xref: /linux/drivers/thermal/gov_power_allocator.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A power allocator to manage temperature
4  *
5  * Copyright (C) 2014 ARM Ltd.
6  *
7  */
8 
9 #define pr_fmt(fmt) "Power allocator: " fmt
10 
11 #include <linux/slab.h>
12 #include <linux/thermal.h>
13 
14 #define CREATE_TRACE_POINTS
15 #include "thermal_trace_ipa.h"
16 
17 #include "thermal_core.h"
18 
19 #define FRAC_BITS 10
20 #define int_to_frac(x) ((x) << FRAC_BITS)
21 #define frac_to_int(x) ((x) >> FRAC_BITS)
22 
23 /**
24  * mul_frac() - multiply two fixed-point numbers
25  * @x:	first multiplicand
26  * @y:	second multiplicand
27  *
28  * Return: the result of multiplying two fixed-point numbers.  The
29  * result is also a fixed-point number.
30  */
31 static inline s64 mul_frac(s64 x, s64 y)
32 {
33 	return (x * y) >> FRAC_BITS;
34 }
35 
36 /**
37  * div_frac() - divide two fixed-point numbers
38  * @x:	the dividend
39  * @y:	the divisor
40  *
41  * Return: the result of dividing two fixed-point numbers.  The
42  * result is also a fixed-point number.
43  */
44 static inline s64 div_frac(s64 x, s64 y)
45 {
46 	return div_s64(x << FRAC_BITS, y);
47 }
48 
49 /**
50  * struct power_actor - internal power information for power actor
51  * @req_power:		requested power value (not weighted)
52  * @max_power:		max allocatable power for this actor
53  * @granted_power:	granted power for this actor
54  * @extra_actor_power:	extra power that this actor can receive
55  * @weighted_req_power:	weighted requested power as input to IPA
56  */
57 struct power_actor {
58 	u32 req_power;
59 	u32 max_power;
60 	u32 granted_power;
61 	u32 extra_actor_power;
62 	u32 weighted_req_power;
63 };
64 
65 /**
66  * struct power_allocator_params - parameters for the power allocator governor
67  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
68  *			it needs to be freed on unbind
69  * @err_integral:	accumulated error in the PID controller.
70  * @prev_err:	error in the previous iteration of the PID controller.
71  *		Used to calculate the derivative term.
72  * @sustainable_power:	Sustainable power (heat) that this thermal zone can
73  *			dissipate
74  * @trip_switch_on:	first passive trip point of the thermal zone.  The
75  *			governor switches on when this trip point is crossed.
76  *			If the thermal zone only has one passive trip point,
77  *			@trip_switch_on should be NULL.
78  * @trip_max:		last passive trip point of the thermal zone. The
79  *			temperature we are controlling for.
80  * @total_weight:	Sum of all thermal instances weights
81  * @num_actors:		number of cooling devices supporting IPA callbacks
82  * @buffer_size:	internal buffer size, to avoid runtime re-calculation
83  * @power:		buffer for all power actors internal power information
84  */
85 struct power_allocator_params {
86 	bool allocated_tzp;
87 	s64 err_integral;
88 	s32 prev_err;
89 	u32 sustainable_power;
90 	const struct thermal_trip *trip_switch_on;
91 	const struct thermal_trip *trip_max;
92 	int total_weight;
93 	unsigned int num_actors;
94 	unsigned int buffer_size;
95 	struct power_actor *power;
96 };
97 
98 static bool power_actor_is_valid(struct power_allocator_params *params,
99 				 struct thermal_instance *instance)
100 {
101 	return (instance->trip == params->trip_max &&
102 		 cdev_is_power_actor(instance->cdev));
103 }
104 
105 /**
106  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
107  * @tz: thermal zone we are operating in
108  *
109  * For thermal zones that don't provide a sustainable_power in their
110  * thermal_zone_params, estimate one.  Calculate it using the minimum
111  * power of all the cooling devices as that gives a valid value that
112  * can give some degree of functionality.  For optimal performance of
113  * this governor, provide a sustainable_power in the thermal zone's
114  * thermal_zone_params.
