xref: /linux/drivers/thermal/mediatek/auxadc_thermal.c (revision f6a756e8fb12923f0e3996a575e935e94f3594eb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5  *         Sascha Hauer <s.hauer@pengutronix.de>
6  *         Dawei Chien <dawei.chien@mediatek.com>
7  *         Louis Yu <louis.yu@mediatek.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/io.h>
21 #include <linux/thermal.h>
22 #include <linux/reset.h>
23 #include <linux/types.h>
24 
25 #include "../thermal_hwmon.h"
26 
27 /* AUXADC Registers */
28 #define AUXADC_CON1_SET_V	0x008
29 #define AUXADC_CON1_CLR_V	0x00c
30 #define AUXADC_CON2_V		0x010
31 #define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
32 
33 #define APMIXED_SYS_TS_CON0	0x600
34 #define APMIXED_SYS_TS_CON1	0x604
35 
36 /* Thermal Controller Registers */
37 #define TEMP_MONCTL0		0x000
38 #define TEMP_MONCTL1		0x004
39 #define TEMP_MONCTL2		0x008
40 #define TEMP_MONIDET0		0x014
41 #define TEMP_MONIDET1		0x018
42 #define TEMP_MSRCTL0		0x038
43 #define TEMP_MSRCTL1		0x03c
44 #define TEMP_AHBPOLL		0x040
45 #define TEMP_AHBTO		0x044
46 #define TEMP_ADCPNP0		0x048
47 #define TEMP_ADCPNP1		0x04c
48 #define TEMP_ADCPNP2		0x050
49 #define TEMP_ADCPNP3		0x0b4
50 
51 #define TEMP_ADCMUX		0x054
52 #define TEMP_ADCEN		0x060
53 #define TEMP_PNPMUXADDR		0x064
54 #define TEMP_ADCMUXADDR		0x068
55 #define TEMP_ADCENADDR		0x074
56 #define TEMP_ADCVALIDADDR	0x078
57 #define TEMP_ADCVOLTADDR	0x07c
58 #define TEMP_RDCTRL		0x080
59 #define TEMP_ADCVALIDMASK	0x084
60 #define TEMP_ADCVOLTAGESHIFT	0x088
61 #define TEMP_ADCWRITECTRL	0x08c
62 #define TEMP_MSR0		0x090
63 #define TEMP_MSR1		0x094
64 #define TEMP_MSR2		0x098
65 #define TEMP_MSR3		0x0B8
66 
67 #define TEMP_SPARE0		0x0f0
68 
69 #define TEMP_ADCPNP0_1          0x148
70 #define TEMP_ADCPNP1_1          0x14c
71 #define TEMP_ADCPNP2_1          0x150
72 #define TEMP_MSR0_1             0x190
73 #define TEMP_MSR1_1             0x194
74 #define TEMP_MSR2_1             0x198
75 #define TEMP_ADCPNP3_1          0x1b4
76 #define TEMP_MSR3_1             0x1B8
77 
78 #define PTPCORESEL		0x400
79 
80 #define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
81 
82 #define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
83 #define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
84 
85 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
86 
87 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
88 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
89 
90 #define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
91 #define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
92 
93 /* MT8173 thermal sensors */
94 #define MT8173_TS1	0
95 #define MT8173_TS2	1
96 #define MT8173_TS3	2
97 #define MT8173_TS4	3
98 #define MT8173_TSABB	4
99 
100 /* AUXADC channel 11 is used for the temperature sensors */
101 #define MT8173_TEMP_AUXADC_CHANNEL	11
102 
103 /* The total number of temperature sensors in the MT8173 */
104 #define MT8173_NUM_SENSORS		5
105 
106 /* The number of banks in the MT8173 */
107 #define MT8173_NUM_ZONES		4
108 
109 /* The number of sensing points per bank */
110 #define MT8173_NUM_SENSORS_PER_ZONE	4
111 
112 /* The number of controller in the MT8173 */
113 #define MT8173_NUM_CONTROLLER		1
114 
115 /* The calibration coefficient of sensor  */
116 #define MT8173_CALIBRATION	165
117 
118 /* Valid temperatures range */
119 #define MT8173_TEMP_MIN		-20000
120 #define MT8173_TEMP_MAX		150000
121 
122 /*
123  * Layout of the fuses providing the calibration data
124  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
125  * MT8183 has 6 sensors and needs 6 VTS calibration data.
126  * MT8173 has 5 sensors and needs 5 VTS calibration data.
127  * MT2701 has 3 sensors and needs 3 VTS calibration data.
128  * MT2712 has 4 sensors and needs 4 VTS calibration data.
129  */
130 #define CALIB_BUF0_VALID_V1		BIT(0)
131 #define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
132 #define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
133 #define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
134 #define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
135 #define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
136 #define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
137 #define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
138 #define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
139 #define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
140 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
141 #define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
142 
143 /*
144  * Layout of the fuses providing the calibration data
145  * These macros could be used for MT7622.
146  */
147 #define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
148 #define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
149 #define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
150 #define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
151 #define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
152 #define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
153 #define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
154 #define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
155 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
156 
157 /*
158  * Layout of the fuses providing the calibration data
159  * These macros can be used for MT7981 and MT7986.
