xref: /linux/drivers/thermal/gov_power_allocator.c (revision 335bbdf01d25517ae832ac1807fd8323c1f4f3b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A power allocator to manage temperature
4  *
5  * Copyright (C) 2014 ARM Ltd.
6  *
7  */
8 
9 #define pr_fmt(fmt) "Power allocator: " fmt
10 
11 #include <linux/slab.h>
12 #include <linux/thermal.h>
13 
14 #define CREATE_TRACE_POINTS
15 #include "thermal_trace_ipa.h"
16 
17 #include "thermal_core.h"
18 
19 #define FRAC_BITS 10
20 #define int_to_frac(x) ((x) << FRAC_BITS)
21 #define frac_to_int(x) ((x) >> FRAC_BITS)
22 
23 /**
24  * mul_frac() - multiply two fixed-point numbers
25  * @x:	first multiplicand
26  * @y:	second multiplicand
27  *
28  * Return: the result of multiplying two fixed-point numbers.  The
29  * result is also a fixed-point number.
30  */
31 static inline s64 mul_frac(s64 x, s64 y)
32 {
33 	return (x * y) >> FRAC_BITS;
34 }
35 
36 /**
37  * div_frac() - divide two fixed-point numbers
38  * @x:	the dividend
39  * @y:	the divisor
40  *
41  * Return: the result of dividing two fixed-point numbers.  The
42  * result is also a fixed-point number.
43  */
44 static inline s64 div_frac(s64 x, s64 y)
45 {
46 	return div_s64(x << FRAC_BITS, y);
47 }
48 
49 /**
50  * struct power_allocator_params - parameters for the power allocator governor
51  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
52  *			it needs to be freed on unbind
53  * @err_integral:	accumulated error in the PID controller.
54  * @prev_err:	error in the previous iteration of the PID controller.
55  *		Used to calculate the derivative term.
56  * @sustainable_power:	Sustainable power (heat) that this thermal zone can
57  *			dissipate
58  * @trip_switch_on:	first passive trip point of the thermal zone.  The
59  *			governor switches on when this trip point is crossed.
60  *			If the thermal zone only has one passive trip point,
61  *			@trip_switch_on should be NULL.
62  * @trip_max_desired_temperature:	last passive trip point of the thermal
63  *					zone.  The temperature we are
64  *					controlling for.
65  */
66 struct power_allocator_params {
67 	bool allocated_tzp;
68 	s64 err_integral;
69 	s32 prev_err;
70 	u32 sustainable_power;
71 	const struct thermal_trip *trip_switch_on;
72 	const struct thermal_trip *trip_max_desired_temperature;
73 };
74 
75 /**
76  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
77  * @tz: thermal zone we are operating in
78  *
79  * For thermal zones that don't provide a sustainable_power in their
80  * thermal_zone_params, estimate one.  Calculate it using the minimum
81  * power of all the cooling devices as that gives a valid value that
82  * can give some degree of functionality.  For optimal performance of
83  * this governor, provide a sustainable_power in the thermal zone's
84  * thermal_zone_params.
85  */
86 static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
87 {
88 	u32 sustainable_power = 0;
89 	struct thermal_instance *instance;
90 	struct power_allocator_params *params = tz->governor_data;
91 
92 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
93 		struct thermal_cooling_device *cdev = instance->cdev;
94 		u32 min_power;
95 
96 		if (instance->trip != params->trip_max_desired_temperature)
97 			continue;
98 
99 		if (!cdev_is_power_actor(cdev))
100 			continue;
101 
102 		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
103 			continue;
104 
105 		sustainable_power += min_power;
106 	}
107 
108 	return sustainable_power;
109 }
110 
111 /**
112  * estimate_pid_constants() - Estimate the constants for the PID controller
113  * @tz:		thermal zone for which to estimate the constants
114  * @sustainable_power:	sustainable power for the thermal zone
115  * @trip_switch_on:	trip point for the switch on temperature
116  * @control_temp:	target temperature for the power allocator governor
117  *
118  * This function is used to update the estimation of the PID
119  * controller constants in struct thermal_zone_parameters.
120  */
121 static void estimate_pid_constants(struct thermal_zone_device *tz,
122 				   u32 sustainable_power,
123 				   const struct thermal_trip *trip_switch_on,
124 				   int control_temp)
125 {
126 	u32 temperature_threshold = control_temp;
127 	s32 k_i;
128 
129 	if (trip_switch_on)
130 		temperature_threshold -= trip_switch_on->temperature;
131 
132 	/*
133 	 * estimate_pid_constants() tries to find appropriate default
134 	 * values for thermal zones that don't provide them. If a
135 	 * system integrator has configured a thermal zone with two
136 	 * passive trip points at the same temperature, that person
137 	 * hasn't put any effort to set up the thermal zone properly
138 	 * so just give up.