115  */
116 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
117 {
118 	struct power_allocator_params *params = tz->governor_data;
119 	struct thermal_cooling_device *cdev;
120 	struct thermal_instance *instance;
121 	u32 sustainable_power = 0;
122 	u32 min_power;
123 
124 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
125 		if (!power_actor_is_valid(params, instance))
126 			continue;
127 
128 		cdev = instance->cdev;
129 		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
130 			continue;
131 
132 		sustainable_power += min_power;
133 	}
134 
135 	return sustainable_power;
136 }
137 
138 /**
139  * estimate_pid_constants() - Estimate the constants for the PID controller
140  * @tz:		thermal zone for which to estimate the constants
141  * @sustainable_power:	sustainable power for the thermal zone
142  * @trip_switch_on:	trip point for the switch on temperature
143  * @control_temp:	target temperature for the power allocator governor
144  *
145  * This function is used to update the estimation of the PID
146  * controller constants in struct thermal_zone_parameters.
147  */
148 static void estimate_pid_constants(struct thermal_zone_device *tz,
149 				   u32 sustainable_power,
150 				   const struct thermal_trip *trip_switch_on,
151 				   int control_temp)
152 {
153 	u32 temperature_threshold = control_temp;
154 	s32 k_i;
155 
156 	if (trip_switch_on)
157 		temperature_threshold -= trip_switch_on->temperature;
158 
159 	/*
160 	 * estimate_pid_constants() tries to find appropriate default
161 	 * values for thermal zones that don't provide them. If a
162 	 * system integrator has configured a thermal zone with two
163 	 * passive trip points at the same temperature, that person
164 	 * hasn't put any effort to set up the thermal zone properly
165 	 * so just give up.
166 	 */
167 	if (!temperature_threshold)
168 		return;
169 
170 	tz->tzp->k_po = int_to_frac(sustainable_power) /
171 		temperature_threshold;
172 
173 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
174 		temperature_threshold;
175 
176 	k_i = tz->tzp->k_pu / 10;
177 	tz->tzp->k_i = k_i > 0 ? k_i : 1;
178 
179 	/*
180 	 * The default for k_d and integral_cutoff is 0, so we can
181 	 * leave them as they are.
182 	 */
183 }
184 
185 /**
186  * get_sustainable_power() - Get the right sustainable power
187  * @tz:		thermal zone for which to estimate the constants
188  * @params:	parameters for the power allocator governor
189  * @control_temp:	target temperature for the power allocator governor
190  *
191  * This function is used for getting the proper sustainable power value based
192  * on variables which might be updated by the user sysfs interface. If that
193  * happen the new value is going to be estimated and updated. It is also used
194  * after thermal zone binding, where the initial values where set to 0.
195  */
196 static u32 get_sustainable_power(struct thermal_zone_device *tz,
197 				 struct power_allocator_params *params,
198 				 int control_temp)
199 {
200 	u32 sustainable_power;
201 
202 	if (!tz->tzp->sustainable_power)
203 		sustainable_power = estimate_sustainable_power(tz);
204 	else
205 		sustainable_power = tz->tzp->sustainable_power;
206 
207 	/* Check if it's init value 0 or there was update via sysfs */
208 	if (sustainable_power != params->sustainable_power) {
209 		estimate_pid_constants(tz, sustainable_power,
210 				       params->trip_switch_on, control_temp);
211 
212 		/* Do the estimation only once and make available in sysfs */
213 		tz->tzp->sustainable_power = sustainable_power;
214 		params->sustainable_power = sustainable_power;
215 	}
216 
217 	return sustainable_power;
218 }
219 
220 /**
221  * pid_controller() - PID controller
222  * @tz:	thermal zone we are operating in
223  * @control_temp:	the target temperature in millicelsius
224  * @max_allocatable_power:	maximum allocatable power for this thermal zone
225  *
226  * This PID controller increases the available power budget so that the
227  * temperature of the thermal zone gets as close as possible to
228  * @control_temp and limits the power if it exceeds it.  k_po is the
229  * proportional term when we are overshooting, k_pu is the
230  * proportional term when we are undershooting.  integral_cutoff is a
231  * threshold below which we stop accumulating the error.  The
232  * accumulated error is only valid if the requested power will make
233  * the system warmer.  If the system is mostly idle, there's no point
234  * in accumulating positive error.
235  *
236  * Return: The power budget for the next period.
