xref: /linux/drivers/thermal/k3_j72xx_bandgap.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TI Bandgap temperature sensor driver for J72XX SoC Family
4  *
5  * Copyright (C) 2021 Texas Instruments Incorporated - http://www.ti.com/
6  */
7 
8 #include <linux/math.h>
9 #include <linux/math64.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/err.h>
15 #include <linux/types.h>
16 #include <linux/of_platform.h>
17 #include <linux/io.h>
18 #include <linux/thermal.h>
19 #include <linux/of.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 
23 #define K3_VTM_DEVINFO_PWR0_OFFSET		0x4
24 #define K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK	0xf0
25 #define K3_VTM_TMPSENS0_CTRL_OFFSET		0x300
26 #define K3_VTM_MISC_CTRL_OFFSET			0xc
27 #define K3_VTM_TMPSENS_STAT_OFFSET		0x8
28 #define K3_VTM_ANYMAXT_OUTRG_ALERT_EN		0x1
29 #define K3_VTM_MISC_CTRL2_OFFSET		0x10
30 #define K3_VTM_TS_STAT_DTEMP_MASK		0x3ff
31 #define K3_VTM_MAX_NUM_TS			8
32 #define K3_VTM_TMPSENS_CTRL_SOC			BIT(5)
33 #define K3_VTM_TMPSENS_CTRL_CLRZ		BIT(6)
34 #define K3_VTM_TMPSENS_CTRL_CLKON_REQ		BIT(7)
35 #define K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN	BIT(11)
36 
37 #define K3_VTM_CORRECTION_TEMP_CNT		3
38 
39 #define MINUS40CREF				5
40 #define PLUS30CREF				253
41 #define PLUS125CREF				730
42 #define PLUS150CREF				940
43 
44 #define TABLE_SIZE				1024
45 #define MAX_TEMP				123000
46 #define COOL_DOWN_TEMP				105000
47 
48 #define FACTORS_REDUCTION			13
49 static int *derived_table;
50 
51 static int compute_value(int index, const s64 *factors, int nr_factors,
52 			 int reduction)
53 {
54 	s64 value = 0;
55 	int i;
56 
57 	for (i = 0; i < nr_factors; i++)
58 		value += factors[i] * int_pow(index, i);
59 
60 	return (int)div64_s64(value, int_pow(10, reduction));
61 }
62 
63 static void init_table(int factors_size, int *table, const s64 *factors)
64 {
65 	int i;
66 
67 	for (i = 0; i < TABLE_SIZE; i++)
68 		table[i] = compute_value(i, factors, factors_size,
69 					 FACTORS_REDUCTION);
70 }
71 
72 /**
73  * struct err_values - structure containing error/reference values
74  * @refs: reference error values for -40C, 30C, 125C & 150C
75  * @errs: Actual error values for -40C, 30C, 125C & 150C read from the efuse
76  */
77 struct err_values {
78 	int refs[4];
79 	int errs[4];
80 };
81 
82 static void create_table_segments(struct err_values *err_vals, int seg,
83 				  int *ref_table)
84 {
85 	int m = 0, c, num, den, i, err, idx1, idx2, err1, err2, ref1, ref2;
86 
87 	if (seg == 0)
88 		idx1 = 0;
89 	else
90 		idx1 = err_vals->refs[seg];
91 
92 	idx2 = err_vals->refs[seg + 1];
93 	err1 = err_vals->errs[seg];
94 	err2 = err_vals->errs[seg + 1];
95 	ref1 = err_vals->refs[seg];
96 	ref2 = err_vals->refs[seg + 1];
97 
98 	/*
99 	 * Calculate the slope with adc values read from the register
100 	 * as the y-axis param and err in adc value as x-axis param
101 	 */
102 	num = ref2 - ref1;
103 	den = err2 - err1;
104 	if (den)
105 		m = num / den;
106 	c = ref2 - m * err2;
107 
108 	/*
109 	 * Take care of divide by zero error if error values are same
110 	 * Or when the slope is 0
