1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A power allocator to manage temperature 4 * 5 * Copyright (C) 2014 ARM Ltd. 6 * 7 */ 8 9 #define pr_fmt(fmt) "Power allocator: " fmt 10 11 #include <linux/slab.h> 12 #include <linux/thermal.h> 13 14 #define CREATE_TRACE_POINTS 15 #include "thermal_trace_ipa.h" 16 17 #include "thermal_core.h" 18 19 #define FRAC_BITS 10 20 #define int_to_frac(x) ((x) << FRAC_BITS) 21 #define frac_to_int(x) ((x) >> FRAC_BITS) 22 23 /** 24 * mul_frac() - multiply two fixed-point numbers 25 * @x: first multiplicand 26 * @y: second multiplicand 27 * 28 * Return: the result of multiplying two fixed-point numbers. The 29 * result is also a fixed-point number. 30 */ 31 static inline s64 mul_frac(s64 x, s64 y) 32 { 33 return (x * y) >> FRAC_BITS; 34 } 35 36 /** 37 * div_frac() - divide two fixed-point numbers 38 * @x: the dividend 39 * @y: the divisor 40 * 41 * Return: the result of dividing two fixed-point numbers. The 42 * result is also a fixed-point number. 43 */ 44 static inline s64 div_frac(s64 x, s64 y) 45 { 46 return div_s64(x << FRAC_BITS, y); 47 } 48 49 /** 50 * struct power_actor - internal power information for power actor 51 * @req_power: requested power value (not weighted) 52 * @max_power: max allocatable power for this actor 53 * @granted_power: granted power for this actor 54 * @extra_actor_power: extra power that this actor can receive 55 * @weighted_req_power: weighted requested power as input to IPA 56 */ 57 struct power_actor { 58 u32 req_power; 59 u32 max_power; 60 u32 granted_power; 61 u32 extra_actor_power; 62 u32 weighted_req_power; 63 }; 64 65 /** 66 * struct power_allocator_params - parameters for the power allocator governor 67 * @allocated_tzp: whether we have allocated tzp for this thermal zone and 68 * it needs to be freed on unbind 69 * @update_cdevs: whether or not update cdevs on the next run 70 * @err_integral: accumulated error in the PID controller. 71 * @prev_err: error in the previous iteration of the PID controller. 72 * Used to calculate the derivative term. 73 * @sustainable_power: Sustainable power (heat) that this thermal zone can 74 * dissipate 75 * @trip_switch_on: first passive trip point of the thermal zone. The 76 * governor switches on when this trip point is crossed. 77 * If the thermal zone only has one passive trip point, 78 * @trip_switch_on should be NULL. 79 * @trip_max: last passive trip point of the thermal zone. The 80 * temperature we are controlling for. 81 * @total_weight: Sum of all thermal instances weights 82 * @num_actors: number of cooling devices supporting IPA callbacks 83 * @buffer_size: internal buffer size, to avoid runtime re-calculation 84 * @power: buffer for all power actors internal power information 85 */ 86 struct power_allocator_params { 87 bool allocated_tzp; 88 bool update_cdevs; 89 s64 err_integral; 90 s32 prev_err; 91 u32 sustainable_power; 92 const struct thermal_trip *trip_switch_on; 93 const struct thermal_trip *trip_max; 94 int total_weight; 95 unsigned int num_actors; 96 unsigned int buffer_size; 97 struct power_actor *power; 98 }; 99 100 static bool power_actor_is_valid(struct power_allocator_params *params, 101 struct thermal_instance *instance) 102 { 103 return (instance->trip == params->trip_max && 104 cdev_is_power_actor(instance->cdev)); 105 } 106 107 /** 108 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone 109 * @tz: thermal zone we are operating in 110 * 111 * For thermal zones that don't provide a sustainable_power in their 112 * thermal_zone_params, estimate one. Calculate it using the minimum 113 * power of all the cooling devices as that gives a valid value that 114 * can give some degree of functionality. For optimal performance of 115 * this governor, provide a sustainable_power in the thermal zone's 116 * thermal_zone_params. 