; 752 753 ret = lvts_sensor_init(dev, &lvts_ctrl[i], 754 &lvts_data->lvts_ctrl[i]); 755 if (ret) 756 return ret; 757 758 ret = lvts_calibration_init(dev, &lvts_ctrl[i], 759 &lvts_data->lvts_ctrl[i], 760 lvts_td->calib); 761 if (ret) 762 return ret; 763 764 /* 765 * The mode the ctrl will use to read the temperature 766 * (filtered or immediate) 767 */ 768 lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode; 769 770 /* 771 * The temperature to raw temperature must be done 772 * after initializing the calibration. 773 */ 774 lvts_ctrl[i].hw_tshut_raw_temp = 775 lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp, 776 lvts_data->temp_factor); 777 778 lvts_ctrl[i].low_thresh = INT_MIN; 779 lvts_ctrl[i].high_thresh = INT_MIN; 780 } 781 782 /* 783 * We no longer need the efuse bytes stream, let's free it 784 */ 785 devm_kfree(dev, lvts_td->calib); 786 787 lvts_td->lvts_ctrl = lvts_ctrl; 788 lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl; 789 790 return 0; 791 } 792 793 /* 794 * At this point the configuration register is the only place in the 795 * driver where we write multiple values. Per hardware constraint, 796 * each write in the configuration register must be separated by a 797 * delay of 2 us. 798 */ 799 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds) 800 { 801 int i; 802 803 /* 804 * Configuration register 805 */ 806 for (i = 0; i < nr_cmds; i++) { 807 writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base)); 808 usleep_range(2, 4); 809 } 810 } 811 812 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl) 813 { 814 /* 815 * LVTS_PROTCTL : Thermal Protection Sensor Selection 816 * 817 * Bits: 818 * 819 * 19-18 : Sensor to base the protection on 820 * 17-16 : Strategy: 821 * 00 : Average of 4 sensors 822 * 01 : Max of 4 sensors 823 * 10 : Selected sensor with bits 19-18 824 * 11 : Reserved 825 */ 826 writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base)); 827 828 /* 829 * LVTS_PROTTA : Stage 1 temperature threshold 830 * LVTS_PROTTB : Stage 2 temperature threshold 831 * LVTS_PROTTC : Stage 3 temperature threshold 832 * 833 * Bits: 834 * 835 * 14-0: Raw temperature threshold 836 * 837 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base)); 838 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base)); 839 */ 840 writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base)); 841 842 /* 843 * LVTS_MONINT : Interrupt configuration register 844 * 845 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS 846 * register, except we set the bits to enable the interrupt. 847 */ 848 writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base)); 849 850 return 0; 851 } 852 853 static int lvts_domain_reset(struct device *dev, struct reset_control *reset) 854 { 855 int ret; 856 857 ret = reset_control_assert(reset); 858 if (ret) 859 return ret; 860 861 return reset_control_deassert(reset); 862 } 863 864 /* 865 * Enable or disable the clocks of a specified thermal controller 866 */ 867 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable) 868 { 869 /* 870 * LVTS_CLKEN : Internal LVTS clock 871 * 872 * Bits: 873 * 874 * 0 : enable / disable clock 875 */ 876 writel(enable, LVTS_CLKEN(lvts_ctrl->base)); 877 878 return 0; 879 } 880 881 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl) 882 { 883 u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 }; 884 885 lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); 886 887 /* 888 * LVTS_ID : Get ID and status of the thermal controller 889 * 890 * Bits: 891 * 892 * 0-5 : thermal controller id 893 * 7 : thermal controller connection is valid 894 */ 895 id = readl(LVTS_ID(lvts_ctrl->base)); 896 if (!