111 	 */
112 	if (den != 0 && m != 0) {
113 		for (i = idx1; i <= idx2; i++) {
114 			err = (i - c) / m;
115 			if (((i + err) < 0) || ((i + err) >= TABLE_SIZE))
116 				continue;
117 			derived_table[i] = ref_table[i + err];
118 		}
119 	} else { /* Constant error take care of divide by zero */
120 		for (i = idx1; i <= idx2; i++) {
121 			if (((i + err1) < 0) || ((i + err1) >= TABLE_SIZE))
122 				continue;
123 			derived_table[i] = ref_table[i + err1];
124 		}
125 	}
126 }
127 
128 static int prep_lookup_table(struct err_values *err_vals, int *ref_table)
129 {
130 	int inc, i, seg;
131 
132 	/*
133 	 * Fill up the lookup table under 3 segments
134 	 * region -40C to +30C
135 	 * region +30C to +125C
136 	 * region +125C to +150C
137 	 */
138 	for (seg = 0; seg < 3; seg++)
139 		create_table_segments(err_vals, seg, ref_table);
140 
141 	/* Get to the first valid temperature */
142 	i = 0;
143 	while (!derived_table[i])
144 		i++;
145 
146 	/*
147 	 * Get to the last zero index and back fill the temperature for
148 	 * sake of continuity
149 	 */
150 	if (i) {
151 		/* 300 milli celsius steps */
152 		while (i--)
153 			derived_table[i] = derived_table[i + 1] - 300;
154 		/* case 0 */
155 		derived_table[i] = derived_table[i + 1] - 300;
156 	}
157 
158 	/*
159 	 * Fill the last trailing 0s which are unfilled with increments of
160 	 * 100 milli celsius till 1023 code
161 	 */
162 	i = TABLE_SIZE - 1;
163 	while (!derived_table[i])
164 		i--;
165 
166 	i++;
167 	inc = 1;
168 	while (i < TABLE_SIZE) {
169 		derived_table[i] = derived_table[i - 1] + inc * 100;
170 		i++;
171 	}
172 
173 	return 0;
174 }
175 
176 struct k3_thermal_data;
177 
178 struct k3_j72xx_bandgap {
179 	struct device *dev;
180 	void __iomem *base;
181 	void __iomem *cfg2_base;
182 	void __iomem *fuse_base;
183 	struct k3_thermal_data *ts_data[K3_VTM_MAX_NUM_TS];
184 };
185 
186 /* common data structures */
187 struct k3_thermal_data {
188 	struct k3_j72xx_bandgap *bgp;
189 	u32 ctrl_offset;
190 	u32 stat_offset;
191 };
192 
193 static int two_cmp(int tmp, int mask)
194 {
195 	tmp = ~(tmp);
196 	tmp &= mask;
197 	tmp += 1;
198 
199 	/* Return negative value */
200 	return (0 - tmp);
201 }
202 
203 static unsigned int vtm_get_best_value(unsigned int s0, unsigned int s1,
204 				       unsigned int s2)
205 {
206 	int d01 = abs(s0 - s1);
207 	int d02 = abs(s0 - s2);
208 	int d12 = abs(s1 - s2);
209 
210 	if (d01 <= d02 && d01 <= d12)
211 		return (s0 + s1) / 2;
212 
213 	if (d02 <= d01 && d02 <= d12)
214 		return (s0 + s2) / 2;
215 
216 	return (s1 + s2) / 2;
217 }
218 
219 static inline int k3_bgp_read_temp(struct k3_thermal_data *devdata,
220 				   int *temp)
221 {
222 	struct k3_j72xx_bandgap *bgp;
223 	unsigned int dtemp, s0, s1, s2;
224 
225 	bgp = devdata->bgp;
226 	/*
227 	 * Errata is applicable for am654 pg 1.0 silicon/J7ES. There
228 	 * is a variation of the order for certain degree centigrade on AM654.
229 	 * Work around that by getting the average of two closest
230 	 * readings out of three readings everytime we want to
231 	 * report temperatures.
232 	 *
233 	 * Errata workaround.