117 */ 118 static u32 estimate_sustainable_power(struct thermal_zone_device *tz) 119 { 120 struct power_allocator_params *params = tz->governor_data; 121 struct thermal_cooling_device *cdev; 122 struct thermal_instance *instance; 123 u32 sustainable_power = 0; 124 u32 min_power; 125 126 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 127 if (!power_actor_is_valid(params, instance)) 128 continue; 129 130 cdev = instance->cdev; 131 if (cdev->ops->state2power(cdev, instance->upper, &min_power)) 132 continue; 133 134 sustainable_power += min_power; 135 } 136 137 return sustainable_power; 138 } 139 140 /** 141 * estimate_pid_constants() - Estimate the constants for the PID controller 142 * @tz: thermal zone for which to estimate the constants 143 * @sustainable_power: sustainable power for the thermal zone 144 * @trip_switch_on: trip point for the switch on temperature 145 * @control_temp: target temperature for the power allocator governor 146 * 147 * This function is used to update the estimation of the PID 148 * controller constants in struct thermal_zone_parameters. 149 */ 150 static void estimate_pid_constants(struct thermal_zone_device *tz, 151 u32 sustainable_power, 152 const struct thermal_trip *trip_switch_on, 153 int control_temp) 154 { 155 u32 temperature_threshold = control_temp; 156 s32 k_i; 157 158 if (trip_switch_on) 159 temperature_threshold -= trip_switch_on->temperature; 160 161 /* 162 * estimate_pid_constants() tries to find appropriate default 163 * values for thermal zones that don't provide them. If a 164 * system integrator has configured a thermal zone with two 165 * passive trip points at the same temperature, that person 166 * hasn't put any effort to set up the thermal zone properly 167 * so just give up. 168 */ 169 if (!temperature_threshold) 170 return; 171 172 tz->tzp->k_po = int_to_frac(sustainable_power) / 173 temperature_threshold; 174 175 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / 176 temperature_threshold; 177 178 k_i = tz->tzp->k_pu / 10; 179 tz->tzp->k_i = k_i > 0 ? k_i : 1; 180 181 /* 182 * The default for k_d and integral_cutoff is 0, so we can 183 * leave them as they are. 184 */ 185 } 186 187 /** 188 * get_sustainable_power() - Get the right sustainable power 189 * @tz: thermal zone for which to estimate the constants 190 * @params: parameters for the power allocator governor 191 * @control_temp: target temperature for the power allocator governor 192 * 193 * This function is used for getting the proper sustainable power value based 194 * on variables which might be updated by the user sysfs interface. If that 195 * happen the new value is going to be estimated and updated. It is also used 196 * after thermal zone binding, where the initial values where set to 0. 197 */ 198 static u32 get_sustainable_power(struct thermal_zone_device *tz, 199 struct power_allocator_params *params, 200 int control_temp) 201 { 202 u32 sustainable_power; 203 204 if (!tz->tzp->sustainable_power) 205 sustainable_power = estimate_sustainable_power(tz); 206 else 207 sustainable_power = tz->tzp->sustainable_power; 208 209 /* Check if it's init value 0 or there was update via sysfs */ 210 if (sustainable_power != params->sustainable_power) { 211 estimate_pid_constants(tz, sustainable_power, 212 params->trip_switch_on, control_temp); 213 214 /* Do the estimation only once and make available in sysfs */ 215 tz->tzp->sustainable_power = sustainable_power; 216 params->sustainable_power = sustainable_power; 217 } 218 219 return sustainable_power; 220 } 221 222 /** 223 * pid_controller() - PID controller 224 * @tz: thermal zone we are operating in 225 * @control_temp: the target temperature in millicelsius 226 * @max_allocatable_power: maximum allocatable power for this thermal zone 227 * 228 * This PID controller increases the available power budget so that the 229 * temperature of the thermal zone gets as close as possible to 230 * @control_temp and limits the power if it exceeds it. k_po is the 231 * proportional term when we are overshooting, k_pu is the 232 * proportional term when we are undershooting. integral_cutoff is a 233 * threshold below which we stop accumulating the error. The 234 * accumulated error is only valid if the requested power will make 235 * the system warmer. If the system is mostly idle, there's no point 236 * in accumulating positive error. 