xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 1f20a5769446a1acae67ac9e63d07a594829a789)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #include "../thermal_hwmon.h"
23 
24 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
25 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
26 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
27 #define LVTS_MONINT(__base)		(__base + 0x000C)
28 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
29 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
30 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
31 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
32 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
33 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
34 #define LVTS_HTHRE(__base)		(__base + 0x0028)
35 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
36 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
37 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
38 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
39 #define LVTS_TSSEL(__base)		(__base + 0x0040)
40 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
41 #define LVTS_ID(__base)			(__base + 0x004C)
42 #define LVTS_CONFIG(__base)		(__base + 0x0050)
43 #define LVTS_EDATA00(__base)	(__base + 0x0054)
44 #define LVTS_EDATA01(__base)	(__base + 0x0058)
45 #define LVTS_EDATA02(__base)	(__base + 0x005C)
46 #define LVTS_EDATA03(__base)	(__base + 0x0060)
47 #define LVTS_MSR0(__base)		(__base + 0x0090)
48 #define LVTS_MSR1(__base)		(__base + 0x0094)
49 #define LVTS_MSR2(__base)		(__base + 0x0098)
50 #define LVTS_MSR3(__base)		(__base + 0x009C)
51 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
52 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
53 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
54 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
55 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
56 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
57 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
58 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
59 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
60 
61 #define LVTS_PERIOD_UNIT			0
62 #define LVTS_GROUP_INTERVAL			0
63 #define LVTS_FILTER_INTERVAL		0
64 #define LVTS_SENSOR_INTERVAL		0
65 #define LVTS_HW_FILTER				0x0
66 #define LVTS_TSSEL_CONF				0x13121110
67 #define LVTS_CALSCALE_CONF			0x300
68 #define LVTS_MONINT_CONF			0x8300318C
69 
70 #define LVTS_MONINT_OFFSET_SENSOR0		0xC
71 #define LVTS_MONINT_OFFSET_SENSOR1		0x180
72 #define LVTS_MONINT_OFFSET_SENSOR2		0x3000
73 #define LVTS_MONINT_OFFSET_SENSOR3		0x3000000
74 
75 #define LVTS_INT_SENSOR0			0x0009001F
76 #define LVTS_INT_SENSOR1			0x001203E0
77 #define LVTS_INT_SENSOR2			0x00247C00
78 #define LVTS_INT_SENSOR3			0x1FC00000
79 
80 #define LVTS_SENSOR_MAX				4
81 #define LVTS_GOLDEN_TEMP_MAX		62
82 #define LVTS_GOLDEN_TEMP_DEFAULT	50
83 #define LVTS_COEFF_A_MT8195			-250460
84 #define LVTS_COEFF_B_MT8195			250460
85 #define LVTS_COEFF_A_MT7988			-204650
86 #define LVTS_COEFF_B_MT7988			204650
87 
88 #define LVTS_MSR_IMMEDIATE_MODE		0
89 #define LVTS_MSR_FILTERED_MODE		1
90 
91 #define LVTS_MSR_READ_TIMEOUT_US	400
92 #define LVTS_MSR_READ_WAIT_US		(LVTS_MSR_READ_TIMEOUT_US / 2)
93 
94 #define LVTS_HW_SHUTDOWN_MT7988		105000
95 #define LVTS_HW_SHUTDOWN_MT8192		105000
96 #define LVTS_HW_SHUTDOWN_MT8195		105000
97 
98 #define LVTS_MINIMUM_THRESHOLD		20000
99 
100 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
101 static int golden_temp_offset;
102 
103 struct lvts_sensor_data {
104 	int dt_id;
105 };
106 
107 struct lvts_ctrl_data {
108 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
109 	int cal_offset[LVTS_SENSOR_MAX];
110 	int hw_tshut_temp;
111 	int num_lvts_sensor;
112 	int offset;
113 	int mode;
114 };
115 
116 struct lvts_data {
117 	const struct lvts_ctrl_data *lvts_ctrl;
118 	int num_lvts_ctrl;
119 	int temp_factor;
120 	int temp_offset;
121 };
122 
123 struct lvts_sensor {
124 	struct thermal_zone_device *tz;
125 	void __iomem *msr;
126 	void __iomem *base;
127 	int id;
128 	int dt_id;
129 	int low_thresh;
130 	int high_thresh;
131 };
132 
133 struct lvts_ctrl {
134 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
135 	const struct lvts_data *lvts_data;
136 	u32 calibration[LVTS_SENSOR_MAX];
137 	u32 hw_tshut_raw_temp;
138 	int num_lvts_sensor;
139 	int mode;
140 	void __iomem *base;
141 	int low_thresh;
142 	int high_thresh;
143 };
144 
145 struct lvts_domain {
146 	struct lvts_ctrl *lvts_ctrl;
147 	struct reset_control *reset;
148 	struct clk *clk;
149 	int num_lvts_ctrl;
150 	void __iomem *base;
151 	size_t calib_len;
152 	u8 *calib;
153 #ifdef CONFIG_DEBUG_FS
154 	struct dentry *dom_dentry;
155 #endif
156 };
157 
158 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
159 
160 #define LVTS_DEBUG_FS_REGS(__reg)		\
161 {						\
162 	.name = __stringify(__reg),		\
163 	.offset = __reg(0),			\
164 }
165 
166 static const struct debugfs_reg32 lvts_regs[] = {
167 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
168 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
169 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
170 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
171 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
172 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
173 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
174 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
175 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
176 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
177 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
178 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
179 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
180 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
181 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
182 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
183 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
184 	LVTS_DEBUG_FS_REGS(LVTS_ID),
185 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
186 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
187 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
188 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
189 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
