xref: /linux/drivers/thermal/mediatek/lvts_thermal.c (revision 1a2ac6d7ecdcde74a4e16f31de64124160fc7237)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023 MediaTek Inc.
4  * Author: Balsam CHIHI <bchihi@baylibre.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/delay.h>
10 #include <linux/debugfs.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of_device.h>
17 #include <linux/platform_device.h>
18 #include <linux/reset.h>
19 #include <linux/thermal.h>
20 #include <dt-bindings/thermal/mediatek,lvts-thermal.h>
21 
22 #define LVTS_MONCTL0(__base)	(__base + 0x0000)
23 #define LVTS_MONCTL1(__base)	(__base + 0x0004)
24 #define LVTS_MONCTL2(__base)	(__base + 0x0008)
25 #define LVTS_MONINT(__base)		(__base + 0x000C)
26 #define LVTS_MONINTSTS(__base)	(__base + 0x0010)
27 #define LVTS_MONIDET0(__base)	(__base + 0x0014)
28 #define LVTS_MONIDET1(__base)	(__base + 0x0018)
29 #define LVTS_MONIDET2(__base)	(__base + 0x001C)
30 #define LVTS_MONIDET3(__base)	(__base + 0x0020)
31 #define LVTS_H2NTHRE(__base)	(__base + 0x0024)
32 #define LVTS_HTHRE(__base)		(__base + 0x0028)
33 #define LVTS_OFFSETH(__base)	(__base + 0x0030)
34 #define LVTS_OFFSETL(__base)	(__base + 0x0034)
35 #define LVTS_MSRCTL0(__base)	(__base + 0x0038)
36 #define LVTS_MSRCTL1(__base)	(__base + 0x003C)
37 #define LVTS_TSSEL(__base)		(__base + 0x0040)
38 #define LVTS_CALSCALE(__base)	(__base + 0x0048)
39 #define LVTS_ID(__base)			(__base + 0x004C)
40 #define LVTS_CONFIG(__base)		(__base + 0x0050)
41 #define LVTS_EDATA00(__base)	(__base + 0x0054)
42 #define LVTS_EDATA01(__base)	(__base + 0x0058)
43 #define LVTS_EDATA02(__base)	(__base + 0x005C)
44 #define LVTS_EDATA03(__base)	(__base + 0x0060)
45 #define LVTS_MSR0(__base)		(__base + 0x0090)
46 #define LVTS_MSR1(__base)		(__base + 0x0094)
47 #define LVTS_MSR2(__base)		(__base + 0x0098)
48 #define LVTS_MSR3(__base)		(__base + 0x009C)
49 #define LVTS_IMMD0(__base)		(__base + 0x00A0)
50 #define LVTS_IMMD1(__base)		(__base + 0x00A4)
51 #define LVTS_IMMD2(__base)		(__base + 0x00A8)
52 #define LVTS_IMMD3(__base)		(__base + 0x00AC)
53 #define LVTS_PROTCTL(__base)	(__base + 0x00C0)
54 #define LVTS_PROTTA(__base)		(__base + 0x00C4)
55 #define LVTS_PROTTB(__base)		(__base + 0x00C8)
56 #define LVTS_PROTTC(__base)		(__base + 0x00CC)
57 #define LVTS_CLKEN(__base)		(__base + 0x00E4)
58 
59 #define LVTS_PERIOD_UNIT			((118 * 1000) / (256 * 38))
60 #define LVTS_GROUP_INTERVAL			1
61 #define LVTS_FILTER_INTERVAL		1
62 #define LVTS_SENSOR_INTERVAL		1
63 #define LVTS_HW_FILTER				0x2
64 #define LVTS_TSSEL_CONF				0x13121110
65 #define LVTS_CALSCALE_CONF			0x300
66 #define LVTS_MONINT_CONF			0x9FBF7BDE
67 
68 #define LVTS_INT_SENSOR0			0x0009001F
69 #define LVTS_INT_SENSOR1			0X000881F0
70 #define LVTS_INT_SENSOR2			0x00247C00
71 #define LVTS_INT_SENSOR3			0x1FC00000
72 
73 #define LVTS_SENSOR_MAX				4
74 #define LVTS_GOLDEN_TEMP_MAX		62
75 #define LVTS_GOLDEN_TEMP_DEFAULT	50
76 #define LVTS_COEFF_A				-250460
77 #define LVTS_COEFF_B				250460
78 
79 #define LVTS_MSR_IMMEDIATE_MODE		0
80 #define LVTS_MSR_FILTERED_MODE		1
81 
82 #define LVTS_HW_SHUTDOWN_MT8195		105000
83 
84 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
85 static int coeff_b = LVTS_COEFF_B;
86 
87 struct lvts_sensor_data {
88 	int dt_id;
89 };
90 
91 struct lvts_ctrl_data {
92 	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
93 	int cal_offset[LVTS_SENSOR_MAX];
94 	int hw_tshut_temp;
95 	int num_lvts_sensor;
96 	int offset;
97 	int mode;
98 };
99 
100 struct lvts_data {
101 	const struct lvts_ctrl_data *lvts_ctrl;
102 	int num_lvts_ctrl;
103 };
104 
105 struct lvts_sensor {
106 	struct thermal_zone_device *tz;
107 	void __iomem *msr;
108 	void __iomem *base;
109 	int id;
110 	int dt_id;
111 };
112 
113 struct lvts_ctrl {
114 	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
115 	u32 calibration[LVTS_SENSOR_MAX];
116 	u32 hw_tshut_raw_temp;
117 	int num_lvts_sensor;
118 	int mode;
119 	void __iomem *base;
120 };
121 
122 struct lvts_domain {
123 	struct lvts_ctrl *lvts_ctrl;
124 	struct reset_control *reset;
125 	struct clk *clk;
126 	int num_lvts_ctrl;
127 	void __iomem *base;
128 	size_t calib_len;
129 	u8 *calib;
130 #ifdef CONFIG_DEBUG_FS
131 	struct dentry *dom_dentry;
132 #endif
133 };
134 
135 #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS
136 
137 #define LVTS_DEBUG_FS_REGS(__reg)		\
138 {						\
139 	.name = __stringify(__reg),		\
140 	.offset = __reg(0),			\
141 }
142 
143 static const struct debugfs_reg32 lvts_regs[] = {
144 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
145 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