(id & BIT(7))) 897 return -EIO; 898 899 return 0; 900 } 901 902 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl) 903 { 904 /* 905 * Write device mask: 0xC1030000 906 */ 907 u32 cmds[] = { 908 0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1, 909 0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300, 910 0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC, 911 0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1 912 }; 913 914 lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); 915 916 return 0; 917 } 918 919 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl) 920 { 921 int i; 922 void __iomem *lvts_edata[] = { 923 LVTS_EDATA00(lvts_ctrl->base), 924 LVTS_EDATA01(lvts_ctrl->base), 925 LVTS_EDATA02(lvts_ctrl->base), 926 LVTS_EDATA03(lvts_ctrl->base) 927 }; 928 929 /* 930 * LVTS_EDATA0X : Efuse calibration reference value for sensor X 931 * 932 * Bits: 933 * 934 * 20-0 : Efuse value for normalization data 935 */ 936 for (i = 0; i < LVTS_SENSOR_MAX; i++) 937 writel(lvts_ctrl->calibration[i], lvts_edata[i]); 938 939 return 0; 940 } 941 942 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl) 943 { 944 u32 value; 945 946 /* 947 * LVTS_TSSEL : Sensing point index numbering 948 * 949 * Bits: 950 * 951 * 31-24: ADC Sense 3 952 * 23-16: ADC Sense 2 953 * 15-8 : ADC Sense 1 954 * 7-0 : ADC Sense 0 955 */ 956 value = LVTS_TSSEL_CONF; 957 writel(value, LVTS_TSSEL(lvts_ctrl->base)); 958 959 /* 960 * LVTS_CALSCALE : ADC voltage round 961 */ 962 value = 0x300; 963 value = LVTS_CALSCALE_CONF; 964 965 /* 966 * LVTS_MSRCTL0 : Sensor filtering strategy 967 * 968 * Filters: 969 * 970 * 000 : One sample 971 * 001 : Avg 2 samples 972 * 010 : 4 samples, drop min and max, avg 2 samples 973 * 011 : 6 samples, drop min and max, avg 4 samples 974 * 100 : 10 samples, drop min and max, avg 8 samples 975 * 101 : 18 samples, drop min and max, avg 16 samples 976 * 977 * Bits: 978 * 979 * 0-2 : Sensor0 filter 980 * 3-5 : Sensor1 filter 981 * 6-8 : Sensor2 filter 982 * 9-11 : Sensor3 filter 983 */ 984 value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 | 985 LVTS_HW_FILTER << 3 | LVTS_HW_FILTER; 986 writel(value, LVTS_MSRCTL0(lvts_ctrl->base)); 987 988 /* 989 * LVTS_MONCTL1 : Period unit and group interval configuration 990 * 991 * The clock source of LVTS thermal controller is 26MHz. 992 * 993 * The period unit is a time base for all the interval delays 994 * specified in the registers. By default we use 12. The time 995 * conversion is done by multiplying by 256 and 1/26.10^6 996 * 997 * An interval delay multiplied by the period unit gives the 998 * duration in seconds. 999 * 1000 * - Filter interval delay is a delay between two samples of 1001 * the same sensor. 1002 * 1003 * - Sensor interval delay is a delay between two samples of 1004 * different sensors. 1005 * 1006 * - Group interval delay is a delay between different rounds. 1007 * 1008 * For example: 1009 * If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1, 1010 * and two sensors, TS1 and TS2, are in a LVTS thermal controller 1011 * and then 1012 * Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us 1013 * Filter interval delay = 1 * Period unit = 118.149us 1014 * Sensor interval delay = 2 * Period unit = 236.298us 1015 * Group interval delay = 1 * Period unit = 118.149us 1016 * 1017 * TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1... 