160  */
161 #define CALIB_BUF0_ADC_GE_V3(x)		(((x) >> 0) & 0x3ff)
162 #define CALIB_BUF0_DEGC_CALI_V3(x)	(((x) >> 20) & 0x3f)
163 #define CALIB_BUF0_O_SLOPE_V3(x)	(((x) >> 26) & 0x3f)
164 #define CALIB_BUF1_VTS_TS1_V3(x)	(((x) >> 0) & 0x1ff)
165 #define CALIB_BUF1_VTS_TS2_V3(x)	(((x) >> 21) & 0x1ff)
166 #define CALIB_BUF1_VTS_TSABB_V3(x)	(((x) >> 9) & 0x1ff)
167 #define CALIB_BUF1_VALID_V3(x)		(((x) >> 18) & 0x1)
168 #define CALIB_BUF1_O_SLOPE_SIGN_V3(x)	(((x) >> 19) & 0x1)
169 #define CALIB_BUF1_ID_V3(x)		(((x) >> 20) & 0x1)
170 
171 enum {
172 	VTS1,
173 	VTS2,
174 	VTS3,
175 	VTS4,
176 	VTS5,
177 	VTSABB,
178 	MAX_NUM_VTS,
179 };
180 
181 enum mtk_thermal_version {
182 	MTK_THERMAL_V1 = 1,
183 	MTK_THERMAL_V2,
184 	MTK_THERMAL_V3,
185 };
186 
187 /* MT2701 thermal sensors */
188 #define MT2701_TS1	0
189 #define MT2701_TS2	1
190 #define MT2701_TSABB	2
191 
192 /* AUXADC channel 11 is used for the temperature sensors */
193 #define MT2701_TEMP_AUXADC_CHANNEL	11
194 
195 /* The total number of temperature sensors in the MT2701 */
196 #define MT2701_NUM_SENSORS	3
197 
198 /* The number of sensing points per bank */
199 #define MT2701_NUM_SENSORS_PER_ZONE	3
200 
201 /* The number of controller in the MT2701 */
202 #define MT2701_NUM_CONTROLLER		1
203 
204 /* The calibration coefficient of sensor  */
205 #define MT2701_CALIBRATION	165
206 
207 /* MT2712 thermal sensors */
208 #define MT2712_TS1	0
209 #define MT2712_TS2	1
210 #define MT2712_TS3	2
211 #define MT2712_TS4	3
212 
213 /* AUXADC channel 11 is used for the temperature sensors */
214 #define MT2712_TEMP_AUXADC_CHANNEL	11
215 
216 /* The total number of temperature sensors in the MT2712 */
217 #define MT2712_NUM_SENSORS	4
218 
219 /* The number of sensing points per bank */
220 #define MT2712_NUM_SENSORS_PER_ZONE	4
221 
222 /* The number of controller in the MT2712 */
223 #define MT2712_NUM_CONTROLLER		1
224 
225 /* The calibration coefficient of sensor  */
226 #define MT2712_CALIBRATION	165
227 
228 #define MT7622_TEMP_AUXADC_CHANNEL	11
229 #define MT7622_NUM_SENSORS		1
230 #define MT7622_NUM_ZONES		1
231 #define MT7622_NUM_SENSORS_PER_ZONE	1
232 #define MT7622_TS1	0
233 #define MT7622_NUM_CONTROLLER		1
234 
235 /* The maximum number of banks */
236 #define MAX_NUM_ZONES		8
237 
238 /* The calibration coefficient of sensor  */
239 #define MT7622_CALIBRATION	165
240 
241 /* MT8183 thermal sensors */
242 #define MT8183_TS1	0
243 #define MT8183_TS2	1
244 #define MT8183_TS3	2
245 #define MT8183_TS4	3
246 #define MT8183_TS5	4
247 #define MT8183_TSABB	5
248 
249 /* AUXADC channel  is used for the temperature sensors */
250 #define MT8183_TEMP_AUXADC_CHANNEL	11
251 
252 /* The total number of temperature sensors in the MT8183 */
253 #define MT8183_NUM_SENSORS	6
254 
255 /* The number of banks in the MT8183 */
256 #define MT8183_NUM_ZONES               1
257 
258 /* The number of sensing points per bank */
259 #define MT8183_NUM_SENSORS_PER_ZONE	 6
260 
261 /* The number of controller in the MT8183 */
262 #define MT8183_NUM_CONTROLLER		2
263 
264 /* The calibration coefficient of sensor  */
265 #define MT8183_CALIBRATION	153
266 
267 /* AUXADC channel 11 is used for the temperature sensors */
268 #define MT7986_TEMP_AUXADC_CHANNEL	11
269 
270 /* The total number of temperature sensors in the MT7986 */
271 #define MT7986_NUM_SENSORS		1
272 
273 /* The number of banks in the MT7986 */
274 #define MT7986_NUM_ZONES		1
275 
276 /* The number of sensing points per bank */
277 #define MT7986_NUM_SENSORS_PER_ZONE	1
278 
279 /* MT7986 thermal sensors */
280 #define MT7986_TS1			0
281 
282 /* The number of controller in the MT7986 */
283 #define MT7986_NUM_CONTROLLER		1
284 
285 /* The calibration coefficient of sensor  */
286 #define MT7986_CALIBRATION		165
287 
288 /* MT8365 */
289 #define MT8365_TEMP_AUXADC_CHANNEL 11
290 #define MT8365_CALIBRATION 164
291 #define MT8365_NUM_CONTROLLER 1
292 #define MT8365_NUM_BANKS 1
293 #define MT8365_NUM_SENSORS 3
294 #define MT8365_NUM_SENSORS_PER_ZONE 3
295 #define MT8365_TS1 0
296 #define MT8365_TS2 1
297 #define MT8365_TS3 2
298 
299 struct mtk_thermal;
300 
301 struct thermal_bank_cfg {
302 	unsigned int num_sensors;
303 	const int *sensors;
304 };
305 
306 struct mtk_thermal_bank {
307 	struct mtk_thermal *mt;
308 	int id;
309 };
310 
311 struct mtk_thermal_data {
312 	s32 num_banks;
313 	s32 num_sensors;
314 	s32 auxadc_channel;
315 	const int *vts_index;
316 	const int *sensor_mux_values;
317 	const int *msr;
318 	const int *adcpnp;
319 	const int cali_val;
320 	const int num_controller;
321 	const int *controller_offset;
322 	bool need_switch_bank;
323 	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
324 	enum mtk_thermal_version version;
325 	u32 apmixed_buffer_ctl_reg;
326 	u32 apmixed_buffer_ctl_mask;
327 	u32 apmixed_buffer_ctl_set;
328 };
329 
330 struct mtk_thermal {
331 	struct device *dev;
332 	void __iomem *thermal_base;
333 
334 	struct clk *clk_peri_therm;
335 	struct clk *clk_auxadc;
336 	/* lock: for getting and putting banks */
337 	struct mutex lock;
338 
339 	/* Calibration values */
340 	s32 adc_ge;
341 	s32 adc_oe;
342 	s32 degc_cali;
343 	s32 o_slope;
344 	s32 o_slope_sign;
345 	s32 vts[MAX_NUM_VTS];
346 
347 	const struct mtk_thermal_data *conf;
348 	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
349 
350 	int (*raw_to_mcelsius)(struct mtk_thermal *mt, int sensno, s32 raw);
351 };
352 
353 /* MT8183 thermal sensor data */
354 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
355 	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
356 };
357 
358 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
359 	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
360 };
361 