146 	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
147 	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
148 	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
149 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
150 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
151 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
152 	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
153 	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
154 	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
155 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
156 	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
157 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
158 	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
159 	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
160 	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
161 	LVTS_DEBUG_FS_REGS(LVTS_ID),
162 	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
163 	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
164 	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
165 	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
166 	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
167 	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
168 	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
169 	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
170 	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
171 	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
172 	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
173 	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
174 	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
175 	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
176 	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
177 	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
178 	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
179 	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
180 };
181 
182 static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
183 {
184 	struct debugfs_regset32 *regset;
185 	struct lvts_ctrl *lvts_ctrl;
186 	struct dentry *dentry;
187 	char name[64];
188 	int i;
189 
190 	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
191 	if (!lvts_td->dom_dentry)
192 		return 0;
193 
194 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
195 
196 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
197 
198 		sprintf(name, "controller%d", i);
199 		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
200 		if (!dentry)
201 			continue;
202 
203 		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
204 		if (!regset)
205 			continue;
206 
207 		regset->base = lvts_ctrl->base;
208 		regset->regs = lvts_regs;
209 		regset->nregs = ARRAY_SIZE(lvts_regs);
210 
211 		debugfs_create_regset32("registers", 0400, dentry, regset);
212 	}
213 
214 	return 0;
215 }
216 
217 static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
218 {
219 	debugfs_remove_recursive(lvts_td->dom_dentry);
220 }
221 
222 #else
223 
224 static inline int lvts_debugfs_init(struct device *dev,
225 				    struct lvts_domain *lvts_td)
226 {
227 	return 0;
228 }
229 
230 static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }
231 
232 #endif
233 
234 static int lvts_raw_to_temp(u32 raw_temp)
235 {
236 	int temperature;
237 
238 	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
239 	temperature += coeff_b;
240 
241 	return temperature;
242 }
243 
244 static u32 lvts_temp_to_raw(int temperature)
245 {
246 	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;
247 
248 	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);
249 
250 	return raw_temp;
251 }
252 
253 static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
254 {
255 	struct lvts_sensor *lvts_sensor = tz->devdata;
256 	void __iomem *msr = lvts_sensor->msr;
257 	u32 value;
258 
259 	/*
260 	 * Measurement registers:
261 	 *
262 	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
263 	 *
264 	 * Bits:
265 	 *
266 	 * 32-17: Unused
267 	 * 16	: Valid temperature
268 	 * 15-0	: Raw temperature
269 	 */
270 	value = readl(msr);
271 
272 	/*
273 	 * As the thermal zone temperature will read before the
274 	 * hardware sensor is fully initialized, we have to check the
275 	 * validity of the temperature returned when reading the
276 	 * measurement register. The thermal controller will set the
277 	 * valid bit temperature only when it is totally initialized.
278 	 *
279 	 * Otherwise, we may end up with garbage values out of the
280 	 * functionning temperature and directly jump to a system
281 	 * shutdown.
