xref: /linux/drivers/thermal/intel/intel_hfi.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Hardware Feedback Interface Driver
4  *
5  * Copyright (c) 2021, Intel Corporation.
6  *
7  * Authors: Aubrey Li <aubrey.li@linux.intel.com>
8  *          Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
9  *
10  *
11  * The Hardware Feedback Interface provides a performance and energy efficiency
12  * capability information for each CPU in the system. Depending on the processor
13  * model, hardware may periodically update these capabilities as a result of
14  * changes in the operating conditions (e.g., power limits or thermal
15  * constraints). On other processor models, there is a single HFI update
16  * at boot.
17  *
18  * This file provides functionality to process HFI updates and relay these
19  * updates to userspace.
20  */
21 
22 #define pr_fmt(fmt)  "intel-hfi: " fmt
23 
24 #include <linux/bitops.h>
25 #include <linux/cpufeature.h>
26 #include <linux/cpumask.h>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/math.h>
32 #include <linux/mutex.h>
33 #include <linux/percpu-defs.h>
34 #include <linux/printk.h>
35 #include <linux/processor.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/suspend.h>
39 #include <linux/string.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/topology.h>
42 #include <linux/workqueue.h>
43 
44 #include <asm/msr.h>
45 
46 #include "intel_hfi.h"
47 #include "thermal_interrupt.h"
48 
49 #include "../thermal_netlink.h"
50 
51 /* Hardware Feedback Interface MSR configuration bits */
52 #define HW_FEEDBACK_PTR_VALID_BIT		BIT(0)
53 #define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT	BIT(0)
54 
55 /* CPUID detection and enumeration definitions for HFI */
56 
57 #define CPUID_HFI_LEAF 6
58 
59 union hfi_capabilities {
60 	struct {
61 		u8	performance:1;
62 		u8	energy_efficiency:1;
63 		u8	__reserved:6;
64 	} split;
65 	u8 bits;
66 };
67 
68 union cpuid6_edx {
69 	struct {
70 		union hfi_capabilities	capabilities;
71 		u32			table_pages:4;
72 		u32			__reserved:4;
73 		s32			index:16;
74 	} split;
75 	u32 full;
76 };
77 
78 /**
79  * struct hfi_cpu_data - HFI capabilities per CPU
80  * @perf_cap:		Performance capability
81  * @ee_cap:		Energy efficiency capability
82  *
83  * Capabilities of a logical processor in the HFI table. These capabilities are
84  * unitless.
85  */
86 struct hfi_cpu_data {
87 	u8	perf_cap;
88 	u8	ee_cap;
89 } __packed;
90 
91 /**
92  * struct hfi_hdr - Header of the HFI table
93  * @perf_updated:	Hardware updated performance capabilities
94  * @ee_updated:		Hardware updated energy efficiency capabilities
95  *
96  * Properties of the data in an HFI table.
97  */
98 struct hfi_hdr {
99 	u8	perf_updated;
100 	u8	ee_updated;
101 } __packed;
102 
103 /**
104  * struct hfi_instance - Representation of an HFI instance (i.e., a table)
105  * @local_table:	Base of the local copy of the HFI table
106  * @timestamp:		Timestamp of the last update of the local table.
107  *			Located at the base of the local table.
108  * @hdr:		Base address of the header of the local table
109  * @data:		Base address of the data of the local table
110  * @cpus:		CPUs represented in this HFI table instance
111  * @hw_table:		Pointer to the HFI table of this instance
112  * @update_work:	Delayed work to process HFI updates
113  * @table_lock:		Lock to protect acceses to the table of this instance
114  * @event_lock:		Lock to process HFI interrupts
115  *
116  * A set of parameters to parse and navigate a specific HFI table.
