xref: /linux/drivers/thermal/k3_j72xx_bandgap.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * TI Bandgap temperature sensor driver for J72XX SoC Family
4  *
5  * Copyright (C) 2021 Texas Instruments Incorporated - http://www.ti.com/
6  */
7 
8 #include <linux/math.h>
9 #include <linux/math64.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/err.h>
16 #include <linux/types.h>
17 #include <linux/io.h>
18 #include <linux/thermal.h>
19 #include <linux/of.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 
23 #include "thermal_hwmon.h"
24 
25 #define K3_VTM_DEVINFO_PWR0_OFFSET		0x4
26 #define K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK	0xf0
27 #define K3_VTM_TMPSENS0_CTRL_OFFSET		0x300
28 #define K3_VTM_MISC_CTRL_OFFSET			0xc
29 #define K3_VTM_TMPSENS_STAT_OFFSET		0x8
30 #define K3_VTM_ANYMAXT_OUTRG_ALERT_EN		0x1
31 #define K3_VTM_MISC_CTRL2_OFFSET		0x10
32 #define K3_VTM_TS_STAT_DTEMP_MASK		0x3ff
33 #define K3_VTM_MAX_NUM_TS			8
34 #define K3_VTM_TMPSENS_CTRL_SOC			BIT(5)
35 #define K3_VTM_TMPSENS_CTRL_CLRZ		BIT(6)
36 #define K3_VTM_TMPSENS_CTRL_CLKON_REQ		BIT(7)
37 #define K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN	BIT(11)
38 
39 #define K3_VTM_CORRECTION_TEMP_CNT		3
40 
41 #define MINUS40CREF				5
42 #define PLUS30CREF				253
43 #define PLUS125CREF				730
44 #define PLUS150CREF				940
45 
46 #define TABLE_SIZE				1024
47 #define MAX_TEMP				123000
48 #define COOL_DOWN_TEMP				105000
49 
50 #define FACTORS_REDUCTION			13
51 static int *derived_table;
52 
53 static int compute_value(int index, const s64 *factors, int nr_factors,
54 			 int reduction)
55 {
56 	s64 value = 0;
57 	int i;
58 
59 	for (i = 0; i < nr_factors; i++)
60 		value += factors[i] * int_pow(index, i);
61 
62 	return (int)div64_s64(value, int_pow(10, reduction));
63 }
64 
65 static void init_table(int factors_size, int *table, const s64 *factors)
66 {
67 	int i;
68 
69 	for (i = 0; i < TABLE_SIZE; i++)
70 		table[i] = compute_value(i, factors, factors_size,
71 					 FACTORS_REDUCTION);
72 }
73 
74 /**
75  * struct err_values - structure containing error/reference values
76  * @refs: reference error values for -40C, 30C, 125C & 150C
77  * @errs: Actual error values for -40C, 30C, 125C & 150C read from the efuse
78  */
79 struct err_values {
80 	int refs[4];
81 	int errs[4];
82 };
83 
84 static void create_table_segments(struct err_values *err_vals, int seg,
85 				  int *ref_table)
86 {
87 	int m = 0, c, num, den, i, err, idx1, idx2, err1, err2, ref1, ref2;
88 
89 	if (seg == 0)
90 		idx1 = 0;
91 	else
92 		idx1 = err_vals->refs[seg];
93 
94 	idx2 = err_vals->refs[seg + 1];
95 	err1 = err_vals->errs[seg];
96 	err2 = err_vals->errs[seg + 1];
97 	ref1 = err_vals->refs[seg];
98 	ref2 = err_vals->refs[seg + 1];
99 
100 	/*
101 	 * Calculate the slope with adc values read from the register
102 	 * as the y-axis param and err in adc value as x-axis param
103 	 */
104 	num = ref2 - ref1;
105 	den = err2 - err1;
106 	if (den)
107 		m = num / den;
108 	c = ref2 - m * err2;
109 
110 	/*
111 	 * Take care of divide by zero error if error values are same