362 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
363 	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
364 	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
365 };
366 
367 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
368 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
369 
370 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
371 	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
372 };
373 
374 /* MT8173 thermal sensor data */
375 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
376 	{ MT8173_TS2, MT8173_TS3 },
377 	{ MT8173_TS2, MT8173_TS4 },
378 	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
379 	{ MT8173_TS2 },
380 };
381 
382 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
383 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
384 };
385 
386 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
387 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
388 };
389 
390 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
391 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
392 
393 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
394 	VTS1, VTS2, VTS3, VTS4, VTSABB
395 };
396 
397 /* MT2701 thermal sensor data */
398 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
399 	MT2701_TS1, MT2701_TS2, MT2701_TSABB
400 };
401 
402 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
403 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
404 };
405 
406 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
407 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
408 };
409 
410 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
411 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
412 
413 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
414 	VTS1, VTS2, VTS3
415 };
416 
417 /* MT2712 thermal sensor data */
418 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
419 	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
420 };
421 
422 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
423 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
424 };
425 
426 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
427 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
428 };
429 
430 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
431 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
432 
433 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
434 	VTS1, VTS2, VTS3, VTS4
435 };
436 
437 /* MT7622 thermal sensor data */
438 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
439 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
440 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
441 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
442 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
443 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
444 
445 /* MT7986 thermal sensor data */
446 static const int mt7986_bank_data[MT7986_NUM_SENSORS] = { MT7986_TS1, };
447 static const int mt7986_msr[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
448 static const int mt7986_adcpnp[MT7986_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
449 static const int mt7986_mux_values[MT7986_NUM_SENSORS] = { 0, };
450 static const int mt7986_vts_index[MT7986_NUM_SENSORS] = { VTS1 };
451 static const int mt7986_tc_offset[MT7986_NUM_CONTROLLER] = { 0x0, };
452 
453 /* MT8365 thermal sensor data */
454 static const int mt8365_bank_data[MT8365_NUM_SENSORS] = {
455 	MT8365_TS1, MT8365_TS2, MT8365_TS3
456 };
457 
458 static const int mt8365_msr[MT8365_NUM_SENSORS_PER_ZONE] = {
459 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
460 };
461 
462 static const int mt8365_adcpnp[MT8365_NUM_SENSORS_PER_ZONE] = {
463 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
464 };
465 
466 static const int mt8365_mux_values[MT8365_NUM_SENSORS] = { 0, 1, 2 };
467 static const int mt8365_tc_offset[MT8365_NUM_CONTROLLER] = { 0 };
468 
469 static const int mt8365_vts_index[MT8365_NUM_SENSORS] = { VTS1, VTS2, VTS3 };
470 
471 /*
472  * The MT8173 thermal controller has four banks. Each bank can read up to
473  * four temperature sensors simultaneously. The MT8173 has a total of 5
474  * temperature sensors. We use each bank to measure a certain area of the
475  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
476  * areas, hence is used in different banks.
477  *
478  * The thermal core only gets the maximum temperature of all banks, so
479  * the bank concept wouldn't be necessary here. However, the SVS (Smart
480  * Voltage Scaling) unit makes its decisions based on the same bank
481  * data, and this indeed needs the temperatures of the individual banks
482  * for making better decisions.
483  */
484 static const struct mtk_thermal_data mt8173_thermal_data = {
485 	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
486 	.num_banks = MT8173_NUM_ZONES,
487 	.num_sensors = MT8173_NUM_SENSORS,
488 	.vts_index = mt8173_vts_index,
489 	.cali_val = MT8173_CALIBRATION,
490 	.num_controller = MT8173_NUM_CONTROLLER,
491 	.controller_offset = mt8173_tc_offset,
492 	.need_switch_bank = true,
493 	.bank_data = {
494 		{
495 			.num_sensors = 2,
496 			.sensors = mt8173_bank_data[0],
497 		}, {
498 			.num_sensors = 2,
499 			.sensors = mt8173_bank_data[1],
500 		}, {
501 			.num_sensors = 3,
502 			.sensors = mt8173_bank_data[2],
503 		}, {
504 			.num_sensors = 1,
505 			.sensors = mt8173_bank_data[3],
506 		},
507 	},
508 	.msr = mt8173_msr,
509 	.adcpnp = mt8173_adcpnp,
510 	.sensor_mux_values = mt8173_mux_values,
511 	.version = MTK_THERMAL_V1,
512 };
513 
514 /*
515  * The MT2701 thermal controller has one bank, which can read up to
516  * three temperature sensors simultaneously. The MT2701 has a total of 3
517  * temperature sensors.