117  */
118 struct hfi_instance {
119 	union {
120 		void			*local_table;
121 		u64			*timestamp;
122 	};
123 	void			*hdr;
124 	void			*data;
125 	cpumask_var_t		cpus;
126 	void			*hw_table;
127 	struct delayed_work	update_work;
128 	raw_spinlock_t		table_lock;
129 	raw_spinlock_t		event_lock;
130 };
131 
132 /**
133  * struct hfi_features - Supported HFI features
134  * @nr_table_pages:	Size of the HFI table in 4KB pages
135  * @cpu_stride:		Stride size to locate the capability data of a logical
136  *			processor within the table (i.e., row stride)
137  * @hdr_size:		Size of the table header
138  *
139  * Parameters and supported features that are common to all HFI instances
140  */
141 struct hfi_features {
142 	size_t		nr_table_pages;
143 	unsigned int	cpu_stride;
144 	unsigned int	hdr_size;
145 };
146 
147 /**
148  * struct hfi_cpu_info - Per-CPU attributes to consume HFI data
149  * @index:		Row of this CPU in its HFI table
150  * @hfi_instance:	Attributes of the HFI table to which this CPU belongs
151  *
152  * Parameters to link a logical processor to an HFI table and a row within it.
153  */
154 struct hfi_cpu_info {
155 	s16			index;
156 	struct hfi_instance	*hfi_instance;
157 };
158 
159 static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 };
160 
161 static int max_hfi_instances;
162 static struct hfi_instance *hfi_instances;
163 
164 static struct hfi_features hfi_features;
165 static DEFINE_MUTEX(hfi_instance_lock);
166 
167 static struct workqueue_struct *hfi_updates_wq;
168 #define HFI_UPDATE_INTERVAL		HZ
169 #define HFI_MAX_THERM_NOTIFY_COUNT	16
170 
171 static void get_hfi_caps(struct hfi_instance *hfi_instance,
172 			 struct thermal_genl_cpu_caps *cpu_caps)
173 {
174 	int cpu, i = 0;
175 
176 	raw_spin_lock_irq(&hfi_instance->table_lock);
177 	for_each_cpu(cpu, hfi_instance->cpus) {
178 		struct hfi_cpu_data *caps;
179 		s16 index;
180 
181 		index = per_cpu(hfi_cpu_info, cpu).index;
182 		caps = hfi_instance->data + index * hfi_features.cpu_stride;
183 		cpu_caps[i].cpu = cpu;
184 
185 		/*
186 		 * Scale performance and energy efficiency to
187 		 * the [0, 1023] interval that thermal netlink uses.
188 		 */
189 		cpu_caps[i].performance = caps->perf_cap << 2;
190 		cpu_caps[i].efficiency = caps->ee_cap << 2;
191 
192 		++i;
193 	}
194 	raw_spin_unlock_irq(&hfi_instance->table_lock);
195 }
196 
197 /*
198  * Call update_capabilities() when there are changes in the HFI table.
199  */
200 static void update_capabilities(struct hfi_instance *hfi_instance)
201 {
202 	struct thermal_genl_cpu_caps *cpu_caps;
203 	int i = 0, cpu_count;
204 
205 	/* CPUs may come online/offline while processing an HFI update. */
206 	mutex_lock(&hfi_instance_lock);
207 
208 	cpu_count = cpumask_weight(hfi_instance->cpus);
209 
210 	/* No CPUs to report in this hfi_instance. */
211 	if (!cpu_count)
212 		goto out;
213 
214 	cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL);
215 	if (!cpu_caps)
216 		goto out;
217 
218 	get_hfi_caps(hfi_instance, cpu_caps);
219 
220 	if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT)
221 		goto last_cmd;
222 
223 	/* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */
224 	for (i = 0;
225 	     (i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count;
226 	     i += HFI_MAX_THERM_NOTIFY_COUNT)
227 		thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT,
228 						  &cpu_caps[i]);
229 
230 	cpu_count = cpu_count - i;
231 
232 last_cmd:
233 	/* Process the remaining capabilities if any. */
234 	if (cpu_count)
235 		thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]);
236 
237 	kfree(cpu_caps);
238 out:
239 	mutex_unlock(&hfi_instance_lock);
240 }
241 
242 static void hfi_update_work_fn(struct work_struct *work)
243 {
244 	struct hfi_instance *hfi_instance;
245 
246 	hfi_instance = container_of(to_delayed_work(work), struct hfi_instance,
247 				    update_work);
248 
249 	update_capabilities(hfi_instance);
250 }
251 
252 void intel_hfi_process_event(__u64 pkg_therm_status_msr_val)
253 {
254 	struct hfi_instance *hfi_instance;
255 	int cpu = smp_processor_id();
256 	struct hfi_cpu_info *info;
257 	u64 new_timestamp, msr, hfi;
258 
259 	if (!pkg_therm_status_msr_val)
260 		return;
261 
262 	info = &per_cpu(hfi_cpu_info, cpu);
263 	if (!info)
264 		return;
265 
266 	/*
267 	 * A CPU is linked to its HFI instance before the thermal vector in the
268 	 * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL
269 	 * when receiving an HFI event.