112 	 * Or when the slope is 0
113 	 */
114 	if (den != 0 && m != 0) {
115 		for (i = idx1; i <= idx2; i++) {
116 			err = (i - c) / m;
117 			if (((i + err) < 0) || ((i + err) >= TABLE_SIZE))
118 				continue;
119 			derived_table[i] = ref_table[i + err];
120 		}
121 	} else { /* Constant error take care of divide by zero */
122 		for (i = idx1; i <= idx2; i++) {
123 			if (((i + err1) < 0) || ((i + err1) >= TABLE_SIZE))
124 				continue;
125 			derived_table[i] = ref_table[i + err1];
126 		}
127 	}
128 }
129 
130 static int prep_lookup_table(struct err_values *err_vals, int *ref_table)
131 {
132 	int inc, i, seg;
133 
134 	/*
135 	 * Fill up the lookup table under 3 segments
136 	 * region -40C to +30C
137 	 * region +30C to +125C
138 	 * region +125C to +150C
139 	 */
140 	for (seg = 0; seg < 3; seg++)
141 		create_table_segments(err_vals, seg, ref_table);
142 
143 	/* Get to the first valid temperature */
144 	i = 0;
145 	while (!derived_table[i])
146 		i++;
147 
148 	/*
149 	 * Get to the last zero index and back fill the temperature for
150 	 * sake of continuity
151 	 */
152 	if (i) {
153 		/* 300 milli celsius steps */
154 		while (i--)
155 			derived_table[i] = derived_table[i + 1] - 300;
156 	}
157 
158 	/*
159 	 * Fill the last trailing 0s which are unfilled with increments of
160 	 * 100 milli celsius till 1023 code
161 	 */
162 	i = TABLE_SIZE - 1;
163 	while (!derived_table[i])
164 		i--;
165 
166 	i++;
167 	inc = 1;
168 	while (i < TABLE_SIZE) {
169 		derived_table[i] = derived_table[i - 1] + inc * 100;
170 		i++;
171 	}
172 
173 	return 0;
174 }
175 
176 struct k3_thermal_data;
177 
178 struct k3_j72xx_bandgap {
179 	struct device *dev;
180 	void __iomem *base;
181 	void __iomem *cfg2_base;
182 	struct k3_thermal_data *ts_data[K3_VTM_MAX_NUM_TS];
183 	int cnt;
184 };
185 
186 /* common data structures */
187 struct k3_thermal_data {
188 	struct k3_j72xx_bandgap *bgp;
189 	u32 ctrl_offset;
190 	u32 stat_offset;
191 };
192 
193 static int two_cmp(int tmp, int mask)
194 {
195 	tmp = ~(tmp);
196 	tmp &= mask;
197 	tmp += 1;
198 
199 	/* Return negative value */
200 	return (0 - tmp);
201 }
202 
203 static unsigned int vtm_get_best_value(unsigned int s0, unsigned int s1,
204 				       unsigned int s2)
205 {
206 	int d01 = abs(s0 - s1);
207 	int d02 = abs(s0 - s2);
208 	int d12 = abs(s1 - s2);
209 
210 	if (d01 <= d02 && d01 <= d12)
211 		return (s0 + s1) / 2;
212 
213 	if (d02 <= d01 && d02 <= d12)
214 		return (s0 + s2) / 2;
215 
216 	return (s1 + s2) / 2;
217 }
218 
219 static inline int k3_bgp_read_temp(struct k3_thermal_data *devdata,
220 				   int *temp)
221 {
222 	struct k3_j72xx_bandgap *bgp;
223 	unsigned int dtemp, s0, s1, s2;
224 
225 	bgp = devdata->bgp;
226 	/*
227 	 * Errata is applicable for am654 pg 1.0 silicon/J7ES. There
228 	 * is a variation of the order for certain degree centigrade on AM654.
229 	 * Work around that by getting the average of two closest
230 	 * readings out of three readings everytime we want to
231 	 * report temperatures.
232 	 *
233 	 * Errata workaround.