282 	 */
283 	if (!(value & BIT(16)))
284 		return -EAGAIN;
285 
286 	*temp = lvts_raw_to_temp(value & 0xFFFF);
287 
288 	return 0;
289 }
290 
291 static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
292 {
293 	struct lvts_sensor *lvts_sensor = tz->devdata;
294 	void __iomem *base = lvts_sensor->base;
295 	u32 raw_low = lvts_temp_to_raw(low);
296 	u32 raw_high = lvts_temp_to_raw(high);
297 
298 	/*
299 	 * Hot to normal temperature threshold
300 	 *
301 	 * LVTS_H2NTHRE
302 	 *
303 	 * Bits:
304 	 *
305 	 * 14-0 : Raw temperature for threshold
306 	 */
307 	if (low != -INT_MAX) {
308 		dev_dbg(&tz->device, "Setting low limit temperature interrupt: %d\n", low);
309 		writel(raw_low, LVTS_H2NTHRE(base));
310 	}
311 
312 	/*
313 	 * Hot temperature threshold
314 	 *
315 	 * LVTS_HTHRE
316 	 *
317 	 * Bits:
318 	 *
319 	 * 14-0 : Raw temperature for threshold
320 	 */
321 	dev_dbg(&tz->device, "Setting high limit temperature interrupt: %d\n", high);
322 	writel(raw_high, LVTS_HTHRE(base));
323 
324 	return 0;
325 }
326 
327 static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
328 {
329 	irqreturn_t iret = IRQ_NONE;
330 	u32 value;
331 	u32 masks[] = {
332 		LVTS_INT_SENSOR0,
333 		LVTS_INT_SENSOR1,
334 		LVTS_INT_SENSOR2,
335 		LVTS_INT_SENSOR3
336 	};
337 	int i;
338 
339 	/*
340 	 * Interrupt monitoring status
341 	 *
342 	 * LVTS_MONINTST
343 	 *
344 	 * Bits:
345 	 *
346 	 * 31 : Interrupt for stage 3
347 	 * 30 : Interrupt for stage 2
348 	 * 29 : Interrupt for state 1
349 	 * 28 : Interrupt using filter on sensor 3
350 	 *
351 	 * 27 : Interrupt using immediate on sensor 3
352 	 * 26 : Interrupt normal to hot on sensor 3
353 	 * 25 : Interrupt high offset on sensor 3
354 	 * 24 : Interrupt low offset on sensor 3
355 	 *
356 	 * 23 : Interrupt hot threshold on sensor 3
357 	 * 22 : Interrupt cold threshold on sensor 3
358 	 * 21 : Interrupt using filter on sensor 2
359 	 * 20 : Interrupt using filter on sensor 1
360 	 *
361 	 * 19 : Interrupt using filter on sensor 0
362 	 * 18 : Interrupt using immediate on sensor 2
363 	 * 17 : Interrupt using immediate on sensor 1
364 	 * 16 : Interrupt using immediate on sensor 0
365 	 *
366 	 * 15 : Interrupt device access timeout interrupt
367 	 * 14 : Interrupt normal to hot on sensor 2
368 	 * 13 : Interrupt high offset interrupt on sensor 2
369 	 * 12 : Interrupt low offset interrupt on sensor 2
370 	 *
371 	 * 11 : Interrupt hot threshold on sensor 2
372 	 * 10 : Interrupt cold threshold on sensor 2
373 	 *  9 : Interrupt normal to hot on sensor 1
374 	 *  8 : Interrupt high offset interrupt on sensor 1
375 	 *
376 	 *  7 : Interrupt low offset interrupt on sensor 1
377 	 *  6 : Interrupt hot threshold on sensor 1
378 	 *  5 : Interrupt cold threshold on sensor 1
379 	 *  4 : Interrupt normal to hot on sensor 0
380 	 *
381 	 *  3 : Interrupt high offset interrupt on sensor 0
382 	 *  2 : Interrupt low offset interrupt on sensor 0
383 	 *  1 : Interrupt hot threshold on sensor 0
384 	 *  0 : Interrupt cold threshold on sensor 0
385 	 *
386 	 * We are interested in the sensor(s) responsible of the
387 	 * interrupt event. We update the thermal framework with the
388 	 * thermal zone associated with the sensor. The framework will
389 	 * take care of the rest whatever the kind of interrupt, we
390 	 * are only interested in which sensor raised the interrupt.
391 	 *
392 	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
393 	 *                  => 0x1FC00000
394 	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
395 	 *                  => 0x00247C00
396 	 * sensor 1 interrupt: 0000 0000 0001 0001 0000 0011 1110 0000
397 	 *                  => 0X000881F0
398 	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
399 	 *                  => 0x0009001F
400 	 */
401 	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));
402 
403 	/*
404 	 * Let's figure out which sensors raised the interrupt
405 	 *
406 	 * NOTE: the masks array must be ordered with the index
407 	 * corresponding to the sensor id eg. index=0, mask for
408 	 * sensor0.