234 	 */
235 	s0 = readl(bgp->base + devdata->stat_offset) &
236 		K3_VTM_TS_STAT_DTEMP_MASK;
237 	s1 = readl(bgp->base + devdata->stat_offset) &
238 		K3_VTM_TS_STAT_DTEMP_MASK;
239 	s2 = readl(bgp->base + devdata->stat_offset) &
240 		K3_VTM_TS_STAT_DTEMP_MASK;
241 	dtemp = vtm_get_best_value(s0, s1, s2);
242 
243 	if (dtemp < 0 || dtemp >= TABLE_SIZE)
244 		return -EINVAL;
245 
246 	*temp = derived_table[dtemp];
247 
248 	return 0;
249 }
250 
251 /* Get temperature callback function for thermal zone */
252 static int k3_thermal_get_temp(void *devdata, int *temp)
253 {
254 	struct k3_thermal_data *data = devdata;
255 	int ret = 0;
256 
257 	ret = k3_bgp_read_temp(data, temp);
258 	if (ret)
259 		return ret;
260 
261 	return ret;
262 }
263 
264 static const struct thermal_zone_of_device_ops k3_of_thermal_ops = {
265 	.get_temp = k3_thermal_get_temp,
266 };
267 
268 static int k3_j72xx_bandgap_temp_to_adc_code(int temp)
269 {
270 	int low = 0, high = TABLE_SIZE - 1, mid;
271 
272 	if (temp > 160000 || temp < -50000)
273 		return -EINVAL;
274 
275 	/* Binary search to find the adc code */
276 	while (low < (high - 1)) {
277 		mid = (low + high) / 2;
278 		if (temp <= derived_table[mid])
279 			high = mid;
280 		else
281 			low = mid;
282 	}
283 
284 	return mid;
285 }
286 
287 static void get_efuse_values(int id, struct k3_thermal_data *data, int *err,
288 			     struct k3_j72xx_bandgap *bgp)
289 {
290 	int i, tmp, pow;
291 	int ct_offsets[5][K3_VTM_CORRECTION_TEMP_CNT] = {
292 		{ 0x0, 0x8, 0x4 },
293 		{ 0x0, 0x8, 0x4 },
294 		{ 0x0, -1,  0x4 },
295 		{ 0x0, 0xC, -1 },
296 		{ 0x0, 0xc, 0x8 }
297 	};
298 	int ct_bm[5][K3_VTM_CORRECTION_TEMP_CNT] = {
299 		{ 0x3f, 0x1fe000, 0x1ff },
300 		{ 0xfc0, 0x1fe000, 0x3fe00 },
301 		{ 0x3f000, 0x7f800000, 0x7fc0000 },
302 		{ 0xfc0000, 0x1fe0, 0x1f800000 },
303 		{ 0x3f000000, 0x1fe000, 0x1ff0 }
304 	};
305 
306 	for (i = 0; i < 3; i++) {
307 		/* Extract the offset value using bit-mask */
308 		if (ct_offsets[id][i] == -1 && i == 1) {
309 			/* 25C offset Case of Sensor 2 split between 2 regs */
310 			tmp = (readl(bgp->fuse_base + 0x8) & 0xE0000000) >> (29);
311 			tmp |= ((readl(bgp->fuse_base + 0xC) & 0x1F) << 3);
312 			pow = tmp & 0x80;
313 		} else if (ct_offsets[id][i] == -1 && i == 2) {
314 			/* 125C Case of Sensor 3 split between 2 regs */
315 			tmp = (readl(bgp->fuse_base + 0x4) & 0xF8000000) >> (27);
316 			tmp |= ((readl(bgp->fuse_base + 0x8) & 0xF) << 5);
317 			pow = tmp & 0x100;
318 		} else {
319 			tmp = readl(bgp->fuse_base + ct_offsets[id][i]);
320 			tmp &= ct_bm[id][i];
321 			tmp = tmp >> __ffs(ct_bm[id][i]);
322 
323 			/* Obtain the sign bit pow*/
324 			pow = ct_bm[id][i] >> __ffs(ct_bm[id][i]);
325 			pow += 1;
326 			pow /= 2;
327 		}
328 
329 		/* Check for negative value */
330 		if (tmp & pow) {
331 			/* 2's complement value */
332 			tmp = two_cmp(tmp, ct_bm[id][i] >> __ffs(ct_bm[id][i]));
333 		}
334 		err[i] = tmp;
335 	}
336 
337 	/* Err value for 150C is set to 0 */
338 	err[i] = 0;
339 }
340 
341 static void print_look_up_table(struct device *dev, int *ref_table)
342 {
343 	int i;
344 
345 	dev_dbg(dev, "The contents of derived array\n");
346 	dev_dbg(dev, "Code   Temperature\n");
347 	for (i = 0; i < TABLE_SIZE; i++)
348 		dev_dbg(dev, "%d       %d %d\n", i, derived_table[i], ref_table[i]);
349 }
350 