190 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
191 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
192 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
193 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
194 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
195 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
196 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
197 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
198 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
199 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
200 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
201 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
202 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
203 };
204 
205 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
206 {
207 	struct debugfs_regset32 *regset;
208 	struct lvts_ctrl *lvts_ctrl;
209 	struct dentry *dentry;
210 	char name[64];
211 	int i;
212 
213 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
214 	if (IS_ERR(lvts_td->dom_dentry))
215 		return 0;
216 
217 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
218 
219 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
220 
221 		sprintf(name, "controller%d", i);
222 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
223 		if (IS_ERR(dentry))
224 			continue;
225 
226 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
227 		if (!regset)
228 			continue;
229 
230 		regset->base = lvts_ctrl->base;
231 		regset->regs = lvts_regs;
232 		regset->nregs = ARRAY_SIZE(lvts_regs);
233 
234 		debugfs_create_regset32("registers", 0400, dentry, regset);
235 	}
236 
237 	return 0;
238 }
239 
240 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
241 {
242 	debugfs_remove_recursive(lvts_td->dom_dentry);
243 }
244 
245 #else
246 
247 static inline int lvts_debugfs_init(struct device *dev,
248 				    struct lvts_domain *lvts_td)
249 {
250 	return 0;
251 }
252 
253 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
254 
255 #endif
256 
257 static int lvts_raw_to_temp(u32 raw_temp, int temp_factor)
258 {
259 	int temperature;
260 
261 	temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14;
262 	temperature += golden_temp_offset;
263 
264 	return temperature;
265 }
266 
267 static u32 lvts_temp_to_raw(int temperature, int temp_factor)
268 {
269 	u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14;
270 
271 	raw_temp = div_s64(raw_temp, -temp_factor);
272 
273 	return raw_temp;
274 }
275 
276 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
277 {
278 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
279 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
280 						   sensors[lvts_sensor->id]);
281 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
282 	void __iomem *msr = lvts_sensor->msr;
283 	u32 value;
284 	int rc;
285 
286 	/*
287 	 * Measurement registers:
288 	 *
289 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
290 	 *
291 	 * Bits:
292 	 *
293 	 * 32-17: Unused
294 	 * 16	: Valid temperature
295 	 * 15-0	: Raw temperature
296 	 */
297 	rc = readl_poll_timeout(msr, value, value & BIT(16),
298 				LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US);
299 
300 	/*
301 	 * As the thermal zone temperature will read before the
302 	 * hardware sensor is fully initialized, we have to check the
303 	 * validity of the temperature returned when reading the
304 	 * measurement register. The thermal controller will set the
305 	 * valid bit temperature only when it is totally initialized.
306 	 *
307 	 * Otherwise, we may end up with garbage values out of the
308 	 * functionning temperature and directly jump to a system
309 	 * shutdown.
310 	 */
311 	if (rc)
312 		return -EAGAIN;
313 
314 	*temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor);
315 
316 	return 0;
317 }
318 
319 static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl)
320 {
321 	u32 masks[] = {
322 		LVTS_MONINT_OFFSET_SENSOR0,
323 		LVTS_MONINT_OFFSET_SENSOR1,
324 		LVTS_MONINT_OFFSET_SENSOR2,
325 		LVTS_MONINT_OFFSET_SENSOR3,
326 	};
327 	u32 value = 0;
328 	int i;
329 
330 	value = readl(LVTS_MONINT(lvts_ctrl->base));
331 
332 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
333 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
334 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
335 			value |= masks[i];
336 		else
337 			value &= ~masks[i];
338 	}
339 
340 	writel(value, LVTS_MONINT(lvts_ctrl->base));
341 }
342 
343 static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high)
344 {
345 	int i;
346 
347 	if (high > lvts_ctrl->high_thresh)
348 		return true;
349 
350 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++)
351 		if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh
352 		    && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh)
353 			return false;
354 
355 	return true;
356 }
357 
358 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
359 {
360 	struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz);
361 	struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl,
362 						   sensors[lvts_sensor->id]);
363 	const struct lvts_data *lvts_data = lvts_ctrl->lvts_data;
364 	void __iomem *base = lvts_sensor->base;
365 	u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD,
366 				       lvts_data->temp_factor);
367 	u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor);
368 	bool should_update_thresh;
369 
370 	lvts_sensor->low_thresh = low;
371 	lvts_sensor->high_thresh = high;
372 
373 	should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high);
374 	if (should_update_thresh) {
375 		lvts_ctrl->high_thresh = high;
376 		lvts_ctrl->low_thresh = low;
377 	}
378 	lvts_update_irq_mask(lvts_ctrl);
379 
380 	if (!should_update_thresh)
381 		return 0;
382 
383 	/*
384 	 * Low offset temperature threshold
385 	 *
386 	 * LVTS_OFFSETL
387 	 *
388 	 * Bits:
389 	 *
390 	 * 14-0 : Raw temperature for threshold
391 	 */
392 	pr_debug("%s: Setting low limit temperature interrupt: %d\n",
393 		 thermal_zone_device_type(tz), low);
394 	writel(raw_low, LVTS_OFFSETL(base));
395 
396 	/*
397 	 * High offset temperature threshold
398 	 *
399 	 * LVTS_OFFSETH
400 	 *
401 	 * Bits:
402 	 *
403 	 * 14-0 : Raw temperature for threshold
404 	 */
405 	pr_debug("%s: Setting high limit temperature interrupt: %d\n",