409 	 */
410 	for (i = 0; i < ARRAY_SIZE(masks); i++) {
411 
412 		if (!(value & masks[i]))
413 			continue;
414 
415 		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
416 					   THERMAL_TRIP_VIOLATED);
417 		iret = IRQ_HANDLED;
418 	}
419 
420 	/*
421 	 * Write back to clear the interrupt status (W1C)
422 	 */
423 	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));
424 
425 	return iret;
426 }
427 
428 /*
429  * Temperature interrupt handler. Even if the driver supports more
430  * interrupt modes, we use the interrupt when the temperature crosses
431  * the hot threshold the way up and the way down (modulo the
432  * hysteresis).
433  *
434  * Each thermal domain has a couple of interrupts, one for hardware
435  * reset and another one for all the thermal events happening on the
436  * different sensors.
437  *
438  * The interrupt is configured for thermal events when crossing the
439  * hot temperature limit. At each interrupt, we check in every
440  * controller if there is an interrupt pending.
441  */
442 static irqreturn_t lvts_irq_handler(int irq, void *data)
443 {
444 	struct lvts_domain *lvts_td = data;
445 	irqreturn_t aux, iret = IRQ_NONE;
446 	int i;
447 
448 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
449 
450 		aux = lvts_ctrl_irq_handler(lvts_td->lvts_ctrl);
451 		if (aux != IRQ_HANDLED)
452 			continue;
453 
454 		iret = IRQ_HANDLED;
455 	}
456 
457 	return iret;
458 }
459 
460 static struct thermal_zone_device_ops lvts_ops = {
461 	.get_temp = lvts_get_temp,
462 	.set_trips = lvts_set_trips,
463 };
464 
465 static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
466 					const struct lvts_ctrl_data *lvts_ctrl_data)
467 {
468 	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
469 	void __iomem *msr_regs[] = {
470 		LVTS_MSR0(lvts_ctrl->base),
471 		LVTS_MSR1(lvts_ctrl->base),
472 		LVTS_MSR2(lvts_ctrl->base),
473 		LVTS_MSR3(lvts_ctrl->base)
474 	};
475 
476 	void __iomem *imm_regs[] = {
477 		LVTS_IMMD0(lvts_ctrl->base),
478 		LVTS_IMMD1(lvts_ctrl->base),
479 		LVTS_IMMD2(lvts_ctrl->base),
480 		LVTS_IMMD3(lvts_ctrl->base)
481 	};
482 
483 	int i;
484 
485 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {
486 
487 		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;
488 
489 		/*
490 		 * At this point, we don't know which id matches which
491 		 * sensor. Let's set arbitrally the id from the index.
492 		 */
493 		lvts_sensor[i].id = i;
494 
495 		/*
496 		 * The thermal zone registration will set the trip
497 		 * point interrupt in the thermal controller
498 		 * register. But this one will be reset in the
499 		 * initialization after. So we need to post pone the
500 		 * thermal zone creation after the controller is
501 		 * setup. For this reason, we store the device tree
502 		 * node id from the data in the sensor structure
503 		 */
504 		lvts_sensor[i].dt_id = dt_id;
505 
506 		/*
507 		 * We assign the base address of the thermal
508 		 * controller as a back pointer. So it will be
509 		 * accessible from the different thermal framework ops
510 		 * as we pass the lvts_sensor pointer as thermal zone
511 		 * private data.
512 		 */
513 		lvts_sensor[i].base = lvts_ctrl->base;
514 
515 		/*
516 		 * Each sensor has its own register address to read from.
517 		 */
518 		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
519 			imm_regs[i] : msr_regs[i];
520 	};
521 
522 	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;
523 
524 	return 0;
525 }
526 
527 /*
528  * The efuse blob values follows the sensor enumeration per thermal
529  * controller. The decoding of the stream is as follow:
530  *
531  *                        <--?-> <----big0 ???---> <-sensor0-> <-0->
532  *                        ------------------------------------------
533  * index in the stream: : | 0x0 | 0x1 | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 |
534  *                        ------------------------------------------
535  *
536  *                        <--sensor1--><-0-> <----big1 ???---> <-sen
537  *                        ------------------------------------------
538  *                        | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
539  *                        ------------------------------------------
540  *
541  *                        sor0-> <-0-> <-sensor1-> <-0-> ..........
542  *                        ------------------------------------------
543  *                        | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
544  *                        ------------------------------------------
545  *
546  * And so on ...
547  *
548  * The data description gives the offset of the calibration data in
549  * this bytes stream for each sensor.
550  *
551  * Each thermal controller can handle up to 4 sensors max, we don't
552  * care if there are less as the array of calibration is sized to 4
553  * anyway. The unused sensor slot will be zeroed.