234 	 */
235 	s0 = readl(bgp->base + devdata->stat_offset) &
236 		K3_VTM_TS_STAT_DTEMP_MASK;
237 	s1 = readl(bgp->base + devdata->stat_offset) &
238 		K3_VTM_TS_STAT_DTEMP_MASK;
239 	s2 = readl(bgp->base + devdata->stat_offset) &
240 		K3_VTM_TS_STAT_DTEMP_MASK;
241 	dtemp = vtm_get_best_value(s0, s1, s2);
242 
243 	if (dtemp >= TABLE_SIZE)
244 		return -EINVAL;
245 
246 	*temp = derived_table[dtemp];
247 
248 	return 0;
249 }
250 
251 /* Get temperature callback function for thermal zone */
252 static int k3_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
253 {
254 	return k3_bgp_read_temp(thermal_zone_device_priv(tz), temp);
255 }
256 
257 static const struct thermal_zone_device_ops k3_of_thermal_ops = {
258 	.get_temp = k3_thermal_get_temp,
259 };
260 
261 static int k3_j72xx_bandgap_temp_to_adc_code(int temp)
262 {
263 	int low = 0, high = TABLE_SIZE - 1, mid;
264 
265 	if (temp > 160000 || temp < -50000)
266 		return -EINVAL;
267 
268 	/* Binary search to find the adc code */
269 	while (low < (high - 1)) {
270 		mid = (low + high) / 2;
271 		if (temp <= derived_table[mid])
272 			high = mid;
273 		else
274 			low = mid;
275 	}
276 
277 	return mid;
278 }
279 
280 static void get_efuse_values(int id, struct k3_thermal_data *data, int *err,
281 			     void __iomem *fuse_base)
282 {
283 	int i, tmp, pow;
284 	int ct_offsets[5][K3_VTM_CORRECTION_TEMP_CNT] = {
285 		{ 0x0, 0x8, 0x4 },
286 		{ 0x0, 0x8, 0x4 },
287 		{ 0x0, -1,  0x4 },
288 		{ 0x0, 0xC, -1 },
289 		{ 0x0, 0xc, 0x8 }
290 	};
291 	int ct_bm[5][K3_VTM_CORRECTION_TEMP_CNT] = {
292 		{ 0x3f, 0x1fe000, 0x1ff },
293 		{ 0xfc0, 0x1fe000, 0x3fe00 },
294 		{ 0x3f000, 0x7f800000, 0x7fc0000 },
295 		{ 0xfc0000, 0x1fe0, 0x1f800000 },
296 		{ 0x3f000000, 0x1fe000, 0x1ff0 }
297 	};
298 
299 	for (i = 0; i < 3; i++) {
300 		/* Extract the offset value using bit-mask */
301 		if (ct_offsets[id][i] == -1 && i == 1) {
302 			/* 25C offset Case of Sensor 2 split between 2 regs */
303 			tmp = (readl(fuse_base + 0x8) & 0xE0000000) >> (29);
304 			tmp |= ((readl(fuse_base + 0xC) & 0x1F) << 3);
305 			pow = tmp & 0x80;
306 		} else if (ct_offsets[id][i] == -1 && i == 2) {
307 			/* 125C Case of Sensor 3 split between 2 regs */
308 			tmp = (readl(fuse_base + 0x4) & 0xF8000000) >> (27);
309 			tmp |= ((readl(fuse_base + 0x8) & 0xF) << 5);
310 			pow = tmp & 0x100;
311 		} else {
312 			tmp = readl(fuse_base + ct_offsets[id][i]);
313 			tmp &= ct_bm[id][i];
314 			tmp = tmp >> __ffs(ct_bm[id][i]);
315 
316 			/* Obtain the sign bit pow*/
317 			pow = ct_bm[id][i] >> __ffs(ct_bm[id][i]);
318 			pow += 1;
319 			pow /= 2;
320 		}
321 
322 		/* Check for negative value */
323 		if (tmp & pow) {
324 			/* 2's complement value */
325 			tmp = two_cmp(tmp, ct_bm[id][i] >> __ffs(ct_bm[id][i]));
326 		}
327 		err[i] = tmp;
328 	}
329 
330 	/* Err value for 150C is set to 0 */
331 	err[i] = 0;
332 }
333 
334 static void print_look_up_table(struct device *dev, int *ref_table)
335 {
336 	int i;
337 
338 	dev_dbg(dev, "The contents of derived array\n");