139 	 */
140 	if (!temperature_threshold)
141 		return;
142 
143 	tz->tzp->k_po = int_to_frac(sustainable_power) /
144 		temperature_threshold;
145 
146 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
147 		temperature_threshold;
148 
149 	k_i = tz->tzp->k_pu / 10;
150 	tz->tzp->k_i = k_i > 0 ? k_i : 1;
151 
152 	/*
153 	 * The default for k_d and integral_cutoff is 0, so we can
154 	 * leave them as they are.
155 	 */
156 }
157 
158 /**
159  * get_sustainable_power() - Get the right sustainable power
160  * @tz:		thermal zone for which to estimate the constants
161  * @params:	parameters for the power allocator governor
162  * @control_temp:	target temperature for the power allocator governor
163  *
164  * This function is used for getting the proper sustainable power value based
165  * on variables which might be updated by the user sysfs interface. If that
166  * happen the new value is going to be estimated and updated. It is also used
167  * after thermal zone binding, where the initial values where set to 0.
168  */
169 static u32 get_sustainable_power(struct thermal_zone_device *tz,
170 				 struct power_allocator_params *params,
171 				 int control_temp)
172 {
173 	u32 sustainable_power;
174 
175 	if (!tz->tzp->sustainable_power)
176 		sustainable_power = estimate_sustainable_power(tz);
177 	else
178 		sustainable_power = tz->tzp->sustainable_power;
179 
180 	/* Check if it's init value 0 or there was update via sysfs */
181 	if (sustainable_power != params->sustainable_power) {
182 		estimate_pid_constants(tz, sustainable_power,
183 				       params->trip_switch_on, control_temp);
184 
185 		/* Do the estimation only once and make available in sysfs */
186 		tz->tzp->sustainable_power = sustainable_power;
187 		params->sustainable_power = sustainable_power;
188 	}
189 
190 	return sustainable_power;
191 }
192 
193 /**
194  * pid_controller() - PID controller
195  * @tz:	thermal zone we are operating in
196  * @control_temp:	the target temperature in millicelsius
197  * @max_allocatable_power:	maximum allocatable power for this thermal zone
198  *
199  * This PID controller increases the available power budget so that the
200  * temperature of the thermal zone gets as close as possible to
201  * @control_temp and limits the power if it exceeds it.  k_po is the
202  * proportional term when we are overshooting, k_pu is the
203  * proportional term when we are undershooting.  integral_cutoff is a
204  * threshold below which we stop accumulating the error.  The
205  * accumulated error is only valid if the requested power will make
206  * the system warmer.  If the system is mostly idle, there's no point
207  * in accumulating positive error.
208  *
209  * Return: The power budget for the next period.
210  */
211 static u32 pid_controller(struct thermal_zone_device *tz,
212 			  int control_temp,
213 			  u32 max_allocatable_power)
214 {
215 	s64 p, i, d, power_range;
216 	s32 err, max_power_frac;
217 	u32 sustainable_power;
218 	struct power_allocator_params *params = tz->governor_data;
219 
220 	max_power_frac = int_to_frac(max_allocatable_power);
221 
222 	sustainable_power = get_sustainable_power(tz, params, control_temp);
223 
224 	err = control_temp - tz->temperature;
225 	err = int_to_frac(err);
226 
227 	/* Calculate the proportional term */
228 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
229 
230 	/*
231 	 * Calculate the integral term
232 	 *
233 	 * if the error is less than cut off allow integration (but
234 	 * the integral is limited to max power)
235 	 */
236 	i = mul_frac(tz->tzp->k_i, params->err_integral);
237 
238 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
239 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
240 
241 		if (abs(i_next) < max_power_frac) {
242 			i = i_next;
243 			params->err_integral += err;
244 		}
245 	}
246 
247 	/*
248 	 * Calculate the derivative term
249 	 *
250 	 * We do err - prev_err, so with a positive k_d, a decreasing
251 	 * error (i.e. driving closer to the line) results in less
252 	 * power being applied, slowing down the controller)
253 	 */
254 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
255 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
256 	params->prev_err = err;
257 
258 	power_range = p + i + d;
259 
260 	/* feed-forward the known sustainable dissipatable power */
261 	power_range = sustainable_power + frac_to_int(power_range);
262 
263 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
264 
265 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
266 					  frac_to_int(params->err_integral),
267 					  frac_to_int(p), frac_to_int(i),
268 					  frac_to_int(d), power_range);
269 
270 	return power_range;
271 }
272 
273 /**
274  * power_actor_set_power() - limit the maximum power a cooling device consumes
275  * @cdev:	pointer to &thermal_cooling_device
276  * @instance:	thermal instance to update
277  * @power:	the power in milliwatts
278  *
279  * Set the cooling device to consume at most @power milliwatts. The limit is
280  * expected to be a cap at the maximum power consumption.