554  */
555 static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
556 					const struct lvts_ctrl_data *lvts_ctrl_data,
557 					u8 *efuse_calibration)
558 {
559 	int i;
560 
561 	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
562 		memcpy(&lvts_ctrl->calibration[i],
563 		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);
564 
565 	return 0;
566 }
567 
568 /*
569  * The efuse bytes stream can be split into different chunk of
570  * nvmems. This function reads and concatenate those into a single
571  * buffer so it can be read sequentially when initializing the
572  * calibration data.
573  */
574 static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
575 					const struct lvts_data *lvts_data)
576 {
577 	struct device_node *np = dev_of_node(dev);
578 	struct nvmem_cell *cell;
579 	struct property *prop;
580 	const char *cell_name;
581 
582 	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
583 		size_t len;
584 		u8 *efuse;
585 
586 		cell = of_nvmem_cell_get(np, cell_name);
587 		if (IS_ERR(cell)) {
588 			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
589 			return PTR_ERR(cell);
590 		}
591 
592 		efuse = nvmem_cell_read(cell, &len);
593 
594 		nvmem_cell_put(cell);
595 
596 		if (IS_ERR(efuse)) {
597 			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
598 			return PTR_ERR(efuse);
599 		}
600 
601 		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
602 					       lvts_td->calib_len + len, GFP_KERNEL);
603 		if (!lvts_td->calib)
604 			return -ENOMEM;
605 
606 		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);
607 
608 		lvts_td->calib_len += len;
609 
610 		kfree(efuse);
611 	}
612 
613 	return 0;
614 }
615 
616 static int lvts_golden_temp_init(struct device *dev, u32 *value)
617 {
618 	u32 gt;
619 
620 	gt = (*value) >> 24;
621 
622 	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
623 		golden_temp = gt;
624 
625 	coeff_b = golden_temp * 500 + LVTS_COEFF_B;
626 
627 	return 0;
628 }
629 
630 static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
631 					const struct lvts_data *lvts_data)
632 {
633 	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
634 	struct lvts_ctrl *lvts_ctrl;
635 	int i, ret;
636 
637 	/*
638 	 * Create the calibration bytes stream from efuse data
639 	 */
640 	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
641 	if (ret)
642 		return ret;
643 
644 	/*
645 	 * The golden temp information is contained in the first chunk
646 	 * of efuse data.
647 	 */
648 	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
649 	if (ret)
650 		return ret;
651 
652 	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
653 	if (!lvts_ctrl)
654 		return -ENOMEM;
655 
656 	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {
657 
658 		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;
659 
660 		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
661 				       &lvts_data->lvts_ctrl[i]);
662 		if (ret)
663 			return ret;
664 
665 		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
666 					    &lvts_data->lvts_ctrl[i],
667 					    lvts_td->calib);
668 		if (ret)
669 			return ret;
670 
671 		/*
672 		 * The mode the ctrl will use to read the temperature
673 		 * (filtered or immediate)
674 		 */
675 		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;
676 
677 		/*
678 		 * The temperature to raw temperature must be done
679 		 * after initializing the calibration.
680 		 */
681 		lvts_ctrl[i].hw_tshut_raw_temp =
682 			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
683 	}
684 
685 	/*
686 	 * We no longer need the efuse bytes stream, let's free it
687 	 */
688 	devm_kfree(dev, lvts_td->calib);
689 
690 	lvts_td->lvts_ctrl = lvts_ctrl;
691 	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;
692 
693 	return 0;
694 }
695 
696 /*
697  * At this point the configuration register is the only place in the
698  * driver where we write multiple values. Per hardware constraint,
699  * each write in the configuration register must be separated by a
700  * delay of 2 us.
701  */
702 static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
703 {
704 	int i;
705 
706 	/*
707 	 * Configuration register
708 	 */
709 	for (i = 0; i < nr_cmds; i++) {
710 		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
711 		usleep_range(2, 4);
712 	}
713 }
714 
715 static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
716 {
717 	/*
718 	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
719 	 *
720 	 * Bits:
721 	 *
722 	 * 19-18 : Sensor to base the protection on
723 	 * 17-16 : Strategy:
724 	 *         00 : Average of 4 sensors
725 	 *         01 : Max of 4 sensors
726 	 *         10 : Selected sensor with bits 19-18
727 	 *         11 : Reserved
728 	 */
729 	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));
730 
731 	/*
732 	 * LVTS_PROTTA : Stage 1 temperature threshold
733 	 * LVTS_PROTTB : Stage 2 temperature threshold
734 	 * LVTS_PROTTC : Stage 3 temperature threshold
735 	 *
736 	 * Bits:
737 	 *
738 	 * 14-0: Raw temperature threshold
739 	 *
740 	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
741 	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
742 	 */
743 	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));
744 
745 	/*
746 	 * LVTS_MONINT : Interrupt configuration register
747 	 *
748 	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
749 	 * register, except we set the bits to enable the interrupt.