237 * 238 * Return: The power budget for the next period. 239 */ 240 static u32 pid_controller(struct thermal_zone_device *tz, 241 int control_temp, 242 u32 max_allocatable_power) 243 { 244 struct power_allocator_params *params = tz->governor_data; 245 s64 p, i, d, power_range; 246 s32 err, max_power_frac; 247 u32 sustainable_power; 248 249 max_power_frac = int_to_frac(max_allocatable_power); 250 251 sustainable_power = get_sustainable_power(tz, params, control_temp); 252 253 err = control_temp - tz->temperature; 254 err = int_to_frac(err); 255 256 /* Calculate the proportional term */ 257 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); 258 259 /* 260 * Calculate the integral term 261 * 262 * if the error is less than cut off allow integration (but 263 * the integral is limited to max power) 264 */ 265 i = mul_frac(tz->tzp->k_i, params->err_integral); 266 267 if (err < int_to_frac(tz->tzp->integral_cutoff)) { 268 s64 i_next = i + mul_frac(tz->tzp->k_i, err); 269 270 if (abs(i_next) < max_power_frac) { 271 i = i_next; 272 params->err_integral += err; 273 } 274 } 275 276 /* 277 * Calculate the derivative term 278 * 279 * We do err - prev_err, so with a positive k_d, a decreasing 280 * error (i.e. driving closer to the line) results in less 281 * power being applied, slowing down the controller) 282 */ 283 d = mul_frac(tz->tzp->k_d, err - params->prev_err); 284 d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); 285 params->prev_err = err; 286 287 power_range = p + i + d; 288 289 /* feed-forward the known sustainable dissipatable power */ 290 power_range = sustainable_power + frac_to_int(power_range); 291 292 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); 293 294 trace_thermal_power_allocator_pid(tz, frac_to_int(err), 295 frac_to_int(params->err_integral), 296 frac_to_int(p), frac_to_int(i), 297 frac_to_int(d), power_range); 298 299 return power_range; 300 } 301 302 /** 303 * power_actor_set_power() - limit the maximum power a cooling device consumes 304 * @cdev: pointer to &thermal_cooling_device 305 * @instance: thermal instance to update 306 * @power: the power in milliwatts 307 * 308 * Set the cooling device to consume at most @power milliwatts. The limit is 309 * expected to be a cap at the maximum power consumption. 310 * 311 * Return: 0 on success, -EINVAL if the cooling device does not 312 * implement the power actor API or -E* for other failures. 313 */ 314 static int 315 power_actor_set_power(struct thermal_cooling_device *cdev, 316 struct thermal_instance *instance, u32 power) 317 { 318 unsigned long state; 319 int ret; 320 321 ret = cdev->ops->power2state(cdev, power, &state); 322 if (ret) 323 return ret; 324 325 instance->target = clamp_val(state, instance->lower, instance->upper); 326 mutex_lock(&cdev->lock); 327 __thermal_cdev_update(cdev); 328 mutex_unlock(&cdev->lock); 329 330 return 0; 331 } 332 333 /** 334 * divvy_up_power() - divvy the allocated power between the actors 335 * @power: buffer for all power actors internal power information 336 * @num_actors: number of power actors in this thermal zone 337 * @total_req_power: sum of all weighted requested power for all actors 338 * @power_range: total allocated power 339 * 340 * This function divides the total allocated power (@power_range) 341 * fairly between the actors. It first tries to give each actor a 342 * share of the @power_range according to how much power it requested 343 * compared to the rest of the actors. For example, if only one actor 344 * requests power, then it receives all the @power_range. If 345 * three actors each requests 1mW, each receives a third of the 346 * @power_range. 