518  *
519  * The thermal core only gets the maximum temperature of this one bank,
520  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
521  * Voltage Scaling) unit makes its decisions based on the same bank
522  * data.
523  */
524 static const struct mtk_thermal_data mt2701_thermal_data = {
525 	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
526 	.num_banks = 1,
527 	.num_sensors = MT2701_NUM_SENSORS,
528 	.vts_index = mt2701_vts_index,
529 	.cali_val = MT2701_CALIBRATION,
530 	.num_controller = MT2701_NUM_CONTROLLER,
531 	.controller_offset = mt2701_tc_offset,
532 	.need_switch_bank = true,
533 	.bank_data = {
534 		{
535 			.num_sensors = 3,
536 			.sensors = mt2701_bank_data,
537 		},
538 	},
539 	.msr = mt2701_msr,
540 	.adcpnp = mt2701_adcpnp,
541 	.sensor_mux_values = mt2701_mux_values,
542 	.version = MTK_THERMAL_V1,
543 };
544 
545 /*
546  * The MT8365 thermal controller has one bank, which can read up to
547  * four temperature sensors simultaneously. The MT8365 has a total of 3
548  * temperature sensors.
549  *
550  * The thermal core only gets the maximum temperature of this one bank,
551  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
552  * Voltage Scaling) unit makes its decisions based on the same bank
553  * data.
554  */
555 static const struct mtk_thermal_data mt8365_thermal_data = {
556 	.auxadc_channel = MT8365_TEMP_AUXADC_CHANNEL,
557 	.num_banks = MT8365_NUM_BANKS,
558 	.num_sensors = MT8365_NUM_SENSORS,
559 	.vts_index = mt8365_vts_index,
560 	.cali_val = MT8365_CALIBRATION,
561 	.num_controller = MT8365_NUM_CONTROLLER,
562 	.controller_offset = mt8365_tc_offset,
563 	.need_switch_bank = false,
564 	.bank_data = {
565 		{
566 			.num_sensors = MT8365_NUM_SENSORS,
567 			.sensors = mt8365_bank_data
568 		},
569 	},
570 	.msr = mt8365_msr,
571 	.adcpnp = mt8365_adcpnp,
572 	.sensor_mux_values = mt8365_mux_values,
573 	.version = MTK_THERMAL_V1,
574 	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON0,
575 	.apmixed_buffer_ctl_mask = (u32) ~GENMASK(29, 28),
576 	.apmixed_buffer_ctl_set = 0,
577 };
578 
579 /*
580  * The MT2712 thermal controller has one bank, which can read up to
581  * four temperature sensors simultaneously. The MT2712 has a total of 4
582  * temperature sensors.
583  *
584  * The thermal core only gets the maximum temperature of this one bank,
585  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
586  * Voltage Scaling) unit makes its decisions based on the same bank
587  * data.
588  */
589 static const struct mtk_thermal_data mt2712_thermal_data = {
590 	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
591 	.num_banks = 1,
592 	.num_sensors = MT2712_NUM_SENSORS,
593 	.vts_index = mt2712_vts_index,
594 	.cali_val = MT2712_CALIBRATION,
595 	.num_controller = MT2712_NUM_CONTROLLER,
596 	.controller_offset = mt2712_tc_offset,
597 	.need_switch_bank = true,
598 	.bank_data = {
599 		{
600 			.num_sensors = 4,
601 			.sensors = mt2712_bank_data,
602 		},
603 	},
604 	.msr = mt2712_msr,
605 	.adcpnp = mt2712_adcpnp,
606 	.sensor_mux_values = mt2712_mux_values,
607 	.version = MTK_THERMAL_V1,
608 };
609 
610 /*
611  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
612  * access.
613  */
614 static const struct mtk_thermal_data mt7622_thermal_data = {
615 	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
616 	.num_banks = MT7622_NUM_ZONES,
617 	.num_sensors = MT7622_NUM_SENSORS,
618 	.vts_index = mt7622_vts_index,
619 	.cali_val = MT7622_CALIBRATION,
620 	.num_controller = MT7622_NUM_CONTROLLER,
621 	.controller_offset = mt7622_tc_offset,
622 	.need_switch_bank = true,
623 	.bank_data = {
624 		{
625 			.num_sensors = 1,
626 			.sensors = mt7622_bank_data,
627 		},
628 	},
629 	.msr = mt7622_msr,
630 	.adcpnp = mt7622_adcpnp,
631 	.sensor_mux_values = mt7622_mux_values,
632 	.version = MTK_THERMAL_V2,
633 	.apmixed_buffer_ctl_reg = APMIXED_SYS_TS_CON1,
634 	.apmixed_buffer_ctl_mask = GENMASK(31, 6) | BIT(3),
635 	.apmixed_buffer_ctl_set = BIT(0),
636 };
637 
638 /*
639  * The MT8183 thermal controller has one bank for the current SW framework.
640  * The MT8183 has a total of 6 temperature sensors.
641  * There are two thermal controller to control the six sensor.
642  * The first one bind 2 sensor, and the other bind 4 sensors.