406 		 thermal_zone_device_type(tz), high);
407 	writel(raw_high, LVTS_OFFSETH(base));
408 
409 	return 0;
410 }
411 
412 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
413 {
414 	irqreturn_t iret = IRQ_NONE;
415 	u32 value;
416 	u32 masks[] = {
417 		LVTS_INT_SENSOR0,
418 		LVTS_INT_SENSOR1,
419 		LVTS_INT_SENSOR2,
420 		LVTS_INT_SENSOR3
421 	};
422 	int i;
423 
424 	/*
425 	 * Interrupt monitoring status
426 	 *
427 	 * LVTS_MONINTST
428 	 *
429 	 * Bits:
430 	 *
431 	 * 31 : Interrupt for stage 3
432 	 * 30 : Interrupt for stage 2
433 	 * 29 : Interrupt for state 1
434 	 * 28 : Interrupt using filter on sensor 3
435 	 *
436 	 * 27 : Interrupt using immediate on sensor 3
437 	 * 26 : Interrupt normal to hot on sensor 3
438 	 * 25 : Interrupt high offset on sensor 3
439 	 * 24 : Interrupt low offset on sensor 3
440 	 *
441 	 * 23 : Interrupt hot threshold on sensor 3
442 	 * 22 : Interrupt cold threshold on sensor 3
443 	 * 21 : Interrupt using filter on sensor 2
444 	 * 20 : Interrupt using filter on sensor 1
445 	 *
446 	 * 19 : Interrupt using filter on sensor 0
447 	 * 18 : Interrupt using immediate on sensor 2
448 	 * 17 : Interrupt using immediate on sensor 1
449 	 * 16 : Interrupt using immediate on sensor 0
450 	 *
451 	 * 15 : Interrupt device access timeout interrupt
452 	 * 14 : Interrupt normal to hot on sensor 2
453 	 * 13 : Interrupt high offset interrupt on sensor 2
454 	 * 12 : Interrupt low offset interrupt on sensor 2
455 	 *
456 	 * 11 : Interrupt hot threshold on sensor 2
457 	 * 10 : Interrupt cold threshold on sensor 2
458 	 *  9 : Interrupt normal to hot on sensor 1
459 	 *  8 : Interrupt high offset interrupt on sensor 1
460 	 *
461 	 *  7 : Interrupt low offset interrupt on sensor 1
462 	 *  6 : Interrupt hot threshold on sensor 1
463 	 *  5 : Interrupt cold threshold on sensor 1
464 	 *  4 : Interrupt normal to hot on sensor 0
465 	 *
466 	 *  3 : Interrupt high offset interrupt on sensor 0
467 	 *  2 : Interrupt low offset interrupt on sensor 0
468 	 *  1 : Interrupt hot threshold on sensor 0
469 	 *  0 : Interrupt cold threshold on sensor 0
470 	 *
471 	 * We are interested in the sensor(s) responsible of the
472 	 * interrupt event. We update the thermal framework with the
473 	 * thermal zone associated with the sensor. The framework will
474 	 * take care of the rest whatever the kind of interrupt, we
475 	 * are only interested in which sensor raised the interrupt.
476 	 *
477 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
478 	 *                  => 0x1FC00000
479 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
480 	 *                  => 0x00247C00
481 	 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000
482 	 *                  => 0X001203E0
483 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
484 	 *                  => 0x0009001F
485 	 */
486 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
487 
488 	/*
489 	 * Let's figure out which sensors raised the interrupt
490 	 *
491 	 * NOTE: the masks array must be ordered with the index
492 	 * corresponding to the sensor id eg. index=0, mask for
493 	 * sensor0.
494 	 */
495 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
496 
497 		if (!(value & masks[i]))
498 			continue;
499 
500 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
501 					   THERMAL_TRIP_VIOLATED);
502 		iret = IRQ_HANDLED;
503 	}
504 
505 	/*
506 	 * Write back to clear the interrupt status (W1C)
507 	 */
508 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
509 
510 	return iret;
511 }
512 
513 /*
514  * Temperature interrupt handler. Even if the driver supports more
515  * interrupt modes, we use the interrupt when the temperature crosses
516  * the hot threshold the way up and the way down (modulo the
517  * hysteresis).
518  *
519  * Each thermal domain has a couple of interrupts, one for hardware
520  * reset and another one for all the thermal events happening on the
521  * different sensors.
522  *
523  * The interrupt is configured for thermal events when crossing the
524  * hot temperature limit. At each interrupt, we check in every
525  * controller if there is an interrupt pending.
526  */
527 static irqreturn_t lvts_irq_handler(int irq, void *data)
528 {
529 	struct lvts_domain *lvts_td = data;
530 	irqreturn_t aux, iret = IRQ_NONE;
531 	int i;
532 
533 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
534 
535 		aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]);
536 		if (aux != IRQ_HANDLED)
537 			continue;
538 
539 		iret = IRQ_HANDLED;
540 	}
541 
542 	return iret;
543 }
544 
545 static struct thermal_zone_device_ops lvts_ops = {
546 	.get_temp = lvts_get_temp,
547 	.set_trips = lvts_set_trips,
548 };
549 
550 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
551 					const struct lvts_ctrl_data *lvts_ctrl_data)
552 {
553 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
554 	void __iomem *msr_regs[] = {
555 		LVTS_MSR0(lvts_ctrl->base),
556 		LVTS_MSR1(lvts_ctrl->base),
557 		LVTS_MSR2(lvts_ctrl->base),
558 		LVTS_MSR3(lvts_ctrl->base)
559 	};
560 
561 	void __iomem *imm_regs[] = {
562 		LVTS_IMMD0(lvts_ctrl->base),
563 		LVTS_IMMD1(lvts_ctrl->base),
564 		LVTS_IMMD2(lvts_ctrl->base),
565 		LVTS_IMMD3(lvts_ctrl->base)
566 	};
567 
568 	int i;
569 
570 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
571 
572 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
573 
574 		/*
575 		 * At this point, we don't know which id matches which
576 		 * sensor. Let's set arbitrally the id from the index.
577 		 */
578 		lvts_sensor[i].id = i;
579 
580 		/*
581 		 * The thermal zone registration will set the trip
582 		 * point interrupt in the thermal controller
583 		 * register. But this one will be reset in the
584 		 * initialization after. So we need to post pone the
585 		 * thermal zone creation after the controller is
586 		 * setup. For this reason, we store the device tree
587 		 * node id from the data in the sensor structure
588 		 */
589 		lvts_sensor[i].dt_id = dt_id;
590 
591 		/*
592 		 * We assign the base address of the thermal
593 		 * controller as a back pointer. So it will be
594 		 * accessible from the different thermal framework ops
595 		 * as we pass the lvts_sensor pointer as thermal zone
596 		 * private data.