347 * 348 * If any actor received more than their maximum power, then that 349 * surplus is re-divvied among the actors based on how far they are 350 * from their respective maximums. 351 */ 352 static void divvy_up_power(struct power_actor *power, int num_actors, 353 u32 total_req_power, u32 power_range) 354 { 355 u32 capped_extra_power = 0; 356 u32 extra_power = 0; 357 int i; 358 359 /* 360 * Prevent division by 0 if none of the actors request power. 361 */ 362 if (!total_req_power) 363 total_req_power = 1; 364 365 for (i = 0; i < num_actors; i++) { 366 struct power_actor *pa = &power[i]; 367 u64 req_range = (u64)pa->req_power * power_range; 368 369 pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range, 370 total_req_power); 371 372 if (pa->granted_power > pa->max_power) { 373 extra_power += pa->granted_power - pa->max_power; 374 pa->granted_power = pa->max_power; 375 } 376 377 pa->extra_actor_power = pa->max_power - pa->granted_power; 378 capped_extra_power += pa->extra_actor_power; 379 } 380 381 if (!extra_power || !capped_extra_power) 382 return; 383 384 /* 385 * Re-divvy the reclaimed extra among actors based on 386 * how far they are from the max 387 */ 388 extra_power = min(extra_power, capped_extra_power); 389 390 for (i = 0; i < num_actors; i++) { 391 struct power_actor *pa = &power[i]; 392 u64 extra_range = pa->extra_actor_power; 393 394 extra_range *= extra_power; 395 pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range, 396 capped_extra_power); 397 } 398 } 399 400 static void allocate_power(struct thermal_zone_device *tz, int control_temp) 401 { 402 struct power_allocator_params *params = tz->governor_data; 403 unsigned int num_actors = params->num_actors; 404 struct power_actor *power = params->power; 405 struct thermal_cooling_device *cdev; 406 struct thermal_instance *instance; 407 u32 total_weighted_req_power = 0; 408 u32 max_allocatable_power = 0; 409 u32 total_granted_power = 0; 410 u32 total_req_power = 0; 411 u32 power_range, weight; 412 int i = 0, ret; 413 414 if (!num_actors) 415 return; 416 417 /* Clean all buffers for new power estimations */ 418 memset(power, 0, params->buffer_size); 419 420 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 421 struct power_actor *pa = &power[i]; 422 423 if (!power_actor_is_valid(params, instance)) 424 continue; 425 426 cdev = instance->cdev; 427 428 ret = cdev->ops->get_requested_power(cdev, &pa->req_power); 429 if (ret) 430 continue; 431 432 if (!params->total_weight) 433 weight = 1 << FRAC_BITS; 434 else 435 weight = instance->weight; 436 437 pa->weighted_req_power = frac_to_int(weight * pa->req_power); 438 439 ret = cdev->ops->state2power(cdev, instance->lower, 440 &pa->max_power); 441 if (ret) 442 continue; 443 444 total_req_power += pa->req_power; 445 max_allocatable_power += pa->max_power; 446 total_weighted_req_power += pa->weighted_req_power; 447 448 i++; 449 } 450 451 power_range = pid_controller(tz, control_temp, max_allocatable_power); 452 453 divvy_up_power(power, num_actors, total_weighted_req_power, 454 power_range); 455 456 i = 0; 457 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 458 struct power_actor *pa = &power[i]; 459 460 if (!power_actor_is_valid(params, instance)) 461 continue; 462 463 power_actor_set_power(instance->cdev, instance, 464 pa->granted_power); 465 total_granted_power += pa->granted_power; 466 467 trace_thermal_power_actor(tz, i, pa->req_power, 468 pa->granted_power); 469 i++; 470 } 471 472 trace_thermal_power_allocator(tz, total_req_power, total_granted_power, 473 num_actors, power_range, 474 max_allocatable_power, tz->temperature, 475 control_temp - tz->temperature); 476 } 477 478 /** 479 * get_governor_trips() - get the two trip points that are key for this governor 480 * @tz: thermal zone to operate on 481 * @params: pointer to private data for this governor 482 * 483 * The power allocator governor works optimally with two trips points: 484 * a "switch on" trip point and a "maximum desired temperature". These 485 * are defined as the first and last passive trip points. 