750 	 */
751 	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));
752 
753 	return 0;
754 }
755 
756 static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
757 {
758 	int ret;
759 
760 	ret = reset_control_assert(reset);
761 	if (ret)
762 		return ret;
763 
764 	return reset_control_deassert(reset);
765 }
766 
767 /*
768  * Enable or disable the clocks of a specified thermal controller
769  */
770 static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
771 {
772 	/*
773 	 * LVTS_CLKEN : Internal LVTS clock
774 	 *
775 	 * Bits:
776 	 *
777 	 * 0 : enable / disable clock
778 	 */
779 	writel(enable, LVTS_CLKEN(lvts_ctrl->base));
780 
781 	return 0;
782 }
783 
784 static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
785 {
786 	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };
787 
788 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
789 
790 	/*
791 	 * LVTS_ID : Get ID and status of the thermal controller
792 	 *
793 	 * Bits:
794 	 *
795 	 * 0-5	: thermal controller id
796 	 *   7	: thermal controller connection is valid
797 	 */
798 	id = readl(LVTS_ID(lvts_ctrl->base));
799 	if (!(id & BIT(7)))
800 		return -EIO;
801 
802 	return 0;
803 }
804 
805 static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
806 {
807 	/*
808 	 * Write device mask: 0xC1030000
809 	 */
810 	u32 cmds[] = {
811 		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
812 		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
813 		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
814 		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
815 	};
816 
817 	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));
818 
819 	return 0;
820 }
821 
822 static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
823 {
824 	int i;
825 	void __iomem *lvts_edata[] = {
826 		LVTS_EDATA00(lvts_ctrl->base),
827 		LVTS_EDATA01(lvts_ctrl->base),
828 		LVTS_EDATA02(lvts_ctrl->base),
829 		LVTS_EDATA03(lvts_ctrl->base)
830 	};
831 
832 	/*
833 	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
834 	 *
835 	 * Bits:
836 	 *
837 	 * 20-0 : Efuse value for normalization data
838 	 */
839 	for (i = 0; i < LVTS_SENSOR_MAX; i++)
840 		writel(lvts_ctrl->calibration[i], lvts_edata[i]);
841 
842 	return 0;
843 }
844 
845 static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
846 {
847 	u32 value;
848 
849 	/*
850 	 * LVTS_TSSEL : Sensing point index numbering
851 	 *
852 	 * Bits:
853 	 *
854 	 * 31-24: ADC Sense 3
855 	 * 23-16: ADC Sense 2
856 	 * 15-8	: ADC Sense 1
857 	 * 7-0	: ADC Sense 0
858 	 */
859 	value = LVTS_TSSEL_CONF;
860 	writel(value, LVTS_TSSEL(lvts_ctrl->base));
861 
862 	/*
863 	 * LVTS_CALSCALE : ADC voltage round
864 	 */
865 	value = 0x300;
866 	value = LVTS_CALSCALE_CONF;
867 
868 	/*
869 	 * LVTS_MSRCTL0 : Sensor filtering strategy
870 	 *
871 	 * Filters:
872 	 *
873 	 * 000 : One sample
874 	 * 001 : Avg 2 samples
875 	 * 010 : 4 samples, drop min and max, avg 2 samples
876 	 * 011 : 6 samples, drop min and max, avg 4 samples
877 	 * 100 : 10 samples, drop min and max, avg 8 samples
878 	 * 101 : 18 samples, drop min and max, avg 16 samples
879 	 *
880 	 * Bits:
881 	 *
882 	 * 0-2  : Sensor0 filter
883 	 * 3-5  : Sensor1 filter
884 	 * 6-8  : Sensor2 filter
885 	 * 9-11 : Sensor3 filter
886 	 */
887 	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
888 			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
889 	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));
890 
891 	/*
892 	 * LVTS_MSRCTL1 : Measurement control
893 	 *
894 	 * Bits:
895 	 *
896 	 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
897 	 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
898 	 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
899 	 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
900 	 *
901 	 * That configuration will ignore the filtering and the delays
902 	 * introduced below in MONCTL1 and MONCTL2
903 	 */
904 	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
905 		value = BIT(9) | BIT(6) | BIT(5) | BIT(4);
906 		writel(value, LVTS_MSRCTL1(lvts_ctrl->base));
907 	}
908 
909 	/*
910 	 * LVTS_MONCTL1 : Period unit and group interval configuration
911 	 *
912 	 * The clock source of LVTS thermal controller is 26MHz.
913 	 *
914 	 * The period unit is a time base for all the interval delays
915 	 * specified in the registers. By default we use 12. The time
916 	 * conversion is done by multiplying by 256 and 1/26.10^6
917 	 *
918 	 * An interval delay multiplied by the period unit gives the
919 	 * duration in seconds.