597 		 */
598 		lvts_sensor[i].base = lvts_ctrl->base;
599 
600 		/*
601 		 * Each sensor has its own register address to read from.
602 		 */
603 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
604 			imm_regs[i] : msr_regs[i];
605 
606 		lvts_sensor[i].low_thresh = INT_MIN;
607 		lvts_sensor[i].high_thresh = INT_MIN;
608 	};
609 
610 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
611 
612 	return 0;
613 }
614 
615 /*
616  * The efuse blob values follows the sensor enumeration per thermal
617  * controller. The decoding of the stream is as follow:
618  *
619  * MT8192 :
620  * Stream index map for MCU Domain mt8192 :
621  *
622  * <-----mcu-tc#0-----> <-----sensor#0----->        <-----sensor#1----->
623  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B
624  *
625  * <-----sensor#2----->        <-----sensor#3----->
626  *  0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13
627  *
628  * <-----sensor#4----->        <-----sensor#5----->        <-----sensor#6----->        <-----sensor#7----->
629  *  0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23
630  *
631  * Stream index map for AP Domain mt8192 :
632  *
633  * <-----sensor#0----->        <-----sensor#1----->
634  *  0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B
635  *
636  * <-----sensor#2----->        <-----sensor#3----->
637  *  0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
638  *
639  * <-----sensor#4----->        <-----sensor#5----->
640  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B
641  *
642  * <-----sensor#6----->        <-----sensor#7----->        <-----sensor#8----->
643  *  0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47
644  *
645  * MT8195 :
646  * Stream index map for MCU Domain mt8195 :
647  *
648  * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1----->
649  *  0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09
650  *
651  * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3----->
652  *  0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12
653  *
654  * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7----->
655  *  0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21
656  *
657  * Stream index map for AP Domain mt8195 :
658  *
659  * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1----->
660  *  0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A
661  *
662  * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3----->
663  *  0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33
664  *
665  * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6----->
666  *  0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F
667  *
668  * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8----->
669  *  0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48
670  *
671  * The data description gives the offset of the calibration data in
672  * this bytes stream for each sensor.
673  */
674 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
675 					const struct lvts_ctrl_data *lvts_ctrl_data,
676 					u8 *efuse_calibration)
677 {
678 	int i;
679 
680 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
681 		memcpy(&lvts_ctrl->calibration[i],
682 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
683 
684 	return 0;
685 }
686 
687 /*
688  * The efuse bytes stream can be split into different chunk of
689  * nvmems. This function reads and concatenate those into a single
690  * buffer so it can be read sequentially when initializing the
691  * calibration data.
692  */
693 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
694 					const struct lvts_data *lvts_data)
695 {
696 	struct device_node *np = dev_of_node(dev);
697 	struct nvmem_cell *cell;
698 	struct property *prop;
699 	const char *cell_name;
700 
701 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
702 		size_t len;
703 		u8 *efuse;
704 
705 		cell = of_nvmem_cell_get(np, cell_name);
706 		if (IS_ERR(cell)) {
707 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
708 			return PTR_ERR(cell);
709 		}
710 
711 		efuse = nvmem_cell_read(cell, &len);
712 
713 		nvmem_cell_put(cell);
714 
715 		if (IS_ERR(efuse)) {
716 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
717 			return PTR_ERR(efuse);
718 		}
719 
720 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
721 					       lvts_td->calib_len + len, GFP_KERNEL);
722 		if (!lvts_td->calib) {
723 			kfree(efuse);
724 			return -ENOMEM;
725 		}
726 
727 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
728 
729 		lvts_td->calib_len += len;
730 
731 		kfree(efuse);
732 	}
733 
734 	return 0;
735 }
736 
737 static int lvts_golden_temp_init(struct device *dev, u32 *value, int temp_offset)
738 {
739 	u32 gt;
740 
741 	gt = (*value) >> 24;
742 
743 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
744 		golden_temp = gt;
745 
746 	golden_temp_offset = golden_temp * 500 + temp_offset;
747 
748 	return 0;
749 }
750 
751 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
752 					const struct lvts_data *lvts_data)
753 {
754 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
755 	struct lvts_ctrl *lvts_ctrl;
756 	int i, ret;
757 
758 	/*
759 	 * Create the calibration bytes stream from efuse data
760 	 */
761 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
762 	if (ret)
763 		return ret;
764 
765 	/*
766 	 * The golden temp information is contained in the first chunk
767 	 * of efuse data.
768 	 */
769 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib, lvts_data->temp_offset);
770 	if (ret)
771 		return ret;
772 
773 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
774 	if (!lvts_ctrl)
775 		return -ENOMEM;
776 
777 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
778 
779 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
780 		lvts_ctrl[i].lvts_data = lvts_data;
781 
782 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
783 				       &lvts_data->lvts_ctrl[i]);
784 		if (ret)
785 			return ret;
786 
787 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
788 					    &lvts_data->lvts_ctrl[i],
789 					    lvts_td->calib);
790 		if (ret)
791 			return ret;
792 
793 		/*
794 		 * The mode the ctrl will use to read the temperature
795 		 * (filtered or immediate)
796 		 */
797 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
798 
799 		/*
800 		 * The temperature to raw temperature must be done
801 		 * after initializing the calibration.