351 struct k3_j72xx_bandgap_data {
352 	unsigned int has_errata_i2128;
353 };
354 
355 static int k3_j72xx_bandgap_probe(struct platform_device *pdev)
356 {
357 	int ret = 0, cnt, val, id;
358 	int high_max, low_temp;
359 	struct resource *res;
360 	struct device *dev = &pdev->dev;
361 	struct k3_j72xx_bandgap *bgp;
362 	struct k3_thermal_data *data;
363 	int workaround_needed = 0;
364 	const struct k3_j72xx_bandgap_data *driver_data;
365 	struct thermal_zone_device *ti_thermal;
366 	int *ref_table;
367 	struct err_values err_vals;
368 
369 	const s64 golden_factors[] = {
370 		-490019999999999936,
371 		3251200000000000,
372 		-1705800000000,
373 		603730000,
374 		-92627,
375 	};
376 
377 	const s64 pvt_wa_factors[] = {
378 		-415230000000000000,
379 		3126600000000000,
380 		-1157800000000,
381 	};
382 
383 	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
384 	if (!bgp)
385 		return -ENOMEM;
386 
387 	bgp->dev = dev;
388 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
389 	bgp->base = devm_ioremap_resource(dev, res);
390 	if (IS_ERR(bgp->base))
391 		return PTR_ERR(bgp->base);
392 
393 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
394 	bgp->cfg2_base = devm_ioremap_resource(dev, res);
395 	if (IS_ERR(bgp->cfg2_base))
396 		return PTR_ERR(bgp->cfg2_base);
397 
398 	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
399 	bgp->fuse_base = devm_ioremap_resource(dev, res);
400 	if (IS_ERR(bgp->fuse_base))
401 		return PTR_ERR(bgp->fuse_base);
402 
403 	driver_data = of_device_get_match_data(dev);
404 	if (driver_data)
405 		workaround_needed = driver_data->has_errata_i2128;
406 
407 	pm_runtime_enable(dev);
408 	ret = pm_runtime_get_sync(dev);
409 	if (ret < 0) {
410 		pm_runtime_put_noidle(dev);
411 		pm_runtime_disable(dev);
412 		return ret;
413 	}
414 
415 	/* Get the sensor count in the VTM */
416 	val = readl(bgp->base + K3_VTM_DEVINFO_PWR0_OFFSET);
417 	cnt = val & K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK;
418 	cnt >>= __ffs(K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK);
419 
420 	data = devm_kcalloc(bgp->dev, cnt, sizeof(*data), GFP_KERNEL);
421 	if (!data) {
422 		ret = -ENOMEM;
423 		goto err_alloc;
424 	}
425 
426 	ref_table = kzalloc(sizeof(*ref_table) * TABLE_SIZE, GFP_KERNEL);
427 	if (!ref_table) {
428 		ret = -ENOMEM;
429 		goto err_alloc;
430 	}
431 
432 	derived_table = devm_kzalloc(bgp->dev, sizeof(*derived_table) * TABLE_SIZE,
433 				     GFP_KERNEL);
434 	if (!derived_table) {
435 		ret = -ENOMEM;
436 		goto err_alloc;
437 	}
438 
439 	/* Workaround not needed if bit30/bit31 is set even for J721e */
440 	if (workaround_needed && (readl(bgp->fuse_base + 0x0) & 0xc0000000) == 0xc0000000)
441 		workaround_needed = false;
442 
443 	dev_dbg(bgp->dev, "Work around %sneeded\n",
444 		workaround_needed ? "not " : "");
445 
446 	if (!workaround_needed)
447 		init_table(5, ref_table, golden_factors);
448 	else
449 		init_table(3, ref_table, pvt_wa_factors);
450 
451 	/* Register the thermal sensors */
452 	for (id = 0; id < cnt; id++) {
453 		data[id].bgp = bgp;
454 		data[id].ctrl_offset = K3_VTM_TMPSENS0_CTRL_OFFSET + id * 0x20;
455 		data[id].stat_offset = data[id].ctrl_offset +
456 					K3_VTM_TMPSENS_STAT_OFFSET;
457 
458 		if (workaround_needed) {
459 			/* ref adc values for -40C, 30C & 125C respectively */