270 	 */
271 	hfi_instance = info->hfi_instance;
272 	if (unlikely(!hfi_instance)) {
273 		pr_debug("Received event on CPU %d but instance was null", cpu);
274 		return;
275 	}
276 
277 	/*
278 	 * On most systems, all CPUs in the package receive a package-level
279 	 * thermal interrupt when there is an HFI update. It is sufficient to
280 	 * let a single CPU to acknowledge the update and queue work to
281 	 * process it. The remaining CPUs can resume their work.
282 	 */
283 	if (!raw_spin_trylock(&hfi_instance->event_lock))
284 		return;
285 
286 	rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr);
287 	hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED;
288 	if (!hfi) {
289 		raw_spin_unlock(&hfi_instance->event_lock);
290 		return;
291 	}
292 
293 	/*
294 	 * Ack duplicate update. Since there is an active HFI
295 	 * status from HW, it must be a new event, not a case
296 	 * where a lagging CPU entered the locked region.
297 	 */
298 	new_timestamp = *(u64 *)hfi_instance->hw_table;
299 	if (*hfi_instance->timestamp == new_timestamp) {
300 		thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
301 		raw_spin_unlock(&hfi_instance->event_lock);
302 		return;
303 	}
304 
305 	raw_spin_lock(&hfi_instance->table_lock);
306 
307 	/*
308 	 * Copy the updated table into our local copy. This includes the new
309 	 * timestamp.
310 	 */
311 	memcpy(hfi_instance->local_table, hfi_instance->hw_table,
312 	       hfi_features.nr_table_pages << PAGE_SHIFT);
313 
314 	/*
315 	 * Let hardware know that we are done reading the HFI table and it is
316 	 * free to update it again.
317 	 */
318 	thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED);
319 
320 	raw_spin_unlock(&hfi_instance->table_lock);
321 	raw_spin_unlock(&hfi_instance->event_lock);
322 
323 	queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work,
324 			   HFI_UPDATE_INTERVAL);
325 }
326 
327 static void init_hfi_cpu_index(struct hfi_cpu_info *info)
328 {
329 	union cpuid6_edx edx;
330 
331 	/* Do not re-read @cpu's index if it has already been initialized. */
332 	if (info->index > -1)
333 		return;
334 
335 	edx.full = cpuid_edx(CPUID_HFI_LEAF);
336 	info->index = edx.split.index;
337 }
338 
339 /*
340  * The format of the HFI table depends on the number of capabilities that the
341  * hardware supports. Keep a data structure to navigate the table.
342  */
343 static void init_hfi_instance(struct hfi_instance *hfi_instance)
344 {
345 	/* The HFI header is below the time-stamp. */
346 	hfi_instance->hdr = hfi_instance->local_table +
347 			    sizeof(*hfi_instance->timestamp);
348 
349 	/* The HFI data starts below the header. */
350 	hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size;
351 }
352 
353 /* Caller must hold hfi_instance_lock. */
354 static void hfi_enable(void)
355 {
356 	u64 msr_val;
357 
358 	rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
359 	msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
360 	wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
361 }
362 
363 static void hfi_set_hw_table(struct hfi_instance *hfi_instance)
364 {
365 	phys_addr_t hw_table_pa;
366 	u64 msr_val;
367 
368 	hw_table_pa = virt_to_phys(hfi_instance->hw_table);
369 	msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT;
370 	wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val);
371 }
372 
373 /* Caller must hold hfi_instance_lock. */
374 static void hfi_disable(void)
375 {
376 	u64 msr_val;
377 	int i;
378 
379 	rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
380 	msr_val &= ~HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT;
381 	wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val);
382 
383 	/*
384 	 * Wait for hardware to acknowledge the disabling of HFI. Some
385 	 * processors may not do it. Wait for ~2ms. This is a reasonable
386 	 * time for hardware to complete any pending actions on the HFI
387 	 * memory.