486 * 487 * If there is only one trip point, then that's considered to be the 488 * "maximum desired temperature" trip point and the governor is always 489 * on. If there are no passive or active trip points, then the 490 * governor won't do anything. In fact, its throttle function 491 * won't be called at all. 492 */ 493 static void get_governor_trips(struct thermal_zone_device *tz, 494 struct power_allocator_params *params) 495 { 496 const struct thermal_trip *first_passive = NULL; 497 const struct thermal_trip *last_passive = NULL; 498 const struct thermal_trip *last_active = NULL; 499 const struct thermal_trip_desc *td; 500 501 for_each_trip_desc(tz, td) { 502 const struct thermal_trip *trip = &td->trip; 503 504 switch (trip->type) { 505 case THERMAL_TRIP_PASSIVE: 506 if (!first_passive) { 507 first_passive = trip; 508 break; 509 } 510 last_passive = trip; 511 break; 512 case THERMAL_TRIP_ACTIVE: 513 last_active = trip; 514 break; 515 default: 516 break; 517 } 518 } 519 520 if (last_passive) { 521 params->trip_switch_on = first_passive; 522 params->trip_max = last_passive; 523 } else if (first_passive) { 524 params->trip_switch_on = NULL; 525 params->trip_max = first_passive; 526 } else { 527 params->trip_switch_on = NULL; 528 params->trip_max = last_active; 529 } 530 } 531 532 static void reset_pid_controller(struct power_allocator_params *params) 533 { 534 params->err_integral = 0; 535 params->prev_err = 0; 536 } 537 538 static void allow_maximum_power(struct thermal_zone_device *tz) 539 { 540 struct power_allocator_params *params = tz->governor_data; 541 struct thermal_cooling_device *cdev; 542 struct thermal_instance *instance; 543 u32 req_power; 544 545 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 546 if (!power_actor_is_valid(params, instance)) 547 continue; 548 549 cdev = instance->cdev; 550 551 instance->target = 0; 552 mutex_lock(&cdev->lock); 553 /* 554 * Call for updating the cooling devices local stats and avoid 555 * periods of dozen of seconds when those have not been 556 * maintained. 557 */ 558 cdev->ops->get_requested_power(cdev, &req_power); 559 560 if (params->update_cdevs) 561 __thermal_cdev_update(cdev); 562 563 mutex_unlock(&cdev->lock); 564 } 565 } 566 567 /** 568 * check_power_actors() - Check all cooling devices and warn when they are 569 * not power actors 570 * @tz: thermal zone to operate on 571 * @params: power allocator private data 572 * 573 * Check all cooling devices in the @tz and warn every time they are missing 574 * power actor API. The warning should help to investigate the issue, which 575 * could be e.g. lack of Energy Model for a given device. 576 * 577 * If all of the cooling devices currently attached to @tz implement the power 578 * actor API, return the number of them (which may be 0, because some cooling 579 * devices may be attached later). Otherwise, return -EINVAL. 580 */ 581 static int check_power_actors(struct thermal_zone_device *tz, 582 struct power_allocator_params *params) 583 { 584 struct thermal_instance *instance; 585 int ret = 0; 586 587 list_for_each_entry(instance, &tz->thermal_instances, tz_node) { 588 if (instance->trip != params->trip_max) 589 continue; 590 591 if (!cdev_is_power_actor(instance->cdev)) { 592 dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", 593 instance->cdev->type); 594 return -EINVAL; 595 } 596 ret++; 597 } 598 599 return ret; 600 } 601 602 static int allocate_actors_buffer(struct power_allocator_params *params, 603 int num_actors) 604 { 605 int ret; 606 607 kfree(params->power); 608 609 /* There might be no cooling devices yet. */ 610 if (!num_actors) { 611 ret = 0; 612 goto clean_state; 613 } 614 615 params->power = kcalloc(num_actors, sizeof(struct power_actor), 616 GFP_KERNEL); 617 if (!params->power) { 618 ret = -ENOMEM; 619 goto clean_state; 620 } 621 622 params->num_actors = num_actors; 623 params->buffer_size = num_actors * sizeof(struct power_actor); 624 625 return 0; 626 627 clean_state: 628 params->num_actors = 0; 629 params->buffer_size = 0; 630 params->power = NULL; 631 return ret; 632 } 633 634 static void power_allocator_update_tz(struct thermal_zone_device *tz, 635 enum thermal_notify_event reason) 636 { 637 struct power_allocator_params *params = tz->governor_data; 638 struct thermal_instance *instance; 639 int num_actors = 0; 640 641 switch (reason) { 642 case THERMAL_TZ_BIND_CDEV: 643 case THERMAL_TZ_UNBIND_CDEV: 644 list_for_each_entry(instance, &tz->thermal_instances, tz_node) 645 if (power_actor_is_valid(params, instance)) 646 num_actors++; 647 648 if (num_actors == params->num_actors) 649 return; 650 651 allocate_actors_buffer(params, num_actors); 652 break; 653 case THERMAL_INSTANCE_WEIGHT_CHANGED: 654 params->total_weight = 0; 655 list_for_each_entry(instance, &tz->thermal_instances, tz_node) 656 if (power_actor_is_valid(params, instance)) 657 params->total_weight += instance->weight; 658 break; 659 default: 660 break; 661 } 662 } 663 664 /** 665 * power_allocator_bind() - bind the power_allocator governor to a thermal zone 666 * @tz: thermal zone to bind it to 667 * 668 * Initialize the PID controller parameters and bind it to the thermal 669 * zone. 670 * 671 * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL 672 * when there are unsupported cooling devices in the @tz. 673 */ 674 static int power_allocator_bind(struct thermal_zone_device *tz) 675 { 676 struct power_allocator_params *params; 677 int ret; 678 679 params = kzalloc(sizeof(*params), GFP_KERNEL); 680 if (!params) 681 return -ENOMEM; 682 683 get_governor_trips(tz, params); 684 685 ret = check_power_actors(tz, params); 686 if (ret < 0) { 687 dev_warn(&tz->device, "power_allocator: binding failed\n"); 688 kfree(params); 689 return ret; 690 } 691 692 ret = allocate_actors_buffer(params, ret); 693 if (ret) { 694 dev_warn(&tz->device, "power_allocator: allocation failed\n"); 695 kfree(params); 696 return ret; 697 } 698 699 if (!tz->tzp) { 700 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); 701 if (!tz->tzp) { 702 ret = -ENOMEM; 703 goto free_params; 704 } 705 706 params->allocated_tzp = true; 707 } 708 709 if (!tz->tzp->sustainable_power) 710 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); 711 else 712 params->sustainable_power = tz->tzp->sustainable_power; 713 714 if (params->trip_max) 715 estimate_pid_constants(tz, tz->tzp->sustainable_power, 716 params->trip_switch_on, 717 params->trip_max->temperature); 718 719 reset_pid_controller(params); 720 721 tz->governor_data = params; 722 723 return 0; 724 725 free_params: 726 kfree(params->power); 727 kfree(params); 728 729 return ret; 730 } 731 732 static void power_allocator_unbind(struct thermal_zone_device *tz) 733 { 734 struct power_allocator_params *params = tz->governor_data; 735 736 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); 737 738 if (params->allocated_tzp) { 739 kfree(tz->tzp); 740 tz->tzp = NULL; 741 } 742 743 kfree(params->power); 744 kfree(tz->governor_data); 745 tz->governor_data = NULL; 746 } 747 748 static void power_allocator_manage(struct thermal_zone_device *tz) 749 { 750 struct power_allocator_params *params = tz->governor_data; 751 const struct thermal_trip *trip = params->trip_switch_on; 752 753 lockdep_assert_held(&tz->lock); 754 755 if (trip && tz->temperature < trip->temperature) { 756 reset_pid_controller(params); 757 allow_maximum_power(tz); 758 params->update_cdevs = false; 759 return; 760 } 761 762 allocate_power(tz, params->trip_max->temperature); 763 params->update_cdevs = true; 764 } 765 766 static struct thermal_governor thermal_gov_power_allocator = { 767 .name = "power_allocator", 768 .bind_to_tz = power_allocator_bind, 769 .unbind_from_tz = power_allocator_unbind, 770 .manage = power_allocator_manage, 771 .update_tz = power_allocator_update_tz, 772 }; 773 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator); 774