339 	dev_dbg(dev, "Code   Temperature\n");
340 	for (i = 0; i < TABLE_SIZE; i++)
341 		dev_dbg(dev, "%d       %d %d\n", i, derived_table[i], ref_table[i]);
342 }
343 
344 static void k3_j72xx_bandgap_init_hw(struct k3_j72xx_bandgap *bgp)
345 {
346 	struct k3_thermal_data *data;
347 	int id, high_max, low_temp;
348 	u32 val;
349 
350 	for (id = 0; id < bgp->cnt; id++) {
351 		data = bgp->ts_data[id];
352 		val = readl(bgp->cfg2_base + data->ctrl_offset);
353 		val |= (K3_VTM_TMPSENS_CTRL_MAXT_OUTRG_EN |
354 			K3_VTM_TMPSENS_CTRL_SOC |
355 			K3_VTM_TMPSENS_CTRL_CLRZ | BIT(4));
356 		writel(val, bgp->cfg2_base + data->ctrl_offset);
357 	}
358 
359 	/*
360 	 * Program TSHUT thresholds
361 	 * Step 1: set the thresholds to ~123C and 105C WKUP_VTM_MISC_CTRL2
362 	 * Step 2: WKUP_VTM_TMPSENS_CTRL_j set the MAXT_OUTRG_EN  bit
363 	 *         This is already taken care as per of init
364 	 * Step 3: WKUP_VTM_MISC_CTRL set the ANYMAXT_OUTRG_ALERT_EN  bit
365 	 */
366 	high_max = k3_j72xx_bandgap_temp_to_adc_code(MAX_TEMP);
367 	low_temp = k3_j72xx_bandgap_temp_to_adc_code(COOL_DOWN_TEMP);
368 
369 	writel((low_temp << 16) | high_max, bgp->cfg2_base + K3_VTM_MISC_CTRL2_OFFSET);
370 	writel(K3_VTM_ANYMAXT_OUTRG_ALERT_EN, bgp->cfg2_base + K3_VTM_MISC_CTRL_OFFSET);
371 }
372 
373 struct k3_j72xx_bandgap_data {
374 	const bool has_errata_i2128;
375 };
376 
377 static int k3_j72xx_bandgap_probe(struct platform_device *pdev)
378 {
379 	const struct k3_j72xx_bandgap_data *driver_data;
380 	struct thermal_zone_device *ti_thermal;
381 	struct device *dev = &pdev->dev;
382 	bool workaround_needed = false;
383 	struct k3_j72xx_bandgap *bgp;
384 	struct k3_thermal_data *data;
385 	struct err_values err_vals;
386 	void __iomem *fuse_base;
387 	int ret = 0, val, id;
388 	struct resource *res;
389 	int *ref_table;
390 
391 	const s64 golden_factors[] = {
392 		-490019999999999936,
393 		3251200000000000,
394 		-1705800000000,
395 		603730000,
396 		-92627,
397 	};
398 
399 	const s64 pvt_wa_factors[] = {
400 		-415230000000000000,
401 		3126600000000000,
402 		-1157800000000,
403 	};
404 
405 	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
406 	if (!bgp)
407 		return -ENOMEM;
408 
409 	bgp->dev = dev;
410 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
411 	bgp->base = devm_ioremap_resource(dev, res);
412 	if (IS_ERR(bgp->base))
413 		return PTR_ERR(bgp->base);
414 
415 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
416 	bgp->cfg2_base = devm_ioremap_resource(dev, res);
417 	if (IS_ERR(bgp->cfg2_base))
418 		return PTR_ERR(bgp->cfg2_base);
419 
420 	driver_data = of_device_get_match_data(dev);
421 	if (driver_data)
422 		workaround_needed = driver_data->has_errata_i2128;
423 
424 	/*
425 	 * Some of TI's J721E SoCs require a software trimming procedure
426 	 * for the temperature monitors to function properly. To determine
427 	 * if this particular SoC is NOT affected, both bits in the
428 	 * WKUP_SPARE_FUSE0[31:30] will be set (0xC0000000) indicating
429 	 * when software trimming should NOT be applied.