281  *
282  * Return: 0 on success, -EINVAL if the cooling device does not
283  * implement the power actor API or -E* for other failures.
284  */
285 static int
286 power_actor_set_power(struct thermal_cooling_device *cdev,
287 		      struct thermal_instance *instance, u32 power)
288 {
289 	unsigned long state;
290 	int ret;
291 
292 	ret = cdev->ops->power2state(cdev, power, &state);
293 	if (ret)
294 		return ret;
295 
296 	instance->target = clamp_val(state, instance->lower, instance->upper);
297 	mutex_lock(&cdev->lock);
298 	__thermal_cdev_update(cdev);
299 	mutex_unlock(&cdev->lock);
300 
301 	return 0;
302 }
303 
304 /**
305  * divvy_up_power() - divvy the allocated power between the actors
306  * @req_power:	each actor's requested power
307  * @max_power:	each actor's maximum available power
308  * @num_actors:	size of the @req_power, @max_power and @granted_power's array
309  * @total_req_power: sum of @req_power
310  * @power_range:	total allocated power
311  * @granted_power:	output array: each actor's granted power
312  * @extra_actor_power:	an appropriately sized array to be used in the
313  *			function as temporary storage of the extra power given
314  *			to the actors
315  *
316  * This function divides the total allocated power (@power_range)
317  * fairly between the actors.  It first tries to give each actor a
318  * share of the @power_range according to how much power it requested
319  * compared to the rest of the actors.  For example, if only one actor
320  * requests power, then it receives all the @power_range.  If
321  * three actors each requests 1mW, each receives a third of the
322  * @power_range.
323  *
324  * If any actor received more than their maximum power, then that
325  * surplus is re-divvied among the actors based on how far they are
326  * from their respective maximums.
327  *
328  * Granted power for each actor is written to @granted_power, which
329  * should've been allocated by the calling function.
330  */
331 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
332 			   u32 total_req_power, u32 power_range,
333 			   u32 *granted_power, u32 *extra_actor_power)
334 {
335 	u32 extra_power, capped_extra_power;
336 	int i;
337 
338 	/*
339 	 * Prevent division by 0 if none of the actors request power.
340 	 */
341 	if (!total_req_power)
342 		total_req_power = 1;
343 
344 	capped_extra_power = 0;
345 	extra_power = 0;
346 	for (i = 0; i < num_actors; i++) {
347 		u64 req_range = (u64)req_power[i] * power_range;
348 
349 		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
350 							 total_req_power);
351 
352 		if (granted_power[i] > max_power[i]) {
353 			extra_power += granted_power[i] - max_power[i];
354 			granted_power[i] = max_power[i];
355 		}
356 
357 		extra_actor_power[i] = max_power[i] - granted_power[i];
358 		capped_extra_power += extra_actor_power[i];
359 	}
360 
361 	if (!extra_power)
362 		return;
363 
364 	/*
365 	 * Re-divvy the reclaimed extra among actors based on
366 	 * how far they are from the max
367 	 */
368 	extra_power = min(extra_power, capped_extra_power);
369 	if (capped_extra_power > 0)
370 		for (i = 0; i < num_actors; i++) {
371 			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
372 			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
373 							 capped_extra_power);
374 		}
375 }
376 
377 static int allocate_power(struct thermal_zone_device *tz,
378 			  int control_temp)
379 {
380 	struct thermal_instance *instance;
381 	struct power_allocator_params *params = tz->governor_data;
382 	const struct thermal_trip *trip_max_desired_temperature =
383 					params->trip_max_desired_temperature;
384 	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
385 	u32 *weighted_req_power;
386 	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
387 	u32 total_granted_power, power_range;
388 	int i, num_actors, total_weight, ret = 0;
389 
390 	num_actors = 0;
391 	total_weight = 0;
392 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
393 		if ((instance->trip == trip_max_desired_temperature) &&
394 		    cdev_is_power_actor(instance->cdev)) {
395 			num_actors++;
396 			total_weight += instance->weight;
397 		}
398 	}
399 
400 	if (!num_actors)
401 		return -ENODEV;
402 
403 	/*
404 	 * We need to allocate five arrays of the same size:
405 	 * req_power, max_power, granted_power, extra_actor_power and
406 	 * weighted_req_power.  They are going to be needed until this
407 	 * function returns.  Allocate them all in one go to simplify
408 	 * the allocation and deallocation logic.