802 		 */
803 		lvts_ctrl[i].hw_tshut_raw_temp =
804 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp,
805 					 lvts_data->temp_factor);
806 
807 		lvts_ctrl[i].low_thresh = INT_MIN;
808 		lvts_ctrl[i].high_thresh = INT_MIN;
809 	}
810 
811 	/*
812 	 * We no longer need the efuse bytes stream, let's free it
813 	 */
814 	devm_kfree(dev, lvts_td->calib);
815 
816 	lvts_td->lvts_ctrl = lvts_ctrl;
817 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
818 
819 	return 0;
820 }
821 
822 /*
823  * At this point the configuration register is the only place in the
824  * driver where we write multiple values. Per hardware constraint,
825  * each write in the configuration register must be separated by a
826  * delay of 2 us.
827  */
828 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
829 {
830 	int i;
831 
832 	/*
833 	 * Configuration register
834 	 */
835 	for (i = 0; i < nr_cmds; i++) {
836 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
837 		usleep_range(2, 4);
838 	}
839 }
840 
841 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
842 {
843 	/*
844 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
845 	 *
846 	 * Bits:
847 	 *
848 	 * 19-18 : Sensor to base the protection on
849 	 * 17-16 : Strategy:
850 	 *         00 : Average of 4 sensors
851 	 *         01 : Max of 4 sensors
852 	 *         10 : Selected sensor with bits 19-18
853 	 *         11 : Reserved
854 	 */
855 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
856 
857 	/*
858 	 * LVTS_PROTTA : Stage 1 temperature threshold
859 	 * LVTS_PROTTB : Stage 2 temperature threshold
860 	 * LVTS_PROTTC : Stage 3 temperature threshold
861 	 *
862 	 * Bits:
863 	 *
864 	 * 14-0: Raw temperature threshold
865 	 *
866 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
867 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
868 	 */
869 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
870 
871 	/*
872 	 * LVTS_MONINT : Interrupt configuration register
873 	 *
874 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
875 	 * register, except we set the bits to enable the interrupt.
876 	 */
877 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
878 
879 	return 0;
880 }
881 
882 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
883 {
884 	int ret;
885 
886 	ret = reset_control_assert(reset);
887 	if (ret)
888 		return ret;
889 
890 	return reset_control_deassert(reset);
891 }
892 
893 /*
894  * Enable or disable the clocks of a specified thermal controller
895  */
896 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
897 {
898 	/*
899 	 * LVTS_CLKEN : Internal LVTS clock
900 	 *
901 	 * Bits:
902 	 *
903 	 * 0 : enable / disable clock
904 	 */
905 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
906 
907 	return 0;
908 }
909 
910 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
911 {
912 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
913 
914 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
915 
916 	/*
917 	 * LVTS_ID : Get ID and status of the thermal controller
918 	 *
919 	 * Bits:
920 	 *
921 	 * 0-5	: thermal controller id
922 	 *   7	: thermal controller connection is valid
923 	 */
924 	id = readl(LVTS_ID(lvts_ctrl->base));
925 	if (!(id & BIT(7)))
926 		return -EIO;
927 
928 	return 0;
929 }
930 
931 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
932 {
933 	/*
934 	 * Write device mask: 0xC1030000
935 	 */
936 	u32 cmds[] = {
937 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
938 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
939 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
940 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
941 	};
942 
943 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
944 
945 	return 0;
946 }
947 
948 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
949 {
950 	int i;
951 	void __iomem *lvts_edata[] = {
952 		LVTS_EDATA00(lvts_ctrl->base),
953 		LVTS_EDATA01(lvts_ctrl->base),
954 		LVTS_EDATA02(lvts_ctrl->base),
955 		LVTS_EDATA03(lvts_ctrl->base)
956 	};
957 
958 	/*
959 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
960 	 *
961 	 * Bits:
962 	 *
963 	 * 20-0 : Efuse value for normalization data
964 	 */
965 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
966 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
967 
968 	return 0;
969 }
970 
971 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
972 {
973 	u32 value;
974 
975 	/*
976 	 * LVTS_TSSEL : Sensing point index numbering
977 	 *
978 	 * Bits:
979 	 *
980 	 * 31-24: ADC Sense 3
981 	 * 23-16: ADC Sense 2
982 	 * 15-8	: ADC Sense 1
983 	 * 7-0	: ADC Sense 0
984 	 */
985 	value = LVTS_TSSEL_CONF;
986 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
987 
988 	/*
989 	 * LVTS_CALSCALE : ADC voltage round
990 	 */
991 	value = 0x300;
992 	value = LVTS_CALSCALE_CONF;
993 
994 	/*
995 	 * LVTS_MSRCTL0 : Sensor filtering strategy
996 	 *
997 	 * Filters:
998 	 *
999 	 * 000 : One sample
1000 	 * 001 : Avg 2 samples
1001 	 * 010 : 4 samples, drop min and max, avg 2 samples
1002 	 * 011 : 6 samples, drop min and max, avg 4 samples
1003 	 * 100 : 10 samples, drop min and max, avg 8 samples
1004 	 * 101 : 18 samples, drop min and max, avg 16 samples
1005 	 *
1006 	 * Bits:
1007 	 *
1008 	 * 0-2  : Sensor0 filter
1009 	 * 3-5  : Sensor1 filter
1010 	 * 6-8  : Sensor2 filter
1011 	 * 9-11 : Sensor3 filter
1012 	 */
1013 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
1014 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
1015 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
1016 
1017 	/*
1018 	 * LVTS_MONCTL1 : Period unit and group interval configuration
1019 	 *
1020 	 * The clock source of LVTS thermal controller is 26MHz.
1021 	 *
1022 	 * The period unit is a time base for all the interval delays
1023 	 * specified in the registers. By default we use 12. The time
1024 	 * conversion is done by multiplying by 256 and 1/26.10^6
1025 	 *
1026 	 * An interval delay multiplied by the period unit gives the
1027 	 * duration in seconds.
1028 	 *
1029 	 * - Filter interval delay is a delay between two samples of
1030 	 * the same sensor.
1031 	 *
1032 	 * - Sensor interval delay is a delay between two samples of
1033 	 * different sensors.
1034 	 *
1035 	 * - Group interval delay is a delay between different rounds.