237  */
238 static u32 pid_controller(struct thermal_zone_device *tz,
239 			  int control_temp,
240 			  u32 max_allocatable_power)
241 {
242 	struct power_allocator_params *params = tz->governor_data;
243 	s64 p, i, d, power_range;
244 	s32 err, max_power_frac;
245 	u32 sustainable_power;
246 
247 	max_power_frac = int_to_frac(max_allocatable_power);
248 
249 	sustainable_power = get_sustainable_power(tz, params, control_temp);
250 
251 	err = control_temp - tz->temperature;
252 	err = int_to_frac(err);
253 
254 	/* Calculate the proportional term */
255 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
256 
257 	/*
258 	 * Calculate the integral term
259 	 *
260 	 * if the error is less than cut off allow integration (but
261 	 * the integral is limited to max power)
262 	 */
263 	i = mul_frac(tz->tzp->k_i, params->err_integral);
264 
265 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
266 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
267 
268 		if (abs(i_next) < max_power_frac) {
269 			i = i_next;
270 			params->err_integral += err;
271 		}
272 	}
273 
274 	/*
275 	 * Calculate the derivative term
276 	 *
277 	 * We do err - prev_err, so with a positive k_d, a decreasing
278 	 * error (i.e. driving closer to the line) results in less
279 	 * power being applied, slowing down the controller)
280 	 */
281 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
282 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
283 	params->prev_err = err;
284 
285 	power_range = p + i + d;
286 
287 	/* feed-forward the known sustainable dissipatable power */
288 	power_range = sustainable_power + frac_to_int(power_range);
289 
290 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
291 
292 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
293 					  frac_to_int(params->err_integral),
294 					  frac_to_int(p), frac_to_int(i),
295 					  frac_to_int(d), power_range);
296 
297 	return power_range;
298 }
299 
300 /**
301  * power_actor_set_power() - limit the maximum power a cooling device consumes
302  * @cdev:	pointer to &thermal_cooling_device
303  * @instance:	thermal instance to update
304  * @power:	the power in milliwatts
305  *
306  * Set the cooling device to consume at most @power milliwatts. The limit is
307  * expected to be a cap at the maximum power consumption.
308  *
309  * Return: 0 on success, -EINVAL if the cooling device does not
310  * implement the power actor API or -E* for other failures.
311  */
312 static int
313 power_actor_set_power(struct thermal_cooling_device *cdev,
314 		      struct thermal_instance *instance, u32 power)
315 {
316 	unsigned long state;
317 	int ret;
318 
319 	ret = cdev->ops->power2state(cdev, power, &state);
320 	if (ret)
321 		return ret;
322 
323 	instance->target = clamp_val(state, instance->lower, instance->upper);
324 	mutex_lock(&cdev->lock);
325 	__thermal_cdev_update(cdev);
326 	mutex_unlock(&cdev->lock);
327 
328 	return 0;
329 }
330 
331 /**
332  * divvy_up_power() - divvy the allocated power between the actors
333  * @power:		buffer for all power actors internal power information
334  * @num_actors:		number of power actors in this thermal zone
335  * @total_req_power:	sum of all weighted requested power for all actors
336  * @power_range:	total allocated power
337  *
338  * This function divides the total allocated power (@power_range)
339  * fairly between the actors.  It first tries to give each actor a
340  * share of the @power_range according to how much power it requested
341  * compared to the rest of the actors.  For example, if only one actor
342  * requests power, then it receives all the @power_range.  If
343  * three actors each requests 1mW, each receives a third of the
344  * @power_range.
345  *
346  * If any actor received more than their maximum power, then that
347  * surplus is re-divvied among the actors based on how far they are
348  * from their respective maximums.
349  */
350 static void divvy_up_power(struct power_actor *power, int num_actors,
351 			   u32 total_req_power, u32 power_range)
352 {
353 	u32 capped_extra_power = 0;
354 	u32 extra_power = 0;
355 	int i;
356 
357 	/*
358 	 * Prevent division by 0 if none of the actors request power.