409 	 */
410 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
411 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
412 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
413 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
414 	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
415 	if (!req_power)
416 		return -ENOMEM;
417 
418 	max_power = &req_power[num_actors];
419 	granted_power = &req_power[2 * num_actors];
420 	extra_actor_power = &req_power[3 * num_actors];
421 	weighted_req_power = &req_power[4 * num_actors];
422 
423 	i = 0;
424 	total_weighted_req_power = 0;
425 	total_req_power = 0;
426 	max_allocatable_power = 0;
427 
428 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
429 		int weight;
430 		struct thermal_cooling_device *cdev = instance->cdev;
431 
432 		if (instance->trip != trip_max_desired_temperature)
433 			continue;
434 
435 		if (!cdev_is_power_actor(cdev))
436 			continue;
437 
438 		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
439 			continue;
440 
441 		if (!total_weight)
442 			weight = 1 << FRAC_BITS;
443 		else
444 			weight = instance->weight;
445 
446 		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
447 
448 		if (cdev->ops->state2power(cdev, instance->lower,
449 					   &max_power[i]))
450 			continue;
451 
452 		total_req_power += req_power[i];
453 		max_allocatable_power += max_power[i];
454 		total_weighted_req_power += weighted_req_power[i];
455 
456 		i++;
457 	}
458 
459 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
460 
461 	divvy_up_power(weighted_req_power, max_power, num_actors,
462 		       total_weighted_req_power, power_range, granted_power,
463 		       extra_actor_power);
464 
465 	total_granted_power = 0;
466 	i = 0;
467 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
468 		if (instance->trip != trip_max_desired_temperature)
469 			continue;
470 
471 		if (!cdev_is_power_actor(instance->cdev))
472 			continue;
473 
474 		power_actor_set_power(instance->cdev, instance,
475 				      granted_power[i]);
476 		total_granted_power += granted_power[i];
477 
478 		i++;
479 	}
480 
481 	trace_thermal_power_allocator(tz, req_power, total_req_power,
482 				      granted_power, total_granted_power,
483 				      num_actors, power_range,
484 				      max_allocatable_power, tz->temperature,
485 				      control_temp - tz->temperature);
486 
487 	kfree(req_power);
488 
489 	return ret;
490 }
491 
492 /**
493  * get_governor_trips() - get the two trip points that are key for this governor
494  * @tz:	thermal zone to operate on
495  * @params:	pointer to private data for this governor
496  *
497  * The power allocator governor works optimally with two trips points:
498  * a "switch on" trip point and a "maximum desired temperature".  These
499  * are defined as the first and last passive trip points.
500  *
501  * If there is only one trip point, then that's considered to be the
502  * "maximum desired temperature" trip point and the governor is always
503  * on.  If there are no passive or active trip points, then the
504  * governor won't do anything.  In fact, its throttle function
505  * won't be called at all.
506  */
507 static void get_governor_trips(struct thermal_zone_device *tz,
508 			       struct power_allocator_params *params)
509 {
510 	const struct thermal_trip *first_passive = NULL;
511 	const struct thermal_trip *last_passive = NULL;
512 	const struct thermal_trip *last_active = NULL;
513 	const struct thermal_trip *trip;
514 
515 	for_each_trip(tz, trip) {
516 		switch (trip->type) {
517 		case THERMAL_TRIP_PASSIVE:
518 			if (!first_passive) {
519 				first_passive = trip;
520 				break;
521 			}
522 			last_passive = trip;
523 			break;
524 		case THERMAL_TRIP_ACTIVE:
525 			last_active = trip;
526 			break;
527 		default:
528 			break;
529 		}
530 	}
531 
532 	if (last_passive) {
533 		params->trip_switch_on = first_passive;
534 		params->trip_max_desired_temperature = last_passive;
535 	} else if (first_passive) {
536 		params->trip_switch_on = NULL;
537 		params->trip_max_desired_temperature = first_passive;
538 	} else {
539 		params->trip_switch_on = NULL;
540 		params->trip_max_desired_temperature = last_active;
541 	}
542 }
543 
544 static void reset_pid_controller(struct power_allocator_params *params)
545 {
546 	params->err_integral = 0;
547 	params->prev_err = 0;
548 }
549 
550 static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
551 {
552 	struct thermal_instance *instance;
553 	struct power_allocator_params *params = tz->governor_data;
554 	u32 req_power;
555 
556 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
557 		struct thermal_cooling_device *cdev = instance->cdev;
558 
559 		if (instance->trip != params->trip_max_desired_temperature ||
560 		    (!cdev_is_power_actor(instance->cdev)))
561 			continue;
562 
563 		instance->target = 0;
564 		mutex_lock(&instance->cdev->lock);
565 		/*
566 		 * Call for updating the cooling devices local stats and avoid
567 		 * periods of dozen of seconds when those have not been
568 		 * maintained.