1036 	 *
1037 	 * For example:
1038 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
1039 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
1040 	 *     and then
1041 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
1042 	 *     Filter interval delay = 1 * Period unit = 118.149us
1043 	 *     Sensor interval delay = 2 * Period unit = 236.298us
1044 	 *     Group interval delay = 1 * Period unit = 118.149us
1045 	 *
1046 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
1047 	 *        <--> Filter interval delay
1048 	 *                       <--> Sensor interval delay
1049 	 *                                             <--> Group interval delay
1050 	 * Bits:
1051 	 *      29 - 20 : Group interval
1052 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
1053 	 *                or an interrupt everytime the hot threshold is crossed (0)
1054 	 *       9 - 0  : Period unit
1055 	 *
1056 	 */
1057 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
1058 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
1059 
1060 	/*
1061 	 * LVTS_MONCTL2 : Filtering and sensor interval
1062 	 *
1063 	 * Bits:
1064 	 *
1065 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
1066 	 *              the same sensor, filter interval
1067 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
1068 	 *
1069 	 */
1070 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
1071 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
1072 
1073 	return lvts_irq_init(lvts_ctrl);
1074 }
1075 
1076 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
1077 {
1078 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
1079 	struct thermal_zone_device *tz;
1080 	u32 sensor_map = 0;
1081 	int i;
1082 	/*
1083 	 * Bitmaps to enable each sensor on immediate and filtered modes, as
1084 	 * described in MSRCTL1 and MONCTL0 registers below, respectively.
1085 	 */
1086 	u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) };
1087 	u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) };
1088 
1089 	u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ?
1090 			     sensor_imm_bitmap : sensor_filt_bitmap;
1091 
1092 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
1093 
1094 		int dt_id = lvts_sensors[i].dt_id;
1095 
1096 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
1097 						   &lvts_ops);
1098 		if (IS_ERR(tz)) {
1099 			/*
1100 			 * This thermal zone is not described in the
1101 			 * device tree. It is not an error from the
1102 			 * thermal OF code POV, we just continue.
1103 			 */
1104 			if (PTR_ERR(tz) == -ENODEV)
1105 				continue;
1106 
1107 			return PTR_ERR(tz);
1108 		}
1109 
1110 		devm_thermal_add_hwmon_sysfs(dev, tz);
1111 
1112 		/*
1113 		 * The thermal zone pointer will be needed in the
1114 		 * interrupt handler, we store it in the sensor
1115 		 * structure. The thermal domain structure will be
1116 		 * passed to the interrupt handler private data as the
1117 		 * interrupt is shared for all the controller
1118 		 * belonging to the thermal domain.
1119 		 */
1120 		lvts_sensors[i].tz = tz;
1121 
1122 		/*
1123 		 * This sensor was correctly associated with a thermal
1124 		 * zone, let's set the corresponding bit in the sensor
1125 		 * map, so we can enable the temperature monitoring in
1126 		 * the hardware thermal controller.
1127 		 */
1128 		sensor_map |= sensor_bitmap[i];
1129 	}
1130 
1131 	/*
1132 	 * The initialization of the thermal zones give us
1133 	 * which sensor point to enable. If any thermal zone
1134 	 * was not described in the device tree, it won't be
1135 	 * enabled here in the sensor map.
1136 	 */
1137 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
1138 		/*
1139 		 * LVTS_MSRCTL1 : Measurement control
1140 		 *
1141 		 * Bits:
1142 		 *
1143 		 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
1144 		 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
1145 		 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
1146 		 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
1147 		 *
1148 		 * That configuration will ignore the filtering and the delays
1149 		 * introduced in MONCTL1 and MONCTL2
1150 		 */
1151 		writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base));
1152 	} else {
1153 		/*
1154 		 * Bits:
1155 		 *      9: Single point access flow
1156 		 *    0-3: Enable sensing point 0-3
1157 		 */
1158 		writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1165 					const struct lvts_data *lvts_data)
1166 {
1167 	struct lvts_ctrl *lvts_ctrl;
1168 	int i, ret;
1169 
1170 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1171 	if (ret)
1172 		return ret;
1173 
1174 	ret = lvts_domain_reset(dev, lvts_td->reset);
1175 	if (ret) {
1176 		dev_dbg(dev, "Failed to reset domain");
1177 		return ret;
1178 	}
1179 
1180 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1181 
1182 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1183 
1184 		/*
1185 		 * Initialization steps:
1186 		 *
1187 		 * - Enable the clock
1188 		 * - Connect to the LVTS
1189 		 * - Initialize the LVTS
1190 		 * - Prepare the calibration data
1191 		 * - Select monitored sensors
1192 		 * [ Configure sampling ]
1193 		 * [ Configure the interrupt ]
1194 		 * - Start measurement
1195 		 */
1196 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1197 		if (ret) {
1198 			dev_dbg(dev, "Failed to enable LVTS clock");
1199 			return ret;
1200 		}
1201 
1202 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1203 		if (ret) {
1204 			dev_dbg(dev, "Failed to connect to LVTS controller");
1205 			return ret;
1206 		}
1207 
1208 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1209 		if (ret) {
1210 			dev_dbg(dev, "Failed to initialize controller");
1211 			return ret;
1212 		}
1213 
1214 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1215 		if (ret) {
1216 			dev_dbg(dev, "Failed to calibrate controller");
1217 			return ret;
1218 		}
1219 
1220 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1221 		if (ret) {
1222 			dev_dbg(dev, "Failed to configure controller");
1223 			return ret;
1224 		}
1225 
1226 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1227 		if (ret) {
1228 			dev_dbg(dev, "Failed to start controller");
1229 			return ret;
1230 		}
1231 	}
1232 
1233 	return lvts_debugfs_init(dev, lvts_td);
1234 }
1235 
1236 static int lvts_probe(struct platform_device *pdev)
1237 {
1238 	const struct lvts_data *lvts_data;
1239 	struct lvts_domain *lvts_td;
1240 	struct device *dev = &pdev->dev;
1241 	struct resource *res;
1242 	int irq, ret;
1243 
1244 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1245 	if (!lvts_td)
1246 		return -ENOMEM;
1247 
1248 	lvts_data = of_device_get_match_data(dev);
1249 
1250 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1251 	if (IS_ERR(lvts_td->clk))
1252 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1253 
1254 	res = platform_get_mem_or_io(pdev, 0);
1255 	if (!res)
1256 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1257 
1258 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1259 	if (IS_ERR(lvts_td->base))
1260 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1261 
1262 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1263 	if (IS_ERR(lvts_td->reset))
1264 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1265 
1266 	irq = platform_get_irq(pdev, 0);
1267 	if (irq < 0)
1268 		return irq;
1269 
1270 	golden_temp_offset = lvts_data->temp_offset;
1271 
1272 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1273 	if (ret)
1274 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1275 
1276 	/*
1277 	 * At this point the LVTS is initialized and enabled. We can
1278 	 * safely enable the interrupt.