643  * The thermal core only gets the maximum temperature of all sensor, so
644  * the bank concept wouldn't be necessary here. However, the SVS (Smart
645  * Voltage Scaling) unit makes its decisions based on the same bank
646  * data, and this indeed needs the temperatures of the individual banks
647  * for making better decisions.
648  */
649 static const struct mtk_thermal_data mt8183_thermal_data = {
650 	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
651 	.num_banks = MT8183_NUM_ZONES,
652 	.num_sensors = MT8183_NUM_SENSORS,
653 	.vts_index = mt8183_vts_index,
654 	.cali_val = MT8183_CALIBRATION,
655 	.num_controller = MT8183_NUM_CONTROLLER,
656 	.controller_offset = mt8183_tc_offset,
657 	.need_switch_bank = false,
658 	.bank_data = {
659 		{
660 			.num_sensors = 6,
661 			.sensors = mt8183_bank_data,
662 		},
663 	},
664 
665 	.msr = mt8183_msr,
666 	.adcpnp = mt8183_adcpnp,
667 	.sensor_mux_values = mt8183_mux_values,
668 	.version = MTK_THERMAL_V1,
669 };
670 
671 /*
672  * MT7986 uses AUXADC Channel 11 for raw data access.
673  */
674 static const struct mtk_thermal_data mt7986_thermal_data = {
675 	.auxadc_channel = MT7986_TEMP_AUXADC_CHANNEL,
676 	.num_banks = MT7986_NUM_ZONES,
677 	.num_sensors = MT7986_NUM_SENSORS,
678 	.vts_index = mt7986_vts_index,
679 	.cali_val = MT7986_CALIBRATION,
680 	.num_controller = MT7986_NUM_CONTROLLER,
681 	.controller_offset = mt7986_tc_offset,
682 	.need_switch_bank = true,
683 	.bank_data = {
684 		{
685 			.num_sensors = 1,
686 			.sensors = mt7986_bank_data,
687 		},
688 	},
689 	.msr = mt7986_msr,
690 	.adcpnp = mt7986_adcpnp,
691 	.sensor_mux_values = mt7986_mux_values,
692 	.version = MTK_THERMAL_V3,
693 };
694 
695 static bool mtk_thermal_temp_is_valid(int temp)
696 {
697 	return (temp >= MT8173_TEMP_MIN) && (temp <= MT8173_TEMP_MAX);
698 }
699 
700 /**
701  * raw_to_mcelsius_v1 - convert a raw ADC value to mcelsius
702  * @mt:	The thermal controller
703  * @sensno:	sensor number
704  * @raw:	raw ADC value
705  *
706  * This converts the raw ADC value to mcelsius using the SoC specific
707  * calibration constants
708  */
709 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
710 {
711 	s32 tmp;
712 
713 	raw &= 0xfff;
714 
715 	tmp = 203450520 << 3;
716 	tmp /= mt->conf->cali_val + mt->o_slope;
717 	tmp /= 10000 + mt->adc_ge;
718 	tmp *= raw - mt->vts[sensno] - 3350;
719 	tmp >>= 3;
720 
721 	return mt->degc_cali * 500 - tmp;
722 }
723 
724 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
725 {
726 	s32 format_1;
727 	s32 format_2;
728 	s32 g_oe;
729 	s32 g_gain;
730 	s32 g_x_roomt;
731 	s32 tmp;
732 
733 	if (raw == 0)
734 		return 0;
735 
736 	raw &= 0xfff;
737 	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
738 	g_oe = mt->adc_oe - 512;
739 	format_1 = mt->vts[VTS2] + 3105 - g_oe;
740 	format_2 = (mt->degc_cali * 10) >> 1;
741 	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
742 
743 	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
744 	tmp = tmp * 10 * 100 / 11;
745 
746 	if (mt->o_slope_sign == 0)
747 		tmp = tmp / (165 - mt->o_slope);
748 	else
749 		tmp = tmp / (165 + mt->o_slope);
750 
751 	return (format_2 - tmp) * 100;
752 }
753 
754 static int raw_to_mcelsius_v3(struct mtk_thermal *mt, int sensno, s32 raw)
755 {
756 	s32 tmp;
757 
758 	if (raw == 0)
759 		return 0;
760 
761 	raw &= 0xfff;
762 	tmp = 100000 * 15 / 16 * 10000;
763 	tmp /= 4096 - 512 + mt->adc_ge;
764 	tmp /= 1490;
765 	tmp *= raw - mt->vts[sensno] - 2900;
766 
767 	return mt->degc_cali * 500 - tmp;
768 }
769 
770 /**
771  * mtk_thermal_get_bank - get bank
772  * @bank:	The bank
773  *
774  * The bank registers are banked, we have to select a bank in the
775  * PTPCORESEL register to access it.
776  */
777 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
778 {
779 	struct mtk_thermal *mt = bank->mt;
780 	u32 val;
781 
782 	if (mt->conf->need_switch_bank) {
783 		mutex_lock(&mt->lock);
784 
785 		val = readl(mt->thermal_base + PTPCORESEL);
786 		val &= ~0xf;
787 		val |= bank->id;
788 		writel(val, mt->thermal_base + PTPCORESEL);
789 	}
790 }
791 
792 /**
793  * mtk_thermal_put_bank - release bank
794  * @bank:	The bank
795  *
796  * release a bank previously taken with mtk_thermal_get_bank,
797  */
798 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
799 {
800 	struct mtk_thermal *mt = bank->mt;
801 
802 	if (mt->conf->need_switch_bank)
803 		mutex_unlock(&mt->lock);
804 }
805 
806 /**
807  * mtk_thermal_bank_temperature - get the temperature of a bank
808  * @bank:	The bank
809  *
810  * The temperature of a bank is considered the maximum temperature of
811  * the sensors associated to the bank.