430 	 *
431 	 * https://www.ti.com/lit/er/sprz455c/sprz455c.pdf
432 	 */
433 	if (workaround_needed) {
434 		res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
435 		fuse_base = devm_ioremap_resource(dev, res);
436 		if (IS_ERR(fuse_base))
437 			return PTR_ERR(fuse_base);
438 
439 		if ((readl(fuse_base) & 0xc0000000) == 0xc0000000)
440 			workaround_needed = false;
441 	}
442 
443 	dev_dbg(bgp->dev, "Work around %sneeded\n",
444 		workaround_needed ? "" : "not ");
445 
446 	pm_runtime_enable(dev);
447 	ret = pm_runtime_get_sync(dev);
448 	if (ret < 0) {
449 		pm_runtime_put_noidle(dev);
450 		pm_runtime_disable(dev);
451 		return ret;
452 	}
453 
454 	/* Get the sensor count in the VTM */
455 	val = readl(bgp->base + K3_VTM_DEVINFO_PWR0_OFFSET);
456 	bgp->cnt = val & K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK;
457 	bgp->cnt >>= __ffs(K3_VTM_DEVINFO_PWR0_TEMPSENS_CT_MASK);
458 
459 	data = devm_kcalloc(bgp->dev, bgp->cnt, sizeof(*data), GFP_KERNEL);
460 	if (!data) {
461 		ret = -ENOMEM;
462 		goto err_alloc;
463 	}
464 
465 	ref_table = kcalloc(TABLE_SIZE, sizeof(*ref_table), GFP_KERNEL);
466 	if (!ref_table) {
467 		ret = -ENOMEM;
468 		goto err_alloc;
469 	}
470 
471 	derived_table = devm_kcalloc(bgp->dev, TABLE_SIZE, sizeof(*derived_table),
472 				     GFP_KERNEL);
473 	if (!derived_table) {
474 		ret = -ENOMEM;
475 		goto err_free_ref_table;
476 	}
477 
478 	if (!workaround_needed)
479 		init_table(5, ref_table, golden_factors);
480 	else
481 		init_table(3, ref_table, pvt_wa_factors);
482 
483 	/* Precompute the derived table & fill each thermal sensor struct */
484 	for (id = 0; id < bgp->cnt; id++) {
485 		data[id].bgp = bgp;
486 		data[id].ctrl_offset = K3_VTM_TMPSENS0_CTRL_OFFSET + id * 0x20;
487 		data[id].stat_offset = data[id].ctrl_offset +
488 					K3_VTM_TMPSENS_STAT_OFFSET;
489 
490 		if (workaround_needed) {
491 			/* ref adc values for -40C, 30C & 125C respectively */
492 			err_vals.refs[0] = MINUS40CREF;
493 			err_vals.refs[1] = PLUS30CREF;
494 			err_vals.refs[2] = PLUS125CREF;
495 			err_vals.refs[3] = PLUS150CREF;
496 			get_efuse_values(id, &data[id], err_vals.errs, fuse_base);
497 		}
498 
499 		if (id == 0 && workaround_needed)
500 			prep_lookup_table(&err_vals, ref_table);
501 		else if (id == 0 && !workaround_needed)
502 			memcpy(derived_table, ref_table, TABLE_SIZE * 4);
503 
504 		bgp->ts_data[id] = &data[id];
505 	}
506 
507 	k3_j72xx_bandgap_init_hw(bgp);
508 
509 	/* Register the thermal sensors */
510 	for (id = 0; id < bgp->cnt; id++) {
511 		ti_thermal = devm_thermal_of_zone_register(bgp->dev, id, &data[id],
512 							   &k3_of_thermal_ops);