1279 	 */
1280 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1281 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1282 	if (ret)
1283 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1284 
1285 	platform_set_drvdata(pdev, lvts_td);
1286 
1287 	return 0;
1288 }
1289 
1290 static void lvts_remove(struct platform_device *pdev)
1291 {
1292 	struct lvts_domain *lvts_td;
1293 	int i;
1294 
1295 	lvts_td = platform_get_drvdata(pdev);
1296 
1297 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1298 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1299 
1300 	lvts_debugfs_exit(lvts_td);
1301 }
1302 
1303 static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = {
1304 	{
1305 		.cal_offset = { 0x00, 0x04, 0x08, 0x0c },
1306 		.lvts_sensor = {
1307 			{ .dt_id = MT7988_CPU_0 },
1308 			{ .dt_id = MT7988_CPU_1 },
1309 			{ .dt_id = MT7988_ETH2P5G_0 },
1310 			{ .dt_id = MT7988_ETH2P5G_1 }
1311 		},
1312 		.num_lvts_sensor = 4,
1313 		.offset = 0x0,
1314 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988,
1315 	},
1316 	{
1317 		.cal_offset = { 0x14, 0x18, 0x1c, 0x20 },
1318 		.lvts_sensor = {
1319 			{ .dt_id = MT7988_TOPS_0},
1320 			{ .dt_id = MT7988_TOPS_1},
1321 			{ .dt_id = MT7988_ETHWARP_0},
1322 			{ .dt_id = MT7988_ETHWARP_1}
1323 		},
1324 		.num_lvts_sensor = 4,
1325 		.offset = 0x100,
1326 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT7988,
1327 	}
1328 };
1329 
1330 static int lvts_suspend(struct device *dev)
1331 {
1332 	struct lvts_domain *lvts_td;
1333 	int i;
1334 
1335 	lvts_td = dev_get_drvdata(dev);
1336 
1337 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1338 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1339 
1340 	clk_disable_unprepare(lvts_td->clk);
1341 
1342 	return 0;
1343 }
1344 
1345 static int lvts_resume(struct device *dev)
1346 {
1347 	struct lvts_domain *lvts_td;
1348 	int i, ret;
1349 
1350 	lvts_td = dev_get_drvdata(dev);
1351 
1352 	ret = clk_prepare_enable(lvts_td->clk);
1353 	if (ret)
1354 		return ret;
1355 
1356 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1357 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true);
1358 
1359 	return 0;
1360 }
1361 
1362 static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = {
1363 	{
1364 		.cal_offset = { 0x04, 0x08 },
1365 		.lvts_sensor = {
1366 			{ .dt_id = MT8192_MCU_BIG_CPU0 },
1367 			{ .dt_id = MT8192_MCU_BIG_CPU1 }
1368 		},
1369 		.num_lvts_sensor = 2,
1370 		.offset = 0x0,
1371 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1372 		.mode = LVTS_MSR_FILTERED_MODE,
1373 	},
1374 	{
1375 		.cal_offset = { 0x0c, 0x10 },
1376 		.lvts_sensor = {
1377 			{ .dt_id = MT8192_MCU_BIG_CPU2 },
1378 			{ .dt_id = MT8192_MCU_BIG_CPU3 }
1379 		},
1380 		.num_lvts_sensor = 2,
1381 		.offset = 0x100,
1382 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1383 		.mode = LVTS_MSR_FILTERED_MODE,
1384 	},
1385 	{
1386 		.cal_offset = { 0x14, 0x18, 0x1c, 0x20 },
1387 		.lvts_sensor = {
1388 			{ .dt_id = MT8192_MCU_LITTLE_CPU0 },
1389 			{ .dt_id = MT8192_MCU_LITTLE_CPU1 },
1390 			{ .dt_id = MT8192_MCU_LITTLE_CPU2 },
1391 			{ .dt_id = MT8192_MCU_LITTLE_CPU3 }
1392 		},
1393 		.num_lvts_sensor = 4,
1394 		.offset = 0x200,
1395 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1396 		.mode = LVTS_MSR_FILTERED_MODE,
1397 	}
1398 };
1399 
1400 static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = {
1401 		{
1402 		.cal_offset = { 0x24, 0x28 },
1403 		.lvts_sensor = {
1404 			{ .dt_id = MT8192_AP_VPU0 },
1405 			{ .dt_id = MT8192_AP_VPU1 }
1406 		},
1407 		.num_lvts_sensor = 2,
1408 		.offset = 0x0,
1409 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1410 	},
1411 	{
1412 		.cal_offset = { 0x2c, 0x30 },
1413 		.lvts_sensor = {
1414 			{ .dt_id = MT8192_AP_GPU0 },
1415 			{ .dt_id = MT8192_AP_GPU1 }
1416 		},
1417 		.num_lvts_sensor = 2,
1418 		.offset = 0x100,
1419 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1420 	},
1421 	{
1422 		.cal_offset = { 0x34, 0x38 },
1423 		.lvts_sensor = {
1424 			{ .dt_id = MT8192_AP_INFRA },
1425 			{ .dt_id = MT8192_AP_CAM },
1426 		},
1427 		.num_lvts_sensor = 2,
1428 		.offset = 0x200,
1429 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1430 	},
1431 	{
1432 		.cal_offset = { 0x3c, 0x40, 0x44 },
1433 		.lvts_sensor = {
1434 			{ .dt_id = MT8192_AP_MD0 },
1435 			{ .dt_id = MT8192_AP_MD1 },
1436 			{ .dt_id = MT8192_AP_MD2 }
1437 		},
1438 		.num_lvts_sensor = 3,
1439 		.offset = 0x300,
1440 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8192,
1441 	}
1442 };
1443 