920 	 *
921 	 * - Filter interval delay is a delay between two samples of
922 	 * the same sensor.
923 	 *
924 	 * - Sensor interval delay is a delay between two samples of
925 	 * different sensors.
926 	 *
927 	 * - Group interval delay is a delay between different rounds.
928 	 *
929 	 * For example:
930 	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
931 	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
932 	 *     and then
933 	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
934 	 *     Filter interval delay = 1 * Period unit = 118.149us
935 	 *     Sensor interval delay = 2 * Period unit = 236.298us
936 	 *     Group interval delay = 1 * Period unit = 118.149us
937 	 *
938 	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
939 	 *        <--> Filter interval delay
940 	 *                       <--> Sensor interval delay
941 	 *                                             <--> Group interval delay
942 	 * Bits:
943 	 *      29 - 20 : Group interval
944 	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
945 	 *                or an interrupt everytime the hot threshold is crossed (0)
946 	 *       9 - 0  : Period unit
947 	 *
948 	 */
949 	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
950 	writel(value, LVTS_MONCTL1(lvts_ctrl->base));
951 
952 	/*
953 	 * LVTS_MONCTL2 : Filtering and sensor interval
954 	 *
955 	 * Bits:
956 	 *
957 	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
958 	 *              the same sensor, filter interval
959 	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
960 	 *
961 	 */
962 	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
963 	writel(value, LVTS_MONCTL2(lvts_ctrl->base));
964 
965 	return lvts_irq_init(lvts_ctrl);
966 }
967 
968 static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
969 {
970 	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
971 	struct thermal_zone_device *tz;
972 	u32 sensor_map = 0;
973 	int i;
974 
975 	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {
976 
977 		int dt_id = lvts_sensors[i].dt_id;
978 
979 		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
980 						   &lvts_ops);
981 		if (IS_ERR(tz)) {
982 			/*
983 			 * This thermal zone is not described in the
984 			 * device tree. It is not an error from the
985 			 * thermal OF code POV, we just continue.
986 			 */
987 			if (PTR_ERR(tz) == -ENODEV)
988 				continue;
989 
990 			return PTR_ERR(tz);
991 		}
992 
993 		/*
994 		 * The thermal zone pointer will be needed in the
995 		 * interrupt handler, we store it in the sensor
996 		 * structure. The thermal domain structure will be
997 		 * passed to the interrupt handler private data as the
998 		 * interrupt is shared for all the controller
999 		 * belonging to the thermal domain.
1000 		 */
1001 		lvts_sensors[i].tz = tz;
1002 
1003 		/*
1004 		 * This sensor was correctly associated with a thermal
1005 		 * zone, let's set the corresponding bit in the sensor
1006 		 * map, so we can enable the temperature monitoring in
1007 		 * the hardware thermal controller.
1008 		 */
1009 		sensor_map |= BIT(i);
1010 	}
1011 
1012 	/*
1013 	 * Bits:
1014 	 *      9: Single point access flow
1015 	 *    0-3: Enable sensing point 0-3
1016 	 *
1017 	 * The initialization of the thermal zones give us
1018 	 * which sensor point to enable. If any thermal zone
1019 	 * was not described in the device tree, it won't be
1020 	 * enabled here in the sensor map.
1021 	 */
1022 	writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));
1023 
1024 	return 0;
1025 }
1026 
1027 static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
1028 					const struct lvts_data *lvts_data)
1029 {
1030 	struct lvts_ctrl *lvts_ctrl;
1031 	int i, ret;
1032 
1033 	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
1034 	if (ret)
1035 		return ret;
1036 
1037 	ret = lvts_domain_reset(dev, lvts_td->reset);
1038 	if (ret) {
1039 		dev_dbg(dev, "Failed to reset domain");
1040 		return ret;
1041 	}
1042 
1043 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {
1044 
1045 		lvts_ctrl = &lvts_td->lvts_ctrl[i];
1046 
1047 		/*
1048 		 * Initialization steps:
1049 		 *
1050 		 * - Enable the clock
1051 		 * - Connect to the LVTS
1052 		 * - Initialize the LVTS
1053 		 * - Prepare the calibration data
1054 		 * - Select monitored sensors
1055 		 * [ Configure sampling ]
1056 		 * [ Configure the interrupt ]
1057 		 * - Start measurement
1058 		 */
1059 		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
1060 		if (ret) {
1061 			dev_dbg(dev, "Failed to enable LVTS clock");
1062 			return ret;
1063 		}
1064 
1065 		ret = lvts_ctrl_connect(dev, lvts_ctrl);
1066 		if (ret) {
1067 			dev_dbg(dev, "Failed to connect to LVTS controller");