513 		if (IS_ERR(ti_thermal)) {
514 			dev_err(bgp->dev, "thermal zone device is NULL\n");
515 			ret = PTR_ERR(ti_thermal);
516 			goto err_free_ref_table;
517 		}
518 
519 		devm_thermal_add_hwmon_sysfs(bgp->dev, ti_thermal);
520 	}
521 
522 	platform_set_drvdata(pdev, bgp);
523 
524 	print_look_up_table(dev, ref_table);
525 	/*
526 	 * Now that the derived_table has the appropriate look up values
527 	 * Free up the ref_table
528 	 */
529 	kfree(ref_table);
530 
531 	return 0;
532 
533 err_free_ref_table:
534 	kfree(ref_table);
535 
536 err_alloc:
537 	pm_runtime_put_sync(&pdev->dev);
538 	pm_runtime_disable(&pdev->dev);
539 
540 	return ret;
541 }
542 
543 static void k3_j72xx_bandgap_remove(struct platform_device *pdev)
544 {
545 	pm_runtime_put_sync(&pdev->dev);
546 	pm_runtime_disable(&pdev->dev);
547 }
548 
549 static int k3_j72xx_bandgap_suspend(struct device *dev)
550 {
551 	pm_runtime_put_sync(dev);
552 	pm_runtime_disable(dev);
553 	return 0;
554 }
555 
556 static int k3_j72xx_bandgap_resume(struct device *dev)
557 {
558 	struct k3_j72xx_bandgap *bgp = dev_get_drvdata(dev);
559 	int ret;
560 
561 	pm_runtime_enable(dev);
562 	ret = pm_runtime_get_sync(dev);
563 	if (ret < 0) {
564 		pm_runtime_put_noidle(dev);
565 		pm_runtime_disable(dev);
566 		return ret;
567 	}
568 
569 	k3_j72xx_bandgap_init_hw(bgp);
570 
571 	return 0;
572 }
573 
574 static DEFINE_SIMPLE_DEV_PM_OPS(k3_j72xx_bandgap_pm_ops,
575 				k3_j72xx_bandgap_suspend,
576 				k3_j72xx_bandgap_resume);
577 
578 static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j721e_data = {
579 	.has_errata_i2128 = true,
580 };
581 
582 static const struct k3_j72xx_bandgap_data k3_j72xx_bandgap_j7200_data = {
583 	.has_errata_i2128 = false,
584 };
585 
586 static const struct of_device_id of_k3_j72xx_bandgap_match[] = {
587 	{
588 		.compatible = "ti,j721e-vtm",
589 		.data = &k3_j72xx_bandgap_j721e_data,
590 	},
591 	{
592 		.compatible = "ti,j7200-vtm",
593 		.data = &k3_j72xx_bandgap_j7200_data,
594 	},
595 	{ /* sentinel */ },
596 };
597 MODULE_DEVICE_TABLE(of, of_k3_j72xx_bandgap_match);
598 
599 static struct platform_driver k3_j72xx_bandgap_sensor_driver = {
600 	.probe = k3_j72xx_bandgap_probe,
601 	.remove = k3_j72xx_bandgap_remove,
602 	.driver = {
603 		.name = "k3-j72xx-soc-thermal",
604 		.of_match_table	= of_k3_j72xx_bandgap_match,
605 		.pm = pm_sleep_ptr(&k3_j72xx_bandgap_pm_ops),
606 	},
607 };
608 
609 module_platform_driver(k3_j72xx_bandgap_sensor_driver);
610 
611 MODULE_DESCRIPTION("K3 bandgap temperature sensor driver");
612 MODULE_LICENSE("GPL");
613 MODULE_AUTHOR("J Keerthy <j-keerthy@ti.com>");
614