1018 * <--> Filter interval delay 1019 * <--> Sensor interval delay 1020 * <--> Group interval delay 1021 * Bits: 1022 * 29 - 20 : Group interval 1023 * 16 - 13 : Send a single interrupt when crossing the hot threshold (1) 1024 * or an interrupt everytime the hot threshold is crossed (0) 1025 * 9 - 0 : Period unit 1026 * 1027 */ 1028 value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT; 1029 writel(value, LVTS_MONCTL1(lvts_ctrl->base)); 1030 1031 /* 1032 * LVTS_MONCTL2 : Filtering and sensor interval 1033 * 1034 * Bits: 1035 * 1036 * 25-16 : Interval unit in PERIOD_UNIT between sample on 1037 * the same sensor, filter interval 1038 * 9-0 : Interval unit in PERIOD_UNIT between each sensor 1039 * 1040 */ 1041 value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL; 1042 writel(value, LVTS_MONCTL2(lvts_ctrl->base)); 1043 1044 return lvts_irq_init(lvts_ctrl); 1045 } 1046 1047 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl) 1048 { 1049 struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors; 1050 struct thermal_zone_device *tz; 1051 u32 sensor_map = 0; 1052 int i; 1053 /* 1054 * Bitmaps to enable each sensor on immediate and filtered modes, as 1055 * described in MSRCTL1 and MONCTL0 registers below, respectively. 1056 */ 1057 u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) }; 1058 u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) }; 1059 1060 u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ? 1061 sensor_imm_bitmap : sensor_filt_bitmap; 1062 1063 for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) { 1064 1065 int dt_id = lvts_sensors[i].dt_id; 1066 1067 tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i], 1068 &lvts_ops); 1069 if (IS_ERR(tz)) { 1070 /* 1071 * This thermal zone is not described in the 1072 * device tree. It is not an error from the 1073 * thermal OF code POV, we just continue. 1074 */ 1075 if (PTR_ERR(tz) == -ENODEV) 1076 continue; 1077 1078 return PTR_ERR(tz); 1079 } 1080 1081 devm_thermal_add_hwmon_sysfs(dev, tz); 1082 1083 /* 1084 * The thermal zone pointer will be needed in the 1085 * interrupt handler, we store it in the sensor 1086 * structure. The thermal domain structure will be 1087 * passed to the interrupt handler private data as the 1088 * interrupt is shared for all the controller 1089 * belonging to the thermal domain. 1090 */ 1091 lvts_sensors[i].tz = tz; 1092 1093 /* 1094 * This sensor was correctly associated with a thermal 1095 * zone, let's set the corresponding bit in the sensor 1096 * map, so we can enable the temperature monitoring in 1097 * the hardware thermal controller. 1098 */ 1099 sensor_map |= sensor_bitmap[i]; 1100 } 1101 1102 /* 1103 * The initialization of the thermal zones give us 1104 * which sensor point to enable. If any thermal zone 1105 * was not described in the device tree, it won't be 1106 * enabled here in the sensor map. 1107 */ 1108 if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) { 1109 /* 1110 * LVTS_MSRCTL1 : Measurement control 1111 * 1112 * Bits: 1113 * 1114 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3 1115 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2 1116 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1 1117 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0 1118 * 1119 * That configuration will ignore the filtering and the delays 1120 * introduced in MONCTL1 and MONCTL2 1121 */ 1122 writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base)); 1123 } else { 1124 /* 1125 * Bits: 1126 * 9: Single point access flow 1127 * 0-3: Enable sensing point 0-3 1128 */ 1129 writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base)); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td, 1136 const struct lvts_data *lvts_data) 1137 { 1138 struct lvts_ctrl *lvts_ctrl; 1139 int i, ret; 1140 1141 ret = lvts_ctrl_init(dev, lvts_td, lvts_data); 1142 if (ret) 1143 return ret; 1144 1145 ret = lvts_domain_reset(dev, lvts_td->reset); 1146 if (ret) { 1147 dev_dbg(dev, "Failed to reset domain"); 1148 return ret; 1149 } 1150 1151 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { 1152 1153 lvts_ctrl = &lvts_td->lvts_ctrl[i]; 1154 1155 /* 1156 * Initialization