388 	 */
389 	for (i = 0; i < 2000; i++) {
390 		rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
391 		if (msr_val & PACKAGE_THERM_STATUS_HFI_UPDATED)
392 			break;
393 
394 		udelay(1);
395 		cpu_relax();
396 	}
397 }
398 
399 /**
400  * intel_hfi_online() - Enable HFI on @cpu
401  * @cpu:	CPU in which the HFI will be enabled
402  *
403  * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package
404  * level. The first CPU in the die/package to come online does the full HFI
405  * initialization. Subsequent CPUs will just link themselves to the HFI
406  * instance of their die/package.
407  *
408  * This function is called before enabling the thermal vector in the local APIC
409  * in order to ensure that @cpu has an associated HFI instance when it receives
410  * an HFI event.
411  */
412 void intel_hfi_online(unsigned int cpu)
413 {
414 	struct hfi_instance *hfi_instance;
415 	struct hfi_cpu_info *info;
416 	u16 die_id;
417 
418 	/* Nothing to do if hfi_instances are missing. */
419 	if (!hfi_instances)
420 		return;
421 
422 	/*
423 	 * Link @cpu to the HFI instance of its package/die. It does not
424 	 * matter whether the instance has been initialized.
425 	 */
426 	info = &per_cpu(hfi_cpu_info, cpu);
427 	die_id = topology_logical_die_id(cpu);
428 	hfi_instance = info->hfi_instance;
429 	if (!hfi_instance) {
430 		if (die_id >= max_hfi_instances)
431 			return;
432 
433 		hfi_instance = &hfi_instances[die_id];
434 		info->hfi_instance = hfi_instance;
435 	}
436 
437 	init_hfi_cpu_index(info);
438 
439 	/*
440 	 * Now check if the HFI instance of the package/die of @cpu has been
441 	 * initialized (by checking its header). In such case, all we have to
442 	 * do is to add @cpu to this instance's cpumask and enable the instance
443 	 * if needed.
444 	 */
445 	mutex_lock(&hfi_instance_lock);
446 	if (hfi_instance->hdr)
447 		goto enable;
448 
449 	/*
450 	 * Hardware is programmed with the physical address of the first page
451 	 * frame of the table. Hence, the allocated memory must be page-aligned.
452 	 *
453 	 * Some processors do not forget the initial address of the HFI table
454 	 * even after having been reprogrammed. Keep using the same pages. Do
455 	 * not free them.
456 	 */
457 	hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages,
458 						   GFP_KERNEL | __GFP_ZERO);
459 	if (!hfi_instance->hw_table)
460 		goto unlock;
461 
462 	/*
463 	 * Allocate memory to keep a local copy of the table that
464 	 * hardware generates.
465 	 */
466 	hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT,
467 					    GFP_KERNEL);
468 	if (!hfi_instance->local_table)
469 		goto free_hw_table;
470 
471 	init_hfi_instance(hfi_instance);
472 
473 	INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn);
474 	raw_spin_lock_init(&hfi_instance->table_lock);
475 	raw_spin_lock_init(&hfi_instance->event_lock);
476 
477 enable:
478 	cpumask_set_cpu(cpu, hfi_instance->cpus);
479 
480 	/* Enable this HFI instance if this is its first online CPU. */
481 	if (cpumask_weight(hfi_instance->cpus) == 1) {
482 		hfi_set_hw_table(hfi_instance);
483 		hfi_enable();
484 	}
485 
486 unlock:
487 	mutex_unlock(&hfi_instance_lock);
488 	return;
489 
490 free_hw_table:
491 	free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages);
492 	goto unlock;
493 }
494 
495 /**
496  * intel_hfi_offline() - Disable HFI on @cpu
497  * @cpu:	CPU in which the HFI will be disabled
498  *
499  * Remove @cpu from those covered by its HFI instance.
500  *
501  * On some processors, hardware remembers previous programming settings even
502  * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the
503  * die/package of @cpu are offline. See note in intel_hfi_online().
504  */
505 void intel_hfi_offline(unsigned int cpu)
506 {
507 	struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu);
508 	struct hfi_instance *hfi_instance;
509 
510 	/*
511 	 * Check if @cpu as an associated, initialized (i.e., with a non-NULL
512 	 * header). Also, HFI instances are only initialized if X86_FEATURE_HFI
513 	 * is present.