1444 static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = {
1445 	{
1446 		.cal_offset = { 0x04, 0x07 },
1447 		.lvts_sensor = {
1448 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1449 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1450 		},
1451 		.num_lvts_sensor = 2,
1452 		.offset = 0x0,
1453 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1454 	},
1455 	{
1456 		.cal_offset = { 0x0d, 0x10 },
1457 		.lvts_sensor = {
1458 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1459 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1460 		},
1461 		.num_lvts_sensor = 2,
1462 		.offset = 0x100,
1463 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1464 	},
1465 	{
1466 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1467 		.lvts_sensor = {
1468 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1469 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1470 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1471 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1472 		},
1473 		.num_lvts_sensor = 4,
1474 		.offset = 0x200,
1475 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1476 	}
1477 };
1478 
1479 static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = {
1480 		{
1481 		.cal_offset = { 0x25, 0x28 },
1482 		.lvts_sensor = {
1483 			{ .dt_id = MT8195_AP_VPU0 },
1484 			{ .dt_id = MT8195_AP_VPU1 }
1485 		},
1486 		.num_lvts_sensor = 2,
1487 		.offset = 0x0,
1488 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1489 	},
1490 	{
1491 		.cal_offset = { 0x2e, 0x31 },
1492 		.lvts_sensor = {
1493 			{ .dt_id = MT8195_AP_GPU0 },
1494 			{ .dt_id = MT8195_AP_GPU1 }
1495 		},
1496 		.num_lvts_sensor = 2,
1497 		.offset = 0x100,
1498 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1499 	},
1500 	{
1501 		.cal_offset = { 0x37, 0x3a, 0x3d },
1502 		.lvts_sensor = {
1503 			{ .dt_id = MT8195_AP_VDEC },
1504 			{ .dt_id = MT8195_AP_IMG },
1505 			{ .dt_id = MT8195_AP_INFRA },
1506 		},
1507 		.num_lvts_sensor = 3,
1508 		.offset = 0x200,
1509 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1510 	},
1511 	{
1512 		.cal_offset = { 0x43, 0x46 },
1513 		.lvts_sensor = {
1514 			{ .dt_id = MT8195_AP_CAM0 },
1515 			{ .dt_id = MT8195_AP_CAM1 }
1516 		},
1517 		.num_lvts_sensor = 2,
1518 		.offset = 0x300,
1519 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1520 	}
1521 };
1522 
1523 static const struct lvts_data mt7988_lvts_ap_data = {
1524 	.lvts_ctrl	= mt7988_lvts_ap_data_ctrl,
1525 	.num_lvts_ctrl	= ARRAY_SIZE(mt7988_lvts_ap_data_ctrl),
1526 	.temp_factor	= LVTS_COEFF_A_MT7988,
1527 	.temp_offset	= LVTS_COEFF_B_MT7988,
1528 };
1529 
1530 static const struct lvts_data mt8192_lvts_mcu_data = {
1531 	.lvts_ctrl	= mt8192_lvts_mcu_data_ctrl,
1532 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl),
1533 };
1534 
1535 static const struct lvts_data mt8192_lvts_ap_data = {
1536 	.lvts_ctrl	= mt8192_lvts_ap_data_ctrl,
1537 	.num_lvts_ctrl	= ARRAY_SIZE(mt8192_lvts_ap_data_ctrl),
1538 };
1539 
1540 static const struct lvts_data mt8195_lvts_mcu_data = {
1541 	.lvts_ctrl	= mt8195_lvts_mcu_data_ctrl,
1542 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl),
1543 	.temp_factor	= LVTS_COEFF_A_MT8195,
1544 	.temp_offset	= LVTS_COEFF_B_MT8195,
1545 };
1546 
1547 static const struct lvts_data mt8195_lvts_ap_data = {
1548 	.lvts_ctrl	= mt8195_lvts_ap_data_ctrl,
1549 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_ap_data_ctrl),
1550 	.temp_factor	= LVTS_COEFF_A_MT8195,
1551 	.temp_offset	= LVTS_COEFF_B_MT8195,
1552 };
1553 
1554 static const struct of_device_id lvts_of_match[] = {
1555 	{ .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data },
1556 	{ .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data },
1557 	{ .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data },
1558 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1559 	{ .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data },
1560 	{},
1561 };
1562 MODULE_DEVICE_TABLE(of, lvts_of_match);
1563 
1564 static const struct dev_pm_ops lvts_pm_ops = {
1565 	NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume)
1566 };
1567 
1568 static struct platform_driver lvts_driver = {
1569 	.probe = lvts_probe,
1570 	.remove_new = lvts_remove,
1571 	.driver = {
1572 		.name = "mtk-lvts-thermal",
1573 		.of_match_table = lvts_of_match,
1574 		.pm = &lvts_pm_ops,
1575 	},
1576 };
1577 module_platform_driver(lvts_driver);
1578 
1579 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1580 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1581 MODULE_LICENSE("GPL");
1582