359 	 */
360 	if (!total_req_power)
361 		total_req_power = 1;
362 
363 	for (i = 0; i < num_actors; i++) {
364 		struct power_actor *pa = &power[i];
365 		u64 req_range = (u64)pa->req_power * power_range;
366 
367 		pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range,
368 							  total_req_power);
369 
370 		if (pa->granted_power > pa->max_power) {
371 			extra_power += pa->granted_power - pa->max_power;
372 			pa->granted_power = pa->max_power;
373 		}
374 
375 		pa->extra_actor_power = pa->max_power - pa->granted_power;
376 		capped_extra_power += pa->extra_actor_power;
377 	}
378 
379 	if (!extra_power || !capped_extra_power)
380 		return;
381 
382 	/*
383 	 * Re-divvy the reclaimed extra among actors based on
384 	 * how far they are from the max
385 	 */
386 	extra_power = min(extra_power, capped_extra_power);
387 
388 	for (i = 0; i < num_actors; i++) {
389 		struct power_actor *pa = &power[i];
390 		u64 extra_range = pa->extra_actor_power;
391 
392 		extra_range *= extra_power;
393 		pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range,
394 						capped_extra_power);
395 	}
396 }
397 
398 static int allocate_power(struct thermal_zone_device *tz, int control_temp)
399 {
400 	struct power_allocator_params *params = tz->governor_data;
401 	unsigned int num_actors = params->num_actors;
402 	struct power_actor *power = params->power;
403 	struct thermal_cooling_device *cdev;
404 	struct thermal_instance *instance;
405 	u32 total_weighted_req_power = 0;
406 	u32 max_allocatable_power = 0;
407 	u32 total_granted_power = 0;
408 	u32 total_req_power = 0;
409 	u32 power_range, weight;
410 	int i = 0, ret;
411 
412 	if (!num_actors)
413 		return -ENODEV;
414 
415 	/* Clean all buffers for new power estimations */
416 	memset(power, 0, params->buffer_size);
417 
418 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
419 		struct power_actor *pa = &power[i];
420 
421 		if (!power_actor_is_valid(params, instance))
422 			continue;
423 
424 		cdev = instance->cdev;
425 
426 		ret = cdev->ops->get_requested_power(cdev, &pa->req_power);
427 		if (ret)
428 			continue;
429 
430 		if (!params->total_weight)
431 			weight = 1 << FRAC_BITS;
432 		else
433 			weight = instance->weight;
434 
435 		pa->weighted_req_power = frac_to_int(weight * pa->req_power);
436 
437 		ret = cdev->ops->state2power(cdev, instance->lower,
438 					     &pa->max_power);
439 		if (ret)
440 			continue;
441 
442 		total_req_power += pa->req_power;
443 		max_allocatable_power += pa->max_power;
444 		total_weighted_req_power += pa->weighted_req_power;
445 
446 		i++;
447 	}
448 
449 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
450 
451 	divvy_up_power(power, num_actors, total_weighted_req_power,
452 		       power_range);
453 
454 	i = 0;
455 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
456 		struct power_actor *pa = &power[i];
457 
458 		if (!power_actor_is_valid(params, instance))
459 			continue;
460 
461 		power_actor_set_power(instance->cdev, instance,
462 				      pa->granted_power);
463 		total_granted_power += pa->granted_power;
464 
465 		trace_thermal_power_actor(tz, i, pa->req_power,
466 					  pa->granted_power);
467 		i++;
468 	}
469 
470 	trace_thermal_power_allocator(tz, total_req_power, total_granted_power,
471 				      num_actors, power_range,
472 				      max_allocatable_power, tz->temperature,
473 				      control_temp - tz->temperature);
474 
475 	return 0;
476 }
477 
478 /**
479  * get_governor_trips() - get the two trip points that are key for this governor
480  * @tz:	thermal zone to operate on
481  * @params:	pointer to private data for this governor
482  *
483  * The power allocator governor works optimally with two trips points:
484  * a "switch on" trip point and a "maximum desired temperature".  These
485  * are defined as the first and last passive trip points.
486  *
487  * If there is only one trip point, then that's considered to be the
488  * "maximum desired temperature" trip point and the governor is always
489  * on.  If there are no passive or active trip points, then the
490  * governor won't do anything.  In fact, its throttle function
491  * won't be called at all.