812  */
813 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
814 {
815 	struct mtk_thermal *mt = bank->mt;
816 	const struct mtk_thermal_data *conf = mt->conf;
817 	int i, temp = INT_MIN, max = INT_MIN;
818 	u32 raw;
819 
820 	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
821 		raw = readl(mt->thermal_base + conf->msr[i]);
822 
823 		temp = mt->raw_to_mcelsius(
824 			mt, conf->bank_data[bank->id].sensors[i], raw);
825 
826 		/*
827 		 * Depending on the filt/sen intervals and ADC polling time,
828 		 * we may need up to 60 milliseconds after initialization: this
829 		 * will result in the first reading containing an out of range
830 		 * temperature value.
831 		 * Validate the reading to both address the aforementioned issue
832 		 * and to eventually avoid bogus readings during runtime in the
833 		 * event that the AUXADC gets unstable due to high EMI, etc.
834 		 */
835 		if (!mtk_thermal_temp_is_valid(temp))
836 			temp = THERMAL_TEMP_INVALID;
837 
838 		if (temp > max)
839 			max = temp;
840 	}
841 
842 	return max;
843 }
844 
845 static int mtk_read_temp(struct thermal_zone_device *tz, int *temperature)
846 {
847 	struct mtk_thermal *mt = thermal_zone_device_priv(tz);
848 	int i;
849 	int tempmax = INT_MIN;
850 
851 	for (i = 0; i < mt->conf->num_banks; i++) {
852 		struct mtk_thermal_bank *bank = &mt->banks[i];
853 
854 		mtk_thermal_get_bank(bank);
855 
856 		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
857 
858 		mtk_thermal_put_bank(bank);
859 	}
860 
861 	*temperature = tempmax;
862 
863 	return 0;
864 }
865 
866 static const struct thermal_zone_device_ops mtk_thermal_ops = {
867 	.get_temp = mtk_read_temp,
868 };
869 
870 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
871 				  u32 apmixed_phys_base, u32 auxadc_phys_base,
872 				  int ctrl_id)
873 {
874 	struct mtk_thermal_bank *bank = &mt->banks[num];
875 	const struct mtk_thermal_data *conf = mt->conf;
876 	int i;
877 
878 	int offset = mt->conf->controller_offset[ctrl_id];
879 	void __iomem *controller_base = mt->thermal_base + offset;
880 
881 	bank->id = num;
882 	bank->mt = mt;
883 
884 	mtk_thermal_get_bank(bank);
885 
886 	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
887 	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
888 
889 	/*
890 	 * filt interval is 1 * 46.540us = 46.54us,
891 	 * sen interval is 429 * 46.540us = 19.96ms
892 	 */
893 	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
894 			TEMP_MONCTL2_SENSOR_INTERVAL(429),
895 			controller_base + TEMP_MONCTL2);
896 
897 	/* poll is set to 10u */
898 	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
899 	       controller_base + TEMP_AHBPOLL);
900 
901 	/* temperature sampling control, 1 sample */
902 	writel(0x0, controller_base + TEMP_MSRCTL0);
903 
904 	/* exceed this polling time, IRQ would be inserted */
905 	writel(0xffffffff, controller_base + TEMP_AHBTO);
906 
907 	/* number of interrupts per event, 1 is enough */
908 	writel(0x0, controller_base + TEMP_MONIDET0);
909 	writel(0x0, controller_base + TEMP_MONIDET1);
910 
911 	/*
912 	 * The MT8173 thermal controller does not have its own ADC. Instead it
913 	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
914 	 * controller has to be programmed with the physical addresses of the
915 	 * AUXADC registers and with the various bit positions in the AUXADC.
916 	 * Also the thermal controller controls a mux in the APMIXEDSYS register
917 	 * space.