460 			err_vals.refs[0] = MINUS40CREF;
461 			err_vals.refs[1] = PLUS30CREF;
462 			err_vals.refs[2] = PLUS125CREF;
463 			err_vals.refs[3] = PLUS150CREF;
464 			get_efuse_values(id, &data[id], err_vals.errs, bgp);
465 		}
466 
467 		if (id == 0 && workaround_needed)
468 			prep_lookup_table(&err_vals, ref_table);
469 		else if (id == 0 && !workaround_needed)
470 			memcpy(derived_table, ref_table, TABLE_SIZE * 4);
471 
472 		val = readl(data[id].bgp->cfg2_base + data[id].ctrl_offset);
473 		val |= (K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN |
474 			K3_VTM_TMPSENS_CTRL_SOC |
475 			K3_VTM_TMPSENS_CTRL_CLRZ | BIT(4));
476 		writel(val, data[id].bgp->cfg2_base + data[id].ctrl_offset);
477 
478 		bgp->ts_data[id] = &data[id];
479 		ti_thermal =
480 		devm_thermal_zone_of_sensor_register(bgp->dev, id,
481 						     &data[id],
482 						     &k3_of_thermal_ops);
483 		if (IS_ERR(ti_thermal)) {
484 			dev_err(bgp->dev, "thermal zone device is NULL\n");
485 			ret = PTR_ERR(ti_thermal);
486 			goto err_alloc;
487 		}
488 	}
489 
490 	/*
491 	 * Program TSHUT thresholds
492 	 * Step 1: set the thresholds to ~123C and 105C WKUP_VTM_MISC_CTRL2
493 	 * Step 2: WKUP_VTM_TMPSENS_CTRL_j set the MAXT_OUTRG_EN  bit
494 	 *         This is already taken care as per of init
495 	 * Step 3: WKUP_VTM_MISC_CTRL set the ANYMAXT_OUTRG_ALERT_EN  bit
496 	 */
497 	high_max = k3_j72xx_bandgap_temp_to_adc_code(MAX_TEMP);
498 	low_temp = k3_j72xx_bandgap_temp_to_adc_code(COOL_DOWN_TEMP);
499 
500 	writel((low_temp << 16) | high_max, data[0].bgp->cfg2_base +
501 	       K3_VTM_MISC_CTRL2_OFFSET);
502 	mdelay(100);
503 	writel(K3_VTM_ANYMAXT_OUTRG_ALERT_EN, data[0].bgp->cfg2_base +
504 	       K3_VTM_MISC_CTRL_OFFSET);
505 
506 	platform_set_drvdata(pdev, bgp);
507 
508 	print_look_up_table(dev, ref_table);
509 	/*
510 	 * Now that the derived_table has the appropriate look up values
511 	 * Free up the ref_table
512 	 */
513 	kfree(ref_table);
514 
515 	return 0;
516 
517 err_alloc:
518 	pm_runtime_put_sync(&pdev->dev);
519 	pm_runtime_disable(&pdev->dev);
520 
521 	return ret;
522 }
523 
524 static int k3_j72xx_bandgap_remove(struct platform_device *pdev)
525 {
526 	pm_runtime_put_sync(&pdev->dev);
527 	pm_runtime_disable(&pdev->dev);
528 
529 	return 0;
530 }
531 
532 const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j721e_data = {
533 	.has_errata_i2128 = 1,
534 };
535 
536 const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j7200_data = {
537 	.has_errata_i2128 = 0,
538 };
539 
540 static const struct of_device_id of_k3_j72xx_bandgap_match[] = {
541 	{
542 		.compatible = "ti,j721e-vtm",
543 		.data = &k3_j72xx_bandgap_j721e_data,
544 	},
545 	{
546 		.compatible = "ti,j7200-vtm",
547 		.data = &k3_j72xx_bandgap_j7200_data,
548 	},
549 	{ /* sentinel */ },
550 };
551 MODULE_DEVICE_TABLE(of, of_k3_j72xx_bandgap_match);
552 
553 static struct platform_driver k3_j72xx_bandgap_sensor_driver = {
554 	.probe = k3_j72xx_bandgap_probe,
555 	.remove = k3_j72xx_bandgap_remove,
556 	.driver = {
557 		.name = "k3-j72xx-soc-thermal",
558 		.of_match_table	= of_k3_j72xx_bandgap_match,
559 	},
560 };
561 
562 module_platform_driver(k3_j72xx_bandgap_sensor_driver);
563 
564 MODULE_DESCRIPTION("K3 bandgap temperature sensor driver");
565 MODULE_LICENSE("GPL");
566 MODULE_AUTHOR("J Keerthy <j-keerthy@ti.com>");
567