492  */
493 static void get_governor_trips(struct thermal_zone_device *tz,
494 			       struct power_allocator_params *params)
495 {
496 	const struct thermal_trip *first_passive = NULL;
497 	const struct thermal_trip *last_passive = NULL;
498 	const struct thermal_trip *last_active = NULL;
499 	const struct thermal_trip *trip;
500 
501 	for_each_trip(tz, trip) {
502 		switch (trip->type) {
503 		case THERMAL_TRIP_PASSIVE:
504 			if (!first_passive) {
505 				first_passive = trip;
506 				break;
507 			}
508 			last_passive = trip;
509 			break;
510 		case THERMAL_TRIP_ACTIVE:
511 			last_active = trip;
512 			break;
513 		default:
514 			break;
515 		}
516 	}
517 
518 	if (last_passive) {
519 		params->trip_switch_on = first_passive;
520 		params->trip_max = last_passive;
521 	} else if (first_passive) {
522 		params->trip_switch_on = NULL;
523 		params->trip_max = first_passive;
524 	} else {
525 		params->trip_switch_on = NULL;
526 		params->trip_max = last_active;
527 	}
528 }
529 
530 static void reset_pid_controller(struct power_allocator_params *params)
531 {
532 	params->err_integral = 0;
533 	params->prev_err = 0;
534 }
535 
536 static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
537 {
538 	struct power_allocator_params *params = tz->governor_data;
539 	struct thermal_cooling_device *cdev;
540 	struct thermal_instance *instance;
541 	u32 req_power;
542 
543 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
544 		if (!power_actor_is_valid(params, instance))
545 			continue;
546 
547 		cdev = instance->cdev;
548 
549 		instance->target = 0;
550 		mutex_lock(&cdev->lock);
551 		/*
552 		 * Call for updating the cooling devices local stats and avoid
553 		 * periods of dozen of seconds when those have not been
554 		 * maintained.
555 		 */
556 		cdev->ops->get_requested_power(cdev, &req_power);
557 
558 		if (update)
559 			__thermal_cdev_update(cdev);
560 
561 		mutex_unlock(&cdev->lock);
562 	}
563 }
564 
565 /**
566  * check_power_actors() - Check all cooling devices and warn when they are
567  *			not power actors
568  * @tz:		thermal zone to operate on
569  * @params:	power allocator private data
570  *
571  * Check all cooling devices in the @tz and warn every time they are missing
572  * power actor API. The warning should help to investigate the issue, which
573  * could be e.g. lack of Energy Model for a given device.
574  *
575  * If all of the cooling devices currently attached to @tz implement the power
576  * actor API, return the number of them (which may be 0, because some cooling
577  * devices may be attached later). Otherwise, return -EINVAL.
578  */
579 static int check_power_actors(struct thermal_zone_device *tz,
580 			      struct power_allocator_params *params)
581 {
582 	struct thermal_instance *instance;
583 	int ret = 0;
584 
585 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
586 		if (instance->trip != params->trip_max)
587 			continue;
588 
589 		if (!cdev_is_power_actor(instance->cdev)) {
590 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
591 				 instance->cdev->type);
592 			return -EINVAL;
593 		}
594 		ret++;
595 	}
596 
597 	return ret;
598 }
599 
600 static int allocate_actors_buffer(struct power_allocator_params *params,
601 				  int num_actors)
602 {
603 	int ret;
604 
605 	kfree(params->power);
606 
607 	/* There might be no cooling devices yet. */
608 	if (!num_actors) {
609 		ret = -EINVAL;
610 		goto clean_state;
611 	}
612 
613 	params->power = kcalloc(num_actors, sizeof(struct power_actor),
614 				GFP_KERNEL);
615 	if (!params->power) {
616 		ret = -ENOMEM;
617 		goto clean_state;
618 	}
619 
620 	params->num_actors = num_actors;
621 	params->buffer_size = num_actors * sizeof(struct power_actor);
622 
623 	return 0;
624 
625 clean_state:
626 	params->num_actors = 0;
627 	params->buffer_size = 0;
628 	params->power = NULL;
629 	return ret;
630 }
631 
632 static void power_allocator_update_tz(struct thermal_zone_device *tz,
633 				      enum thermal_notify_event reason)
634 {
635 	struct power_allocator_params *params = tz->governor_data;
636 	struct thermal_instance *instance;
637 	int num_actors = 0;
638 
639 	switch (reason) {
640 	case THERMAL_TZ_BIND_CDEV:
641 	case THERMAL_TZ_UNBIND_CDEV:
642 		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
643 			if (power_actor_is_valid(params, instance))
644 				num_actors++;
645 
646 		if (num_actors == params->num_actors)
647 			return;
648 
649 		allocate_actors_buffer(params, num_actors);
650 		break;
651 	case THERMAL_INSTANCE_WEIGHT_CHANGED:
652 		params->total_weight = 0;
653 		list_for_each_entry(instance, &tz->thermal_instances, tz_node)
654 			if (power_actor_is_valid(params, instance))
655 				params->total_weight += instance->weight;
656 		break;
657 	default:
658 		break;
659 	}
660 }
661 
662 /**
663  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
664  * @tz:	thermal zone to bind it to
665  *
666  * Initialize the PID controller parameters and bind it to the thermal
667  * zone.