918 	 */
919 
920 	/*
921 	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
922 	 * automatically by hw
923 	 */
924 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
925 
926 	/* AHB address for auxadc mux selection */
927 	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
928 	       controller_base + TEMP_ADCMUXADDR);
929 
930 	if (mt->conf->version == MTK_THERMAL_V1) {
931 		/* AHB address for pnp sensor mux selection */
932 		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
933 		       controller_base + TEMP_PNPMUXADDR);
934 	}
935 
936 	/* AHB value for auxadc enable */
937 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
938 
939 	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
940 	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
941 	       controller_base + TEMP_ADCENADDR);
942 
943 	/* AHB address for auxadc valid bit */
944 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
945 	       controller_base + TEMP_ADCVALIDADDR);
946 
947 	/* AHB address for auxadc voltage output */
948 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
949 	       controller_base + TEMP_ADCVOLTADDR);
950 
951 	/* read valid & voltage are at the same register */
952 	writel(0x0, controller_base + TEMP_RDCTRL);
953 
954 	/* indicate where the valid bit is */
955 	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
956 	       controller_base + TEMP_ADCVALIDMASK);
957 
958 	/* no shift */
959 	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
960 
961 	/* enable auxadc mux write transaction */
962 	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
963 		controller_base + TEMP_ADCWRITECTRL);
964 
965 	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
966 		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
967 		       mt->thermal_base + conf->adcpnp[i]);
968 
969 	writel((1 << conf->bank_data[num].num_sensors) - 1,
970 	       controller_base + TEMP_MONCTL0);
971 
972 	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
973 	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
974 	       controller_base + TEMP_ADCWRITECTRL);
975 
976 	mtk_thermal_put_bank(bank);
977 }
978 
979 static u64 of_get_phys_base(struct device_node *np)
980 {
981 	struct resource res;
982 
983 	if (of_address_to_resource(np, 0, &res))
984 		return OF_BAD_ADDR;
985 
986 	return res.start;
987 }
988 
989 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
990 {
991 	int i;
992 
993 	if (!(buf[0] & CALIB_BUF0_VALID_V1))
994 		return -EINVAL;
995 
996 	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
997 
998 	for (i = 0; i < mt->conf->num_sensors; i++) {
999 		switch (mt->conf->vts_index[i]) {
1000 		case VTS1:
1001 			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
1002 			break;
1003 		case VTS2:
1004 			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
1005 			break;
1006 		case VTS3:
1007 			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
1008 			break;
1009 		case VTS4:
1010 			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
1011 			break;
1012 		case VTS5:
1013 			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
1014 			break;
1015 		case VTSABB:
1016 			mt->vts[VTSABB] =
1017 				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
1018 			break;
1019 		default:
1020 			break;
1021 		}
1022 	}
1023 
1024 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
1025 	if (CALIB_BUF1_ID_V1(buf[1]) &
1026 	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
1027 		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
1028 	else
1029 		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
1030 
1031 	return 0;
1032 }
1033 
1034 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
1035 {
1036 	if (!CALIB_BUF1_VALID_V2(buf[1]))
1037 		return -EINVAL;
1038 
1039 	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
1040 	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
1041 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
1042 	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
1043 	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
1044 	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
1045 	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
1046 	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
1047 
1048 	return 0;
1049 }
1050 
1051 static int mtk_thermal_extract_efuse_v3(struct mtk_thermal *mt, u32 *buf)
1052 {
1053 	if (!CALIB_BUF1_VALID_V3(buf[1]))
1054 		return -EINVAL;
1055 
1056 	mt->adc_ge = CALIB_BUF0_ADC_GE_V3(buf[0]);
1057 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V3(buf[0]);
1058 	mt->o_slope = CALIB_BUF0_O_SLOPE_V3(buf[0]);
1059 	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V3(buf[1]);
1060 	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V3(buf[1]);
1061 	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V3(buf[1]);
1062 	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V3(buf[1]);
1063 
1064 	if (CALIB_BUF1_ID_V3(buf[1]) == 0)
1065 		mt->o_slope = 0;
1066 
1067 	return 0;
1068 }
1069 
1070 static int mtk_thermal_get_calibration_data(struct device *dev,
1071 					    struct mtk_thermal *mt)
1072 {
1073 	struct nvmem_cell *cell;
1074 	u32 *buf;
1075 	size_t len;
1076 	int i, ret = 0;
1077 
1078 	/* Start with default values */
1079 	mt->adc_ge = 512;
1080 	mt->adc_oe = 512;
1081 	for (i = 0; i < mt->conf->num_sensors; i++)
1082 		mt->vts[i] = 260;
1083 	mt->degc_cali = 40;
1084 	mt->o_slope = 0;
1085 
1086 	cell = nvmem_cell_get(dev, "calibration-data");
1087 	if (IS_ERR(cell)) {
1088 		if (PTR_ERR(cell) == -EPROBE_DEFER)
1089 			return PTR_ERR(cell);
1090 		return 0;
1091 	}
1092 
1093 	buf = (u32 *)nvmem_cell_read(cell, &len);
1094 
1095 	nvmem_cell_put(cell);
1096 
1097 	if (IS_ERR(buf))
1098 		return PTR_ERR(buf);
1099 
1100 	if (len < 3 * sizeof(u32)) {
1101 		dev_warn(dev, "invalid calibration data\n");
1102 		ret = -EINVAL;
1103 		goto out;
1104 	}
1105 
1106 	switch (mt->conf->version) {
1107 	case MTK_THERMAL_V1:
1108 		ret = mtk_thermal_extract_efuse_v1(mt, buf);
1109 		break;
1110 	case MTK_THERMAL_V2:
1111 		ret = mtk_thermal_extract_efuse_v2(mt, buf);