514 	 */
515 	hfi_instance = info->hfi_instance;
516 	if (!hfi_instance)
517 		return;
518 
519 	if (!hfi_instance->hdr)
520 		return;
521 
522 	mutex_lock(&hfi_instance_lock);
523 	cpumask_clear_cpu(cpu, hfi_instance->cpus);
524 
525 	if (!cpumask_weight(hfi_instance->cpus))
526 		hfi_disable();
527 
528 	mutex_unlock(&hfi_instance_lock);
529 }
530 
531 static __init int hfi_parse_features(void)
532 {
533 	unsigned int nr_capabilities;
534 	union cpuid6_edx edx;
535 
536 	if (!boot_cpu_has(X86_FEATURE_HFI))
537 		return -ENODEV;
538 
539 	/*
540 	 * If we are here we know that CPUID_HFI_LEAF exists. Parse the
541 	 * supported capabilities and the size of the HFI table.
542 	 */
543 	edx.full = cpuid_edx(CPUID_HFI_LEAF);
544 
545 	if (!edx.split.capabilities.split.performance) {
546 		pr_debug("Performance reporting not supported! Not using HFI\n");
547 		return -ENODEV;
548 	}
549 
550 	/*
551 	 * The number of supported capabilities determines the number of
552 	 * columns in the HFI table. Exclude the reserved bits.
553 	 */
554 	edx.split.capabilities.split.__reserved = 0;
555 	nr_capabilities = hweight8(edx.split.capabilities.bits);
556 
557 	/* The number of 4KB pages required by the table */
558 	hfi_features.nr_table_pages = edx.split.table_pages + 1;
559 
560 	/*
561 	 * The header contains change indications for each supported feature.
562 	 * The size of the table header is rounded up to be a multiple of 8
563 	 * bytes.
564 	 */
565 	hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8;
566 
567 	/*
568 	 * Data of each logical processor is also rounded up to be a multiple
569 	 * of 8 bytes.
570 	 */
571 	hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8;
572 
573 	return 0;
574 }
575 
576 static void hfi_do_enable(void)
577 {
578 	/* This code runs only on the boot CPU. */
579 	struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, 0);
580 	struct hfi_instance *hfi_instance = info->hfi_instance;
581 
582 	/* No locking needed. There is no concurrency with CPU online. */
583 	hfi_set_hw_table(hfi_instance);
584 	hfi_enable();
585 }
586 
587 static int hfi_do_disable(void)
588 {
589 	/* No locking needed. There is no concurrency with CPU offline. */
590 	hfi_disable();
591 
592 	return 0;
593 }
594 
595 static struct syscore_ops hfi_pm_ops = {
596 	.resume = hfi_do_enable,
597 	.suspend = hfi_do_disable,
598 };
599 
600 void __init intel_hfi_init(void)
601 {
602 	struct hfi_instance *hfi_instance;
603 	int i, j;
604 
605 	if (hfi_parse_features())
606 		return;
607 
608 	/* There is one HFI instance per die/package. */
609 	max_hfi_instances = topology_max_packages() *
610 			    topology_max_dies_per_package();
611 
612 	/*
613 	 * This allocation may fail. CPU hotplug callbacks must check
614 	 * for a null pointer.
615 	 */
616 	hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances),
617 				GFP_KERNEL);
618 	if (!hfi_instances)
619 		return;
620 
621 	for (i = 0; i < max_hfi_instances; i++) {
622 		hfi_instance = &hfi_instances[i];
623 		if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL))
624 			goto err_nomem;
625 	}
626 
627 	hfi_updates_wq = create_singlethread_workqueue("hfi-updates");
628 	if (!hfi_updates_wq)
629 		goto err_nomem;
630 
631 	register_syscore_ops(&hfi_pm_ops);
632 
633 	return;
634 
635 err_nomem:
636 	for (j = 0; j < i; ++j) {
637 		hfi_instance = &hfi_instances[j];
638 		free_cpumask_var(hfi_instance->cpus);
639 	}
640 
641 	kfree(hfi_instances);
642 	hfi_instances = NULL;
643 }
644