569 		 */
570 		cdev->ops->get_requested_power(cdev, &req_power);
571 
572 		if (update)
573 			__thermal_cdev_update(instance->cdev);
574 
575 		mutex_unlock(&instance->cdev->lock);
576 	}
577 }
578 
579 /**
580  * check_power_actors() - Check all cooling devices and warn when they are
581  *			not power actors
582  * @tz:		thermal zone to operate on
583  *
584  * Check all cooling devices in the @tz and warn every time they are missing
585  * power actor API. The warning should help to investigate the issue, which
586  * could be e.g. lack of Energy Model for a given device.
587  *
588  * Return: 0 on success, -EINVAL if any cooling device does not implement
589  * the power actor API.
590  */
591 static int check_power_actors(struct thermal_zone_device *tz)
592 {
593 	struct thermal_instance *instance;
594 	int ret = 0;
595 
596 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
597 		if (!cdev_is_power_actor(instance->cdev)) {
598 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
599 				 instance->cdev->type);
600 			ret = -EINVAL;
601 		}
602 	}
603 
604 	return ret;
605 }
606 
607 /**
608  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
609  * @tz:	thermal zone to bind it to
610  *
611  * Initialize the PID controller parameters and bind it to the thermal
612  * zone.
613  *
614  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
615  * when there are unsupported cooling devices in the @tz.
616  */
617 static int power_allocator_bind(struct thermal_zone_device *tz)
618 {
619 	int ret;
620 	struct power_allocator_params *params;
621 
622 	ret = check_power_actors(tz);
623 	if (ret)
624 		return ret;
625 
626 	params = kzalloc(sizeof(*params), GFP_KERNEL);
627 	if (!params)
628 		return -ENOMEM;
629 
630 	if (!tz->tzp) {
631 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
632 		if (!tz->tzp) {
633 			ret = -ENOMEM;
634 			goto free_params;
635 		}
636 
637 		params->allocated_tzp = true;
638 	}
639 
640 	if (!tz->tzp->sustainable_power)
641 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
642 
643 	get_governor_trips(tz, params);
644 
645 	if (params->trip_max_desired_temperature) {
646 		int temp = params->trip_max_desired_temperature->temperature;
647 
648 		estimate_pid_constants(tz, tz->tzp->sustainable_power,
649 				       params->trip_switch_on, temp);
650 	}
651 
652 	reset_pid_controller(params);
653 
654 	tz->governor_data = params;
655 
656 	return 0;
657 
658 free_params:
659 	kfree(params);
660 
661 	return ret;
662 }
663 
664 static void power_allocator_unbind(struct thermal_zone_device *tz)
665 {
666 	struct power_allocator_params *params = tz->governor_data;
667 
668 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
669 
670 	if (params->allocated_tzp) {
671 		kfree(tz->tzp);
672 		tz->tzp = NULL;
673 	}
674 
675 	kfree(tz->governor_data);
676 	tz->governor_data = NULL;
677 }
678 
679 static int power_allocator_throttle(struct thermal_zone_device *tz,
680 				    const struct thermal_trip *trip)
681 {
682 	struct power_allocator_params *params = tz->governor_data;
683 	bool update;
684 
685 	lockdep_assert_held(&tz->lock);
686 
687 	/*
688 	 * We get called for every trip point but we only need to do
689 	 * our calculations once
690 	 */
691 	if (trip != params->trip_max_desired_temperature)
692 		return 0;
693 
694 	trip = params->trip_switch_on;
695 	if (trip && tz->temperature < trip->temperature) {
696 		update = tz->last_temperature >= trip->temperature;
697 		tz->passive = 0;
698 		reset_pid_controller(params);
699 		allow_maximum_power(tz, update);
700 		return 0;
701 	}
702 
703 	tz->passive = 1;
704 
705 	return allocate_power(tz, params->trip_max_desired_temperature->temperature);
706 }
707 
708 static struct thermal_governor thermal_gov_power_allocator = {
709 	.name		= "power_allocator",
710 	.bind_to_tz	= power_allocator_bind,
711 	.unbind_from_tz	= power_allocator_unbind,
712 	.throttle	= power_allocator_throttle,
713 };
714 THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
715