1112 		break;
1113 	case MTK_THERMAL_V3:
1114 		ret = mtk_thermal_extract_efuse_v3(mt, buf);
1115 		break;
1116 	default:
1117 		ret = -EINVAL;
1118 		break;
1119 	}
1120 
1121 	if (ret) {
1122 		dev_info(dev, "Device not calibrated, using default calibration values\n");
1123 		ret = 0;
1124 	}
1125 
1126 out:
1127 	kfree(buf);
1128 
1129 	return ret;
1130 }
1131 
1132 static const struct of_device_id mtk_thermal_of_match[] = {
1133 	{
1134 		.compatible = "mediatek,mt8173-thermal",
1135 		.data = (void *)&mt8173_thermal_data,
1136 	},
1137 	{
1138 		.compatible = "mediatek,mt2701-thermal",
1139 		.data = (void *)&mt2701_thermal_data,
1140 	},
1141 	{
1142 		.compatible = "mediatek,mt2712-thermal",
1143 		.data = (void *)&mt2712_thermal_data,
1144 	},
1145 	{
1146 		.compatible = "mediatek,mt7622-thermal",
1147 		.data = (void *)&mt7622_thermal_data,
1148 	},
1149 	{
1150 		.compatible = "mediatek,mt7986-thermal",
1151 		.data = (void *)&mt7986_thermal_data,
1152 	},
1153 	{
1154 		.compatible = "mediatek,mt8183-thermal",
1155 		.data = (void *)&mt8183_thermal_data,
1156 	},
1157 	{
1158 		.compatible = "mediatek,mt8365-thermal",
1159 		.data = (void *)&mt8365_thermal_data,
1160 	}, {
1161 	},
1162 };
1163 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
1164 
1165 static void mtk_thermal_turn_on_buffer(struct mtk_thermal *mt,
1166 				       void __iomem *apmixed_base)
1167 {
1168 	u32 tmp;
1169 
1170 	if (!mt->conf->apmixed_buffer_ctl_reg)
1171 		return;
1172 
1173 	tmp = readl(apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
1174 	tmp &= mt->conf->apmixed_buffer_ctl_mask;
1175 	tmp |= mt->conf->apmixed_buffer_ctl_set;
1176 	writel(tmp, apmixed_base + mt->conf->apmixed_buffer_ctl_reg);
1177 	udelay(200);
1178 }
1179 
1180 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
1181 					    void __iomem *auxadc_base)
1182 {
1183 	int tmp;
1184 
1185 	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
1186 	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
1187 	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
1188 	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
1189 }
1190 
1191 static int mtk_thermal_probe(struct platform_device *pdev)
1192 {
1193 	int ret, i, ctrl_id;
1194 	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
1195 	struct mtk_thermal *mt;
1196 	u64 auxadc_phys_base, apmixed_phys_base;
1197 	struct thermal_zone_device *tzdev;
1198 	void __iomem *apmixed_base, *auxadc_base;
1199 
1200 	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
1201 	if (!mt)
1202 		return -ENOMEM;
1203 
1204 	mt->conf = of_device_get_match_data(&pdev->dev);
1205 
1206 	mt->thermal_base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1207 	if (IS_ERR(mt->thermal_base))
1208 		return PTR_ERR(mt->thermal_base);
1209 
1210 	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1211 	if (ret)
1212 		return ret;
1213 
1214 	mutex_init(&mt->lock);
1215 
1216 	mt->dev = &pdev->dev;
1217 
1218 	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1219 	if (!auxadc) {
1220 		dev_err(&pdev->dev, "missing auxadc node\n");
1221 		return -ENODEV;
1222 	}
1223 
1224 	auxadc_base = of_iomap(auxadc, 0);
1225 	auxadc_phys_base = of_get_phys_base(auxadc);
1226 
1227 	of_node_put(auxadc);
1228 
1229 	if (auxadc_phys_base == OF_BAD_ADDR) {
1230 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1231 		return -EINVAL;
1232 	}
1233 
1234 	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1235 	if (!apmixedsys) {
1236 		dev_err(&pdev->dev, "missing apmixedsys node\n");
1237 		return -ENODEV;
1238 	}
1239 
1240 	apmixed_base = of_iomap(apmixedsys, 0);
1241 	apmixed_phys_base = of_get_phys_base(apmixedsys);
1242 
1243 	of_node_put(apmixedsys);
1244 
1245 	if (apmixed_phys_base == OF_BAD_ADDR) {
1246 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1247 		return -EINVAL;
1248 	}
1249 
1250 	ret = device_reset_optional(&pdev->dev);
1251 	if (ret)
1252 		return ret;
1253 
1254 	mt->clk_auxadc = devm_clk_get_enabled(&pdev->dev, "auxadc");
1255 	if (IS_ERR(mt->clk_auxadc)) {
1256 		ret = PTR_ERR(mt->clk_auxadc);
1257 		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1258 		return ret;
1259 	}
1260 
1261 	mt->clk_peri_therm = devm_clk_get_enabled(&pdev->dev, "therm");
1262 	if (IS_ERR(mt->clk_peri_therm)) {
1263 		ret = PTR_ERR(mt->clk_peri_therm);
1264 		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1265 		return ret;
1266 	}
1267 
1268 	mtk_thermal_turn_on_buffer(mt, apmixed_base);
1269 
1270 	if (mt->conf->version != MTK_THERMAL_V2)
1271 		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1272 
1273 	if (mt->conf->version == MTK_THERMAL_V1)
1274 		mt->raw_to_mcelsius = raw_to_mcelsius_v1;
1275 	else if (mt->conf->version == MTK_THERMAL_V2)
1276 		mt->raw_to_mcelsius = raw_to_mcelsius_v2;
1277 	else
1278 		mt->raw_to_mcelsius = raw_to_mcelsius_v3;
1279 
1280 	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1281 		for (i = 0; i < mt->conf->num_banks; i++)
1282 			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1283 					      auxadc_phys_base, ctrl_id);
1284 
1285 	platform_set_drvdata(pdev, mt);
1286 
1287 	tzdev = devm_thermal_of_zone_register(&pdev->dev, 0, mt,
1288 					      &mtk_thermal_ops);
1289 	if (IS_ERR(tzdev))
1290 		return PTR_ERR(tzdev);
1291 
1292 	ret = devm_thermal_add_hwmon_sysfs(&pdev->dev, tzdev);
1293 	if (ret)
1294 		dev_warn(&pdev->dev, "error in thermal_add_hwmon_sysfs");
1295 
1296 	return 0;
1297 }
1298 
1299 static struct platform_driver mtk_thermal_driver = {
1300 	.probe = mtk_thermal_probe,
1301 	.driver = {
1302 		.name = "mtk-thermal",
1303 		.of_match_table = mtk_thermal_of_match,
1304 	},
1305 };
1306 
1307 module_platform_driver(mtk_thermal_driver);
1308 
1309 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1310 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1311 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1312 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1313 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1314 MODULE_DESCRIPTION("Mediatek thermal driver");
1315 MODULE_LICENSE("GPL v2");
1316