668  *
669  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
670  * when there are unsupported cooling devices in the @tz.
671  */
672 static int power_allocator_bind(struct thermal_zone_device *tz)
673 {
674 	struct power_allocator_params *params;
675 	int ret;
676 
677 	params = kzalloc(sizeof(*params), GFP_KERNEL);
678 	if (!params)
679 		return -ENOMEM;
680 
681 	get_governor_trips(tz, params);
682 	if (!params->trip_max) {
683 		dev_warn(&tz->device, "power_allocator: missing trip_max\n");
684 		kfree(params);
685 		return -EINVAL;
686 	}
687 
688 	ret = check_power_actors(tz, params);
689 	if (ret < 0) {
690 		dev_warn(&tz->device, "power_allocator: binding failed\n");
691 		kfree(params);
692 		return ret;
693 	}
694 
695 	ret = allocate_actors_buffer(params, ret);
696 	if (ret) {
697 		dev_warn(&tz->device, "power_allocator: allocation failed\n");
698 		kfree(params);
699 		return ret;
700 	}
701 
702 	if (!tz->tzp) {
703 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
704 		if (!tz->tzp) {
705 			ret = -ENOMEM;
706 			goto free_params;
707 		}
708 
709 		params->allocated_tzp = true;
710 	}
711 
712 	if (!tz->tzp->sustainable_power)
713 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
714 
715 	estimate_pid_constants(tz, tz->tzp->sustainable_power,
716 			       params->trip_switch_on,
717 			       params->trip_max->temperature);
718 
719 	reset_pid_controller(params);
720 
721 	tz->governor_data = params;
722 
723 	return 0;
724 
725 free_params:
726 	kfree(params->power);
727 	kfree(params);
728 
729 	return ret;
730 }
731 
732 static void power_allocator_unbind(struct thermal_zone_device *tz)
733 {
734 	struct power_allocator_params *params = tz->governor_data;
735 
736 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
737 
738 	if (params->allocated_tzp) {
739 		kfree(tz->tzp);
740 		tz->tzp = NULL;
741 	}
742 
743 	kfree(params->power);
744 	kfree(tz->governor_data);
745 	tz->governor_data = NULL;
746 }
747 
748 static int power_allocator_throttle(struct thermal_zone_device *tz,
749 				    const struct thermal_trip *trip)
750 {
751 	struct power_allocator_params *params = tz->governor_data;
752 	bool update;
753 
754 	lockdep_assert_held(&tz->lock);
755 
756 	/*
757 	 * We get called for every trip point but we only need to do
758 	 * our calculations once
759 	 */
760 	if (trip != params->trip_max)
761 		return 0;
762 
763 	trip = params->trip_switch_on;
764 	if (trip && tz->temperature < trip->temperature) {
765 		update = tz->passive;
766 		tz->passive = 0;
767 		reset_pid_controller(params);
768 		allow_maximum_power(tz, update);
769 		return 0;
770 	}
771 
772 	tz->passive = 1;
773 
774 	return allocate_power(tz, params->trip_max->temperature);
775 }
776 
777 static struct thermal_governor thermal_gov_power_allocator = {
778 	.name		= "power_allocator",
779 	.bind_to_tz	= power_allocator_bind,
780 	.unbind_from_tz	= power_allocator_unbind,
781 	.throttle	= power_allocator_throttle,
782 	.update_tz	= power_allocator_update_tz,
783 };
784 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
785