steps: 1157 * 1158 * - Enable the clock 1159 * - Connect to the LVTS 1160 * - Initialize the LVTS 1161 * - Prepare the calibration data 1162 * - Select monitored sensors 1163 * [ Configure sampling ] 1164 * [ Configure the interrupt ] 1165 * - Start measurement 1166 */ 1167 ret = lvts_ctrl_set_enable(lvts_ctrl, true); 1168 if (ret) { 1169 dev_dbg(dev, "Failed to enable LVTS clock"); 1170 return ret; 1171 } 1172 1173 ret = lvts_ctrl_connect(dev, lvts_ctrl); 1174 if (ret) { 1175 dev_dbg(dev, "Failed to connect to LVTS controller"); 1176 return ret; 1177 } 1178 1179 ret = lvts_ctrl_initialize(dev, lvts_ctrl); 1180 if (ret) { 1181 dev_dbg(dev, "Failed to initialize controller"); 1182 return ret; 1183 } 1184 1185 ret = lvts_ctrl_calibrate(dev, lvts_ctrl); 1186 if (ret) { 1187 dev_dbg(dev, "Failed to calibrate controller"); 1188 return ret; 1189 } 1190 1191 ret = lvts_ctrl_configure(dev, lvts_ctrl); 1192 if (ret) { 1193 dev_dbg(dev, "Failed to configure controller"); 1194 return ret; 1195 } 1196 1197 ret = lvts_ctrl_start(dev, lvts_ctrl); 1198 if (ret) { 1199 dev_dbg(dev, "Failed to start controller"); 1200 return ret; 1201 } 1202 } 1203 1204 return lvts_debugfs_init(dev, lvts_td); 1205 } 1206 1207 static int lvts_probe(struct platform_device *pdev) 1208 { 1209 const struct lvts_data *lvts_data; 1210 struct lvts_domain *lvts_td; 1211 struct device *dev = &pdev->dev; 1212 struct resource *res; 1213 int irq, ret; 1214 1215 lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL); 1216 if (!lvts_td) 1217 return -ENOMEM; 1218 1219 lvts_data = of_device_get_match_data(dev); 1220 1221 lvts_td->clk = devm_clk_get_enabled(dev, NULL); 1222 if (IS_ERR(lvts_td->clk)) 1223 return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n"); 1224 1225 res = platform_get_mem_or_io(pdev, 0); 1226 if (!res) 1227 return dev_err_probe(dev, (-ENXIO), "No IO resource\n"); 1228 1229 lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1230 if (IS_ERR(lvts_td->base)) 1231 return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n"); 1232 1233 lvts_td->reset = devm_reset_control_get_by_index(dev, 0); 1234 if (IS_ERR(lvts_td->reset)) 1235 return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n"); 1236 1237 irq = platform_get_irq(pdev, 0); 1238 if (irq < 0) 1239 return irq; 1240 1241 golden_temp_offset = lvts_data->temp_offset; 1242 1243 ret = lvts_domain_init(dev, lvts_td, lvts_data); 1244 if (ret) 1245 return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n"); 1246 1247 /* 1248 * At this point the LVTS is initialized and enabled. We can 1249 * safely enable the interrupt. 1250 */ 1251 ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler, 1252 IRQF_ONESHOT, dev_name(dev), lvts_td); 1253 if (ret) 1254 return dev_err_probe(dev, ret, "Failed to request interrupt\n"); 1255 1256 platform_set_drvdata(pdev, lvts_td); 1257 1258 return 0; 1259 } 1260 1261 static void lvts_remove(struct platform_device *pdev) 1262 { 1263 struct lvts_domain *lvts_td; 1264 int i; 1265 1266 lvts_td = platform_get_drvdata(pdev); 1267 1268 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) 1269 lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false); 1270 1271 lvts_debugfs_exit(lvts_td); 1272 } 1273 1274 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = { 1275 { 1276 .cal_offset = { 0x00, 0x04, 0x08, 0x0c }, 1277 .lvts_sensor = { 1278 { .dt_id = MT7988_CPU_0 }, 1279 { .dt_id = MT7988_CPU_1 }, 1280 { .dt_id = MT7988_ETH2P5G_0 }, 1281 { .dt_id = MT7988_ETH2P5G_1 } 1282 }, 1283 .num_lvts_sensor = 4, 1284 .offset = 0x0, 1285 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988, 1286 }, 1287 { 1288 .cal_offset = { 0x14, 0x18, 0x1c, 0x20 }, 1289 .lvts_sensor = { 1290 { .dt_id = MT7988_TOPS_0}, 1291 { .dt_id = MT7988_TOPS_1}, 1292 { .dt_id = MT7988_ETHWARP_0}, 1293 { .dt_id = MT7988_ETHWARP_1} 1294 }, 1295 .num_lvts_sensor = 4, 1296 .offset = 0x100, 1297 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988, 1298 } 1299 }; 1300 1301 static int lvts_suspend(struct device *dev) 1302 { 1303 struct lvts_domain *lvts_td; 1304 int i; 1305 1306 lvts_td = dev_get_drvdata(dev); 1307 1308 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) 1309 lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false); 1310 1311 clk_disable_unprepare(lvts_td->clk); 1312 1313 return 0; 1314 } 1315 1316 static int lvts_resume(struct device *dev) 1317 { 1318 struct lvts_domain *lvts_td; 1319 int i, ret; 1320 1321 lvts_td = dev_get_drvdata(dev); 1322 1323 ret = clk_prepare_enable(lvts_td->clk); 1324 if (ret) 1325 return ret; 1326 1327 for (i = 0; i < lvts_td->num_lvts_ctrl; i++) 1328 lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true); 1329 1330 return 0; 1331 } 1332 1333 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = { 1334 { 1335 .cal_offset = { 0x04, 0x08 }, 1336 .lvts_sensor = { 1337 { .dt_id = MT8192_MCU_BIG_CPU0 }, 1338 { .dt_id = MT8192_MCU_BIG_CPU1 } 1339 }, 1340 .num_lvts_sensor = 2, 1341 .offset = 0x0, 1342 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1343 .mode = LVTS_MSR_FILTERED_MODE, 1344 }, 1345 { 1346 .cal_offset = { 0x0c, 0x10 }, 1347 .lvts_sensor = { 1348 { .dt_id = MT8192_MCU_BIG_CPU2 }, 1349 { .dt_id = MT8192_MCU_BIG_CPU3 } 1350 }, 1351 .num_lvts_sensor = 2, 1352 .offset = 0x100, 1353 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1354 .mode = LVTS_MSR_FILTERED_MODE, 1355 }, 1356 { 1357 .cal_offset = { 0x14, 0x18, 0x1c, 0x20 }, 1358 .lvts_sensor = { 1359 { .dt_id = MT8192_MCU_LITTLE_CPU0 }, 1360 { .dt_id = MT8192_MCU_LITTLE_CPU1 }, 1361 { .dt_id = MT8192_MCU_LITTLE_CPU2 }, 1362 { .dt_id = MT8192_MCU_LITTLE_CPU3 } 1363 }, 1364 .num_lvts_sensor = 4, 1365 .offset = 0x200, 1366 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1367 .mode = LVTS_MSR_FILTERED_MODE, 1368 } 1369 }; 1370 1371 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = { 1372 { 1373 .cal_offset = { 0x24, 0x28 }, 1374 .lvts_sensor = { 1375 { .dt_id = MT8192_AP_VPU0 }, 1376 { .dt_id = MT8192_AP_VPU1 } 1377 }, 1378 .num_lvts_sensor = 2, 1379 .offset = 0x0, 1380 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1381 }, 1382 { 1383 .cal_offset = { 0x2c, 0x30 }, 1384 .lvts_sensor = { 1385 { .dt_id = MT8192_AP_GPU0 }, 1386 { .dt_id = MT8192_AP_GPU1 } 1387 }, 1388 .num_lvts_sensor = 2, 1389 .offset = 0x100, 1390 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1391 }, 1392 { 1393 .cal_offset = { 0x34, 0x38 }, 1394 .lvts_sensor = { 1395 { .dt_id = MT8192_AP_INFRA }, 1396 { .dt_id = MT8192_AP_CAM }, 1397 }, 1398 .num_lvts_sensor = 2, 1399 .offset = 0x200, 1400 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1401 }, 1402 { 1403 .cal_offset = { 0x3c, 0x40, 0x44 }, 1404 .lvts_sensor = { 1405 { .dt_id = MT8192_AP_MD0 }, 1406 { .dt_id = MT8192_AP_MD1 }, 1407 { .dt_id = MT8192_AP_MD2 } 1408 }, 1409 .num_lvts_sensor = 3, 1410 .offset = 0x300, 1411 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192, 1412 } 1413 }; 1414 1415 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = { 1416 { 1417 .cal_offset = { 0x04, 0x07 }, 1418 .lvts_sensor = { 1419 { .dt_id = MT8195_MCU_BIG_CPU0 }, 1420 { .dt_id = MT8195_MCU_BIG_CPU1 } 1421 }, 1422 .num_lvts_sensor = 2, 1423 .offset = 0x0, 1424 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1425 }, 1426 { 1427 .cal_offset = { 0x0d, 0x10 }, 1428 .lvts_sensor = { 1429 { .dt_id = MT8195_MCU_BIG_CPU2 }, 1430 { .dt_id = MT8195_MCU_BIG_CPU3 } 1431 }, 1432 .num_lvts_sensor = 2, 1433 .offset = 0x100, 1434 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1435 }, 1436 { 1437 .cal_offset = { 0x16, 0x19, 0x1c, 0x1f }, 1438 .lvts_sensor = { 1439 { .dt_id = MT8195_MCU_LITTLE_CPU0 }, 1440 { .dt_id = MT8195_MCU_LITTLE_CPU1 }, 1441 { .dt_id = MT8195_MCU_LITTLE_CPU2 }, 1442 { .dt_id = MT8195_MCU_LITTLE_CPU3 } 1443 }, 1444 .num_lvts_sensor = 4, 1445 .offset = 0x200, 1446 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1447 } 1448 }; 1449 1450 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = { 1451 { 1452 .cal_offset = { 0x25, 0x28 }, 1453 .lvts_sensor = { 1454 { .dt_id = MT8195_AP_VPU0 }, 1455 { .dt_id = MT8195_AP_VPU1 } 1456 }, 1457 .num_lvts_sensor = 2, 1458 .offset = 0x0, 1459 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1460 }, 1461 { 1462 .cal_offset = { 0x2e, 0x31 }, 1463 .lvts_sensor = { 1464 { .dt_id = MT8195_AP_GPU0 }, 1465 { .dt_id = MT8195_AP_GPU1 } 1466 }, 1467 .num_lvts_sensor = 2, 1468 .offset = 0x100, 1469 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1470 }, 1471 { 1472 .cal_offset = { 0x37, 0x3a, 0x3d }, 1473 .lvts_sensor = { 1474 { .dt_id = MT8195_AP_VDEC }, 1475 { .dt_id = MT8195_AP_IMG }, 1476 { .dt_id = MT8195_AP_INFRA }, 1477 }, 1478 .num_lvts_sensor = 3, 1479 .offset = 0x200, 1480 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1481 }, 1482 { 1483 .cal_offset = { 0x43, 0x46 }, 1484 .lvts_sensor = { 1485 { .dt_id = MT8195_AP_CAM0 }, 1486 { .dt_id = MT8195_AP_CAM1 } 1487 }, 1488 .num_lvts_sensor = 2, 1489 .offset = 0x300, 1490 .hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195, 1491 } 1492 }; 1493 1494 static const struct lvts_data mt7988_lvts_ap_data = { 1495 .lvts_ctrl = mt7988_lvts_ap_data_ctrl, 1496 .num_lvts_ctrl = ARRAY_SIZE(mt7988_lvts_ap_data_ctrl), 1497 .temp_factor = LVTS_COEFF_A_MT7988, 1498 .temp_offset = LVTS_COEFF_B_MT7988, 1499 }; 1500 1501 static const struct lvts_data mt8192_lvts_mcu_data = { 1502 .lvts_ctrl = mt8192_lvts_mcu_data_ctrl, 1503 .num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl), 1504 }; 1505 1506 static const struct lvts_data mt8192_lvts_ap_data = { 1507 .lvts_ctrl = mt8192_lvts_ap_data_ctrl, 1508 .num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_ap_data_ctrl), 1509 }; 1510 1511 static const struct lvts_data mt8195_lvts_mcu_data = { 1512 .lvts_ctrl = mt8195_lvts_mcu_data_ctrl, 1513 .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl), 1514 .temp_factor = LVTS_COEFF_A_MT8195, 1515 .temp_offset = LVTS_COEFF_B_MT8195, 1516 }; 1517 1518 static const struct lvts_data mt8195_lvts_ap_data = { 1519 .lvts_ctrl = mt8195_lvts_ap_data_ctrl, 1520 .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_ap_data_ctrl), 1521 .temp_factor = LVTS_COEFF_A_MT8195, 1522 .temp_offset = LVTS_COEFF_B_MT8195, 1523 }; 1524 1525 static const struct of_device_id lvts_of_match[] = { 1526 { .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data }, 1527 { .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data }, 1528 { .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data }, 1529 { .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data }, 1530 { .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data }, 1531 {}, 1532 }; 1533 MODULE_DEVICE_TABLE(of, lvts_of_match); 1534 1535 static const struct dev_pm_ops lvts_pm_ops = { 1536 NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume) 1537 }; 1538 1539 static struct platform_driver lvts_driver = { 1540 .probe = lvts_probe, 1541 .remove_new = lvts_remove, 1542 .driver = { 1543 .name = "mtk-lvts-thermal", 1544 .of_match_table = lvts_of_match, 1545 .pm = &lvts_pm_ops, 1546 }, 1547 }; 1548 module_platform_driver(lvts_driver); 1549 1550 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>"); 1551 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver"); 1552 MODULE_LICENSE("GPL"); 1553