1068 			return ret;
1069 		}
1070 
1071 		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
1072 		if (ret) {
1073 			dev_dbg(dev, "Failed to initialize controller");
1074 			return ret;
1075 		}
1076 
1077 		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
1078 		if (ret) {
1079 			dev_dbg(dev, "Failed to calibrate controller");
1080 			return ret;
1081 		}
1082 
1083 		ret = lvts_ctrl_configure(dev, lvts_ctrl);
1084 		if (ret) {
1085 			dev_dbg(dev, "Failed to configure controller");
1086 			return ret;
1087 		}
1088 
1089 		ret = lvts_ctrl_start(dev, lvts_ctrl);
1090 		if (ret) {
1091 			dev_dbg(dev, "Failed to start controller");
1092 			return ret;
1093 		}
1094 	}
1095 
1096 	return lvts_debugfs_init(dev, lvts_td);
1097 }
1098 
1099 static int lvts_probe(struct platform_device *pdev)
1100 {
1101 	const struct lvts_data *lvts_data;
1102 	struct lvts_domain *lvts_td;
1103 	struct device *dev = &pdev->dev;
1104 	struct resource *res;
1105 	int irq, ret;
1106 
1107 	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
1108 	if (!lvts_td)
1109 		return -ENOMEM;
1110 
1111 	lvts_data = of_device_get_match_data(dev);
1112 
1113 	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
1114 	if (IS_ERR(lvts_td->clk))
1115 		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");
1116 
1117 	res = platform_get_mem_or_io(pdev, 0);
1118 	if (!res)
1119 		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");
1120 
1121 	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1122 	if (IS_ERR(lvts_td->base))
1123 		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");
1124 
1125 	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
1126 	if (IS_ERR(lvts_td->reset))
1127 		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");
1128 
1129 	irq = platform_get_irq(pdev, 0);
1130 	if (irq < 0)
1131 		return dev_err_probe(dev, irq, "No irq resource\n");
1132 
1133 	ret = lvts_domain_init(dev, lvts_td, lvts_data);
1134 	if (ret)
1135 		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");
1136 
1137 	/*
1138 	 * At this point the LVTS is initialized and enabled. We can
1139 	 * safely enable the interrupt.
1140 	 */
1141 	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
1142 					IRQF_ONESHOT, dev_name(dev), lvts_td);
1143 	if (ret)
1144 		return dev_err_probe(dev, ret, "Failed to request interrupt\n");
1145 
1146 	platform_set_drvdata(pdev, lvts_td);
1147 
1148 	return 0;
1149 }
1150 
1151 static int lvts_remove(struct platform_device *pdev)
1152 {
1153 	struct lvts_domain *lvts_td;
1154 	int i;
1155 
1156 	lvts_td = platform_get_drvdata(pdev);
1157 
1158 	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
1159 		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);
1160 
1161 	lvts_debugfs_exit(lvts_td);
1162 
1163 	return 0;
1164 }
1165 
1166 static const struct lvts_ctrl_data mt8195_lvts_data_ctrl[] = {
1167 	{
1168 		.cal_offset = { 0x04, 0x07 },
1169 		.lvts_sensor = {
1170 			{ .dt_id = MT8195_MCU_BIG_CPU0 },
1171 			{ .dt_id = MT8195_MCU_BIG_CPU1 }
1172 		},
1173 		.num_lvts_sensor = 2,
1174 		.offset = 0x0,
1175 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1176 	},
1177 	{
1178 		.cal_offset = { 0x0d, 0x10 },
1179 		.lvts_sensor = {
1180 			{ .dt_id = MT8195_MCU_BIG_CPU2 },
1181 			{ .dt_id = MT8195_MCU_BIG_CPU3 }
1182 		},
1183 		.num_lvts_sensor = 2,
1184 		.offset = 0x100,
1185 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1186 	},
1187 	{
1188 		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
1189 		.lvts_sensor = {
1190 			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
1191 			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
1192 			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
1193 			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
1194 		},
1195 		.num_lvts_sensor = 4,
1196 		.offset = 0x200,
1197 		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
1198 	}
1199 };
1200 
1201 static const struct lvts_data mt8195_lvts_mcu_data = {
1202 	.lvts_ctrl	= mt8195_lvts_data_ctrl,
1203 	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_data_ctrl),
1204 };
1205 
1206 static const struct of_device_id lvts_of_match[] = {
1207 	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
1208 	{},
1209 };
1210 MODULE_DEVICE_TABLE(of, lvts_of_match);
1211 
1212 static struct platform_driver lvts_driver = {
1213 	.probe = lvts_probe,
1214 	.remove = lvts_remove,
1215 	.driver = {
1216 		.name = "mtk-lvts-thermal",
1217 		.of_match_table = lvts_of_match,
1218 	},
1219 };
1220 module_platform_driver(lvts_driver);
1221 
1222 MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
1223 MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
1224 MODULE